首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Activin is a potent mesoderm inducing factor present in embryos of Xenopus laevis. Recent evidence has implicated activin in the inhibition of neural development in addition to the well-established induction of mesoderm in ectodermal explants. These diverse effects are critically dependent on the concentration of activin yet little is known about the mechanisms regulating the level of activin in the embryo. We report that the 3′ untranslated region (3′ UTR) of activin βB mRNA inhibits the translation of activin in embryos. Microinjection of activin mRNA from which the 3′ UTR has been deleted is 8–10-fold more potent in inducing mesoderm than mRNA containing the 3′ UTR. Truncation of the 3′ UTR also leads to a marked enhancement of activin protein levels in embryos but has no effect when the truncated mRNA is translated in vitro. The 3′ UTR also confers translational inhibition on a heterologous mRNA. These data show that a maternal factor(s) present in X. laevis regulates the translation of injected activin βB mRNA. This factor(s) could be responsible for regulating the levels of endogenous activin βB protein during mesoderm induction and the specification of ectodermal derivatives such as neural and epidermal tissues. © 1995 Wiley-Liss, Inc.  相似文献   

2.
 Mesoderm induction requires interaction between cells of the animal and vegetal hemispheres of the embryo. Several molecules have been proposed as candidates for mesoderm-inducing signals, with activin a particularly strong candidate. However, it has not been possible to inhibit mesoderm formation in vivo by specifically blocking activin action. Follistatin is able to inhibit the action of activin but not that of the mature region of Vg1, a member of the transforming growth factor β family. Follistatin therefore provides a useful tool for distinguishing between signalling by these two factors. We have overexpressed Xenopus follistatin mRNA and analysed the expression of several mesodermal markers. Our results show an inhibition of mesodermal formation by follistatin in a concentration-dependent manner, showing the requirement of activin for mesodermal induction. Received: 22 August 1997 / Accepted: 16 January 1998  相似文献   

3.
Establishment of the body pattern in all animals, and especially in vertebrate embryos, depends on cell interactions. During the cleavage and blastula stages in amphibians, signal(s) from the vegetal region induce the equatorial region to become mesoderm. Two types of peptide growth factors have been shown by explant culture experiments to be active in mesoderm induction. First, there are several isoforms of fibroblast growth factor (FGF), including aFGF, bFGF, and hst/kFGF. FGF induces ventral, but not the most dorsal, levels of mesodermal tissue; bFGF and its mRNA, and an FGF receptor and its mRNA, are present in the embryo. Thus, FGF probably has a role in mesoderm induction, but is unlikely to be the sole inducing agent in vivo. Second, members of the transforming growth factor-beta (TGF-beta) family. TGF-beta 2 and TGF-beta 3 are active in induction, but the most powerful inducing factors are the distant relatives of TGF-beta named activin A and activin B, which are capable of inducing all types of mesoderm. An important question relates to the establishment of polarity during the induction of mesoderm. While all regions of the animal hemisphere of frog embryos are competent to respond to activins by mesoderm differentiation, only explants that include cells close to the equator form structures with some organization along dorsoventral and anteroposterior axes. These observations suggest that cells in the blastula animal hemisphere are already polarized to some extent, although inducers are required to make this polarity explicit.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Coordinated regulation of inductive events, both spatially and temporally, during animal development ensures that tissues are induced at their specific positions within the embryo. The ascidian brain is induced in cells at the anterior edge of the animal hemisphere by fibroblast growth factor (FGF) signals secreted from vegetal cells. To clarify how this process is spatially regulated, we first identified the sources of the FGF signal by examining the expression of brain markers Hr-Otx and Hr-ETR-1 in embryos in which FGF signaling is locally inhibited by injecting individual blastomeres with morpholino oligonucleotide against Hr-FGF9/16/20, which encodes an endogenous brain inducer. The blastomeres identified as the inducing sources are A5.1 and A5.2 at the 16-cell stage and A6.2 and A6.4 at the 24-cell stage, which are juxtaposed with brain precursors at the anterior periphery of the embryo at the respective stages. We also showed that all the cells of the animal hemisphere are capable of expressing Hr-Otx in response to the FGF signal. These results suggest that the position of inducers, rather than competence, plays an important role in determining which animal cells are induced to become brain tissues during ascidian embryogenesis. This situation in brain induction contrasts with that in mesoderm induction, where the positions at which the notochord and mesenchyme are induced are determined mainly by intrinsic competence factors that are inherited by signal-receiving cells.  相似文献   

