首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
3'-end cleavage of histone pre-mRNAs is catalyzed by CPSF-73 and requires the interaction of two U7 snRNP-associated proteins, FLASH and Lsm11. Here, by using scanning mutagenesis we identify critical residues in human FLASH and Lsm11 that are involved in the interaction between these two proteins. We also demonstrate that mutations in the region of FLASH located between amino acids 50 and 99 do not affect binding of Lsm11. Interestingly, these mutations convert FLASH into an inhibitory protein that reduces in vitro processing efficiency of highly active nuclear extracts. Our results suggest that this region in FLASH in conjunction with Lsm11 is involved in recruiting a yet-unknown processing factor(s) to histone pre-mRNA. Following endonucleolytic cleavage of histone pre-mRNA, the downstream cleavage product (DCP) is degraded by the 5'-3' exonuclease activity of CPSF-73, which also depends on Lsm11. Strikingly, while cleavage of histone pre-mRNA is stimulated by FLASH and inhibited by both dominant negative mutants of FLASH and anti-FLASH antibodies, the 5'-3' degradation of the DCP is not affected. Thus, the recruitment of FLASH to the processing complex plays a critical role in activating the endonuclease mode of CPSF-73 but is dispensable for its 5'-3' exonuclease activity. These results suggest that CPSF-73, the catalytic component in both reactions, can be recruited to histone pre-mRNA largely in a manner independent of FLASH, possibly by a separate domain in Lsm11.  相似文献   

2.
Processing of histone pre-mRNA requires a single 3′ endonucleolytic cleavage guided by the U7 snRNP that binds downstream of the cleavage site. Following cleavage, the downstream cleavage product (DCP) is rapidly degraded in vitro by a nuclease that also depends on the U7 snRNP. Our previous studies demonstrated that the endonucleolytic cleavage is catalyzed by the cleavage/polyadenylation factor CPSF-73. Here, by using RNA substrates with different nucleotide modifications, we characterize the activity that degrades the DCP. We show that the degradation is blocked by a 2′-O-methyl nucleotide and occurs in the 5′-to-3′ direction. The U7-dependent 5′ exonuclease activity is processive and continues degrading the DCP substrate even after complete removal of the U7-binding site. Thus, U7 snRNP is required only to initiate the degradation. UV cross-linking studies demonstrate that the DCP and its 5′-truncated version specifically interact with CPSF-73, strongly suggesting that in vitro, the same protein is responsible for the endonucleolytic cleavage of histone pre-mRNA and the subsequent degradation of the DCP. By using various RNA substrates, we define important space requirements upstream and downstream of the cleavage site that dictate whether CPSF-73 functions as an endonuclease or a 5′ exonuclease. RNA interference experiments with HeLa cells indicate that degradation of the DCP does not depend on the Xrn2 5′ exonuclease, suggesting that CPSF-73 degrades the DCP both in vitro and in vivo.  相似文献   

3.
4.
Formation of the mature 3' ends of the vast majority of cellular mRNAs occurs through cleavage and polyadenylation and requires a cleavage and polyadenylation specificity factor (CPSF) containing, among other proteins, CPSF-73 and CPSF-100. These two proteins belong to a superfamily of zinc-dependent beta-lactamase fold proteins with catalytic specificity for a wide range of substrates including nucleic acids. CPSF-73 contains a zinc-binding histidine motif involved in catalysis in other members of the beta-lactamase superfamily, whereas CPSF-100 has substitutions within the histidine motif and thus is unlikely to be catalytically active. Here we describe two previously unknown human proteins, designated RC-68 and RC-74, which are related to CPSF-73 and CPSF-100 and which form a complex in HeLa and mouse cells. RC-68 contains the intact histidine motif, and hence it might be a functional counterpart of CPSF-73, whereas RC-74 lacks this motif, thus resembling CPSF-100. In HeLa cells RC-68 is present in both the cytoplasm and the nucleus whereas RC-74 is exclusively nuclear. RC-74 does not interact with CPSF-73, and neither RC-68 nor RC-74 is found in a complex with CPSF-160, indicating that these two proteins form a separate entity independent of the CPSF complex and are likely involved in a pre-mRNA processing event other than cleavage and polyadenylation of the vast majority of cellular pre-mRNAs. RNA interference-mediated depletion of RC-68 arrests HeLa cells early in G(1) phase, but surprisingly the arrested cells continue growing and reach the size typical of G(2) cells. RC-68 is highly conserved from plants to humans and may function in conjunction with RC-74 in the 3' end processing of a distinct subset of cellular pre-mRNAs encoding proteins required for G(1) progression and entry into S phase.  相似文献   