5.
 The retinoblastoma (RB) gene is a tumor suppressor gene that plays an important role in cell cycle arrest and in the terminal differentiation of skeletal myoblasts. Differentiation into muscle occurs in Xenopus embryo explants during mesoderm induction by fibroblast growth factor (FGF) or activin A. We examined expression of the RB gene product (pRB) during mesoderm induction in vivo and in vitro. We show that hypo- and hyper-phosphorylated forms of pRB are present during early development and that expression of both forms increases significantly during the blastula stage, concomitant with mesoderm induction. Further investigation revealed that pRB is enriched in the presumptive mesoderm of the blastula stage embryo. In animal cap explants induced by Xenopus bFGF (XbFGF), pRB expression levels increased approximately tenfold while no increase was observed in explants induced by activin. However, when explants were induced by XbFGF in the presence of sodium orthovanadate, a compound previously shown to synergize with FGF to produce more dorsal ”activin-like” inductions than FGF alone, only a slight increase in pRB expression was observed. Furthermore, upregulation of pRB during mesoderm induction in vitro displayed an inverse correlation with expression of XFKH1, a marker for notochord. These results suggest that pRB may be important for patterning along the dorsoventral axis. Received: 22 February 1996 / Accepted: 20 September 1996  相似文献   

6.
Mesoderm formation in the amphibian embryo occurs through an inductive interaction in which cells of the vegetal hemisphere of the embryo act on overlying equatorial cells. The first candidate mesoderm-inducing factor to be identified was activin, a member of the transforming growth factor type beta family, and it is now clear that members of this family are indeed involved in mesoderm and endoderm formation. In particular, Derrière and five nodal-related genes are all considered to be strong candidates for endogenous mesoderm-inducing agents. Here, we show that activin, the function of which in mesoderm induction has hitherto been unclear, also plays a role in mesoderm formation. Inhibition of activin function using antisense morpholino oligonucleotides interferes with mesoderm formation in a concentration-dependent manner and also changes the expression levels of other inducing agents such as Xnr2 and Derrière. This work reinstates activin as a key player in mesodermal patterning. It also emphasises the importance of checking for polymorphisms in the 5' untranslated region of the gene of interest when carrying out antisense morpholino experiments in Xenopus laevis.  相似文献   

7.
D Kimelman  M Kirschner 《Cell》1987,51(5):869-877
The primary patterning event in early vertebrate development is the formation of the mesoderm and its subsequent induction of the neural tube. Classic experiments suggest that the vegetal region signals the animal hemisphere to diverge from the pathway of forming ectoderm to form mesoderm such as muscle. Here we show that bovine basic FGF has a limited capacity to induce muscle actin expression in animal hemisphere cells. This level of expression can be raised to levels normally induced in the embryo by another mammalian growth factor, TGF-beta, which by itself will not induce actin expression. We show that the Xenopus embryo contains an mRNA encoding a protein highly homologous to basic FGF. These results together with the identification of a maternal mRNA with strong homology to TGF-beta, suggest that molecules closely related to FGF and TGF-beta are the natural inducers of mesoderm in vertebrate development.  相似文献   

8.
9.
To assess the potential role of a molecule in development we need to know three things: 1) what are the biological activities of the molecule, 2) what is its expression pattern, and 3) what are the consequences of removing it from the embryo? In the case of the FGF family in Xenopus embryos we have quite a lot of information about all three questions. Most members of the family can induce mesoderm from isolated animal caps, thus mimicking the natural “ventral vegetal” inducing signal operative in the blastula. This activity can be exerted on isolated, disaggregated cells and does not involve a change in division rate. When overexpressed from injected mRNA, the activity of FGFs depends largely on whether or not they possess a signal sequence, showing the importance of secretion in the inductive process. In addition to the mesoderm-inducing activity, there are effects of overexpression on whole embryos which lead to a suppression of anterior structures. Three types of FGF have so far been cloned from Xenopus: direct homologs of each of the mammalian types FGF-2 and FGF-3, and eFGF (“embryonic FGF”), which is equidistant in sequence from mammalian FGF-4 and FGF-6. Attempts to find homologs of mammalian FGF-5 and FGF-7 in Xenopus have proved unsuccessful. All three types of Xenopus FGF are expressed in early development. FGF-2 and eFGF are present in the oocyte and fertilized egg, and are thus both available at the time of mesoderm induction. FGF-3 and eFGF are both expressed from the embryonic genome during gastrulation and concentrated in the forming mesoderm. FGF-2 is expressed from the embryonic genome during neurulation in the brain, and a little later in the branchial arch mesenchyme and in the forming myotomes. These expression patterns suggest that there are several functions for the FGFs. The most successful strategy for inhibition of the FGF system has been the use of a dominant negative receptor construct introduced by Kirschner and colleagues. Overexpression of this construct can abolish the FGF responsiveness of animal caps. In whole embryos, the absence of FGF signaling causes a reduction, although not a total ablation, of mesoderm formation. There is also a severe effect on axis formation in which formation of the posterior parts is reduced consequent on an inhibition of invagination and elongation of the dorsal mesoderm. Thus, the present evidence suggests that the FGF system contributes to, although is not solely responsible for, mesoderm induction in vivo. It is also necessary for normal gastrulation movements, particularly in the dorsal mesoderm, and is likely to have several later functions, particularly in development of the central nervous system and the myotomes. © 1994 Wiley-Liss, Inc.  相似文献   