5.
Proteins of the metallo-beta-lactamase family with either demonstrated or predicted nuclease activity have been identified in a number of organisms ranging from bacteria to humans and has been shown to be important constituents of cellular metabolism. Nucleases of this family are believed to utilize a zinc-dependent mechanism in catalysis and function as 5' to 3' exonucleases and or endonucleases in such processes as 3' end processing of RNA precursors, DNA repair, V(D)J recombination, and telomere maintenance. Examples of metallo-beta-lactamase nucleases include CPSF-73, a known component of the cleavage/polyadenylation machinery, which functions as the endonuclease in 3' end formation of both polyadenylated and histone mRNAs, and Artemis that opens DNA hairpins during V(D)J recombination. Mutations in two metallo-beta-lactamase nucleases have been implicated in human diseases: tRNase Z required for 3' processing of tRNA precursors has been linked to the familial form of prostate cancer, whereas inactivation of Artemis causes severe combined immunodeficiency (SCID). There is also a group of as yet uncharacterized proteins of this family in bacteria and archaea that based on sequence similarity to CPSF-73 are predicted to function as nucleases in RNA metabolism. This article reviews the cellular roles of nucleases of the metallo-beta-lactamase family and the recent advances in studying these proteins.  相似文献   

6.
Formation of the 3' end of histone mRNA: getting closer to the end   总被引:1,自引:0,他引:1  
Dominski Z  Marzluff WF 《Gene》2007,396(2):373-390
Nearly all eukaryotic mRNAs end with a poly(A) tail that is added to their 3' end by the ubiquitous cleavage/polyadenylation machinery. The only known exceptions to this rule are metazoan replication-dependent histone mRNAs, which end with a highly conserved stem-loop structure. This distinct 3' end is generated by specialized 3' end processing machinery that cleaves histone pre-mRNAs 4-5 nucleotides downstream of the stem-loop and consists of the U7 small nuclear RNP (snRNP) and number of protein factors. Recently, the U7 snRNP has been shown to contain a unique Sm core that differs from that of the spliceosomal snRNPs, and an essential heat labile processing factor has been identified as symplekin. In addition, cross-linking studies have pinpointed CPSF-73 as the endonuclease, which catalyzes the cleavage reaction. Thus, many of the critical components of the 3' end processing machinery are now identified. Strikingly, this machinery is not as unique as initially thought but contains at least two factors involved in cleavage/polyadenylation, suggesting that the two mechanisms have a common evolutionary origin. The greatest challenge that lies ahead is to determine how all these factors interact with each other to form a catalytically competent processing complex capable of cleaving histone pre-mRNAs.  相似文献   

7.
8.
Addition of thioglycolate and DEAE-Sephadex chromatography were used to analyze the cleavage of the C(3')-O-P bond 3' to AP (apurinic/apyrimidinic) sites in DNA and to distinguish between a mechanism of hydrolysis (which would allow the nicking enzyme to be called 3' AP endonuclease) or beta-elimination (so that the nicking enzyme should be called AP lyase). For this purpose, DNA labelled in the AP sites was first cleaved by rat-liver AP endonuclease, then with the 3' nicking catalyst in the presence of thioglycolate and the reaction products were analyzed on DEAE-Sephadex: deoxyribose-5-phosphate (indicating a 3' cleavage by hydrolysis) and the thioglycolate:unsaturated sugar-5-phosphate adduct (indicating a cleavage by beta-elimination) are well separated allowing to eventually easily discard the hypothesis of a hydrolytic process and the appellation of 3' AP endonuclease. We have shown that addition of thioglycolate to the unsaturated sugar resulting from nicking the C(3')-O-P bond 3' to AP sites by beta-elimination is an irreversible reaction. We have also shown that the thioglycolate must be present from the beginning of the reaction with the nicking catalyst to prevent the primary 5' product of the beta-elimination reaction from undergoing other modifications that complicate the interpretation of the results.  相似文献   

9.
Previous studies have shown that the 5' arm of the influenza A virus virion RNA promoter requires a hairpin loop structure for efficient endonuclease activity of influenza virus RNA polymerase, an activity that is required for the cap-snatching activity of primers from host pre-mRNA. Here we examine whether a hairpin loop is also required in the 3' arm of the viral RNA promoter. We study point mutations at each nucleotide position (1 to 12) within the 3' arm of the promoter as well as complementary "rescue" mutations which restored base pairing in the stem of a potential hairpin loop. Our results suggest that endonuclease activity is absolutely dependent on the presence of a 3' hairpin loop structure. This is the first direct evidence for RNA secondary structure within the 3' arm being required for a specific stage, i.e., endonuclease cleavage, in the influenza virus replicative cycle.  相似文献   

10.
ABSTRACT

Proteins of the metallo-β-lactamase family with either demonstrated or predicted nuclease activity have been identified in a number of organisms ranging from bacteria to humans and has been shown to be important constituents of cellular metabolism. Nucleases of this family are believed to utilize a zinc-dependent mechanism in catalysis and function as 5′ to 3′ exonucleases and or endonucleases in such processes as 3′ end processing of RNA precursors, DNA repair, V(D)J recombination, and telomere maintenance. Examples of metallo-β-lactamase nucleases include CPSF-73, a known component of the cleavage/polyadenylation machinery, which functions as the endonuclease in 3′ end formation of both polyadenylated and histone mRNAs, and Artemis that opens DNA hairpins during V(D)J recombination. Mutations in two metallo-β-lactamase nucleases have been implicated in human diseases: tRNase Z required for 3′ processing of tRNA precursors has been linked to the familial form of prostate cancer, whereas inactivation of Artemis causes severe combined immunodeficiency (SCID). There is also a group of as yet uncharacterized proteins of this family in bacteria and archaea that based on sequence similarity to CPSF-73 are predicted to function as nucleases in RNA metabolism. This article reviews the cellular roles of nucleases of the metallo-β-lactamase family and the recent advances in studying these proteins.  相似文献   

11.
Eukaryotic pre-mRNA 3′-end formation is catalyzed by a complex set of factors that must be intricately regulated. In this study, we have discovered a novel role for the small ubiquitin-like modifier SUMO in the regulation of mammalian 3′-end processing. We identified symplekin, a factor involved in complex assembly, and CPSF-73, an endonuclease, as SUMO modification substrates. The major sites of sumoylation in symplekin and CPSF-73 were determined and found to be highly conserved across species. A sumoylation-deficient mutant was defective in rescuing cell viability in symplekin small interfering RNA (siRNA)-treated cells, supporting the importance of this modification in symplekin function. We also analyzed the involvement of sumoylation in 3′-end processing by altering the sumoylation status of nuclear extracts. This was done by the addition of a SUMO protease, which we show interacts with both symplekin and CPSF-73, or by siRNA-mediated depletion of ubc9, the SUMO E2-conjugating enzyme. Both treatments resulted in a marked inhibition of processing. The assembly of a functional polyadenylation complex was also impaired by the SUMO protease. Our identification of two key polyadenylation factors as SUMO targets and of the role of SUMO in enhancing the assembly and activity of the 3′-end-processing complex together reveal an important function for SUMO in the processing of mRNA precursors.  相似文献   

12.
Kinetics of the hydrolysis of a P(1)-(7-methylguanosinyl-5') P(3)-(guanosinyl-5') triphosphate (m(7)GpppG), P(1)-(7-methylguanosinyl-5') P(4)- (guanosinyl-5') tetraphosphate (m(7)GppppG), diadenosine-5',5'-P(1),P(3)-triphosphate (ApppA), and diadenosine-5',5'-P(1),P(4)-tetraphosphate (AppppA) promoted by Cu(2+) or Zn(2+) has been investigated. Time-dependent products distributions at various metal ion concentrations have been determined by CZE and HPLC-RP. The results show that in acidic conditions, in the presence of metal ion, the predominant hydrolytic reaction is the cleavage of 5',5'-oligophosphate bridge. The 5',5'-oligophosphate bridge of the dinucleotides studied is hydrolyzed by Cu(2+) more efficiently than by Zn(2+). At the catalyst concentration of 2 mM the cleavage of the 5',5'-triphosphate bridge of m(7)GpppG was ~3.6 times faster, and that of the tetraphosphate bridge of m(7)GppppG ~2.3-fold faster in the presence of Cu(2+) compared to the Zn(2+) ion, applied as catalysts. Dependence of the rates of hydrolysis on the catalyst concentration was in some instances not linear, interpreted as evidence for participation of more than one metal ion in the transition complex.  相似文献   

13.
14.
15.
Cleavage-polyadenylation specificity factor (CPSF) is one of five separable factors known to be required for 3' cleavage and polyadenylation of mRNA precursors in vitro. Previous studies have shown that the cleavage and poly(A) addition reactions can be uncoupled in vitro and have suggested that CPSF may be the only factor essential for both of these subreactions. Here we report the purification of CPSF to near homogeneity from calf thymus and show that the purified factor contains three polypeptides of 165, 105, and 70 kDa. These polypeptides cosediment precisely with CPSF activity, which has a sedimentation coefficient of 11.5 S. Consistent with previous reports from our laboratory, purified CPSF does not contain a detectable RNA component, indicating that it is a multisubunit protein and not a small nuclear ribonucleoprotein. Extensively purified bovine CPSF can function with human poly(A) polymerase to bring about AAUAAA-dependent poly(A) addition or with human cleavage factors to catalyze accurate 3' cleavage of a pre-mRNA substrate. UV cross-linking and gel retention analyses demonstrate that highly purified CPSF interacts with one of these cleavage factors, the multisubunit cleavage-stimulation factor, to facilitate stable binding of both to an AAUAAA-containing pre-mRNA. Likewise, evidence is presented indicating that poly(A) polymerase and CPSF can interact directly.  相似文献   

16.
17.
Site selection by Xenopus laevis RNAase P   总被引:9,自引:0,他引:9  
Investigation of the mechanism of cleavage site selection by Xenopus RNAase P reveals that the acceptor stem, a 7 bp helix common to all tRNA precursors, is required for cleavage. We propose that Xenopus RNAase P recognizes conserved features of the mature tRNA and that the cleavage site is selected by measuring the length of the acceptor stem. In support of this, we demonstrate that insertion of 2 bp in the acceptor stem of yeast pre-tRNA(3Leu) relocates the cleavage site 2 bases 3' to the original one. In addition, insertion of 1 bp in the acceptor stem of the end-matured yeast pre-tRNA(Phe) generates an RNAase P cleavage site: the enzyme produces a mature tRNA with the characteristic 7 bp stem and releases one 5' flanking nucleotide. Since it has previously been shown that cleavage sites of the splicing endonuclease are determined by the length of the anticodon stem, RNAase P and the splicing endonuclease apparently use different stems to determine their cutting sites.  相似文献   

18.
Kinetoplastid mitochondrial RNA editing, the insertion and deletion of U residues, is catalyzed by sequential cleavage, U addition or removal, and ligation reactions and is directed by complementary guide RNAs. We have purified a approximately 20S enzymatic complex from Trypanosoma brucei mitochondria that catalyzes a complete editing reaction in vitro. This complex possesses all four activities predicted to catalyze RNA editing: gRNA-directed endonuclease, terminal uridylyl transferase, 3' U-specific exonuclease, and RNA ligase. However, it does not contain other putative editing complex components: gRNA-independent endonuclease, RNA helicase, endogenous gRNAs or pre-mRNAs, or a 25 kDa gRNA-binding protein. The complex is composed of eight major polypeptides, three of which represent RNA ligase. These findings identify polypeptides representing catalytic editing factors, reveal the nature of this approximately 20S editing complex, and suggest a new model of editosome assembly.  相似文献   

19.
The RNA-induced silencing complex is a Mg2+-dependent endonuclease   总被引:10,自引:0,他引:10  
In the Drosophila and mammalian RNA interference (RNAi) pathways, target RNA destruction is catalyzed by the siRNA-guided, RNA-induced silencing complex (RISC). RISC has been proposed to be an siRNA-directed endonuclease, catalyzing cleavage of a single phosphodiester bond on the RNA target. Although 5' cleavage products are readily detected for RNAi in vitro, only 3' cleavage products have been observed in vivo. Proof that RISC acts as an endonuclease requires detection of both 5' and 3' cleavage products in a single experimental system. Here, we show that siRNA-programmed RISC generates both 5' and 3' cleavage products in vitro; cleavage requires Mg(2+), but not Ca(2+), and the cleavage product termini suggest a role for Mg(2+) in catalysis. Moreover, a single phosphorothioate in place of the scissile phosphate blocks cleavage; the phosphorothioate effect can be rescued by the thiophilic cation Mn(2+), but not by Ca(2+) or Mg(2+). We propose that during catalysis, a Mg(2+) ion is bound to the RNA substrate through a nonbridging oxygen of the scissile phosphate. The mechanism of endonucleolytic cleavage is not consistent with the mechanisms of the previously identified RISC nuclease, Tudor-SN. Thus, the RISC-component that mediates endonucleolytic cleavage of the target RNA remains to be identified.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号