10.
The fibronectin fibril matrix on the blastocoel roof of the Xenopus gastrula contains guidance cues that determine the direction of mesoderm cell migration. The underlying guidance-related polarity of the blastocoel roof is established in the late blastula under the influence of an instructive signal from the vegetal half of the embryo, in particular from the mesoderm. Formation of an oriented substratum depends on functional activin and FGF signaling pathways in the blastocoel roof. Besides being involved in tissue polarization, activin and FGF also affect fibronectin matrix assembly. Activin treatment of the blastocoel roof inhibits fibril formation, whereas FGF modulates the structure of the fibril network. The presence of intact fibronectin fibrils is permissive for directional mesoderm migration on the blastocoel roof extracellular matrix.  相似文献   

11.
12.
Temporal and spatial gene expression and inductive interactions control the establishment of the body plan during embryogenesis in invertebrates and vertebrates. The best-studied vertebrate model system is the amphibian embryo. Seventy-five years after the famous organizer experiment of Hans Spemann and Hilde Mangold in 1924 our knowledge of the molecular mechanisms of the multi-step formation of embryonic axis has substantially improved. Although in the 30s and 40s the interest of many laboratories was focussed on neural induction (determination of the central nervous system), only crude factors from so-called heterogeneous inducers (liver, bone marrow, etc.,) could be isolated by the traditional biochemical techniques available at this time. An important breakthrough was the characterization and purification of a mesoderm inducing factor, the so-called vegetalizing factor (homologous to Activin) in highly purified from chicken embryos. Much later after the introduction of molecular techniques Vgl and Activin (both belonging to the TGF-β family) and FGFs could be identified as important factors for mesoderm formation. It was in the 90s that secreted neuralizing factors (chordin, noggin, follistatin and cerberus) could be detected, which are expressed at the dorsal side of the early embryo including the Spemann organizer. In contrast to the classical view, these proteins act as antagonists to factors like BMP-4 localized on the ventral side. Of special interest was the fact that inDrosophila sog, homologous to chordin, determines the ventral side, whiledpp, homologous toBMP-4, participates in the formation of the dorsal side. These data of evolutionary conserved genes in both invertebrates and vertebrates support the view that they are descendents of common ancestors, the urbilateralia, living around 300 million years ago. The expression of those genes coding for secreted proteins is closely related to inductive interactions between cells and germ layers. Recently it was shown that planar signals are not sufficient to generate a specific anterior/posterior pattern during the primary steps of neural induction, i.e., formation of the central nervous system in amphibians.  相似文献   

13.
14.
Mesoderm of early vertebrate embryos gradually acquires dorsal–ventral polarity during embryogenesis. This specification of mesoderm is thought to be regulated by several polypeptide growth factors. Bone morphogenetic protein (BMP), a member of the TGF-β family, is one of the regulators suggested to be involved in the formation of ventral mesoderm. In this paper, the nature of the endogenous BMP signal in dorsal–ventral specification was assessed in early Xenopus embryos using a dominant negative mutant of the Xenopus BMP receptor. In ectodermal explant assays, disruption of endogenous BMP signaling by the mutant receptor changed the competence of the explant cells to mesoderm-inducing factors, activin and basic fibroblast growth factor (bFGF), and led to formation of neural tissue without mesoderm induction. This result suggests that endogenous BMP acts as a ventral mesoderm modifier rather than a ventral mesoderm inducer, and that interactions between endogenous BMP and mesoderm-inducing factors may be important in dorsal–ventral patterning of embryonic mesoderm. In addition, the induction of neural tissue by inhibition of the BMP signaling pathway also suggests involvement of BMP in neural induction.  相似文献   

15.
Single animal hemisphere blastomeres isolated from the eight-cell stage Xenopus embryos differentiate into mesoderm when treated with activin A, whereas when cultured without activin they form atypical epidermis. The mesoderm tissue induced by activin is different between dorsal and ventral blastomeres. In the present study, the duration and timing of activin treatment was varied, in order to identify the critical stage when animal blastomeres acquire competence to respond to activin A. It was shown that the critical time was 45 min after blastomere isolation, which corresponds approximately to NF stage 6 (32-cell stage) of normal development. The competence gradually increased during the morula stages.  相似文献   

16.
In early vertebrate development, mesoderm induction is a crucial event regulated by several factors including the activin, BMP and FGF signaling pathways. While the requirement of FGF in Nodal/activin-induced mesoderm formation has been reported, the fate of the tissue modulated by these signals is not fully understood. Here, we examined the fate of tissues when exogenous activin was added and FGF signaling was inhibited in animal cap explants of Xenopus embryos. Activin-induced dorsal mesoderm was converted to ventral mesoderm by inhibition of FGF signaling. We also found that inhibiting FGF signaling in the dorsal marginal zone, in vegetal-animal cap conjugates or in the presence of the activin signaling component Smad2, converted dorsal mesoderm to ventral mesoderm. The expression and promoter activities of a BMP responsive molecule, PV.1 and a Spemann organizer, noggin, were investigated while FGF signaling was inhibited. PV.1 expression increased, while noggin decreased. In addition, inhibiting BMP-4 signaling abolished ventral mesoderm formation induced by exogenous activin and FGF inhibition. Taken together, these results suggest that the formation of dorso-ventral mesoderm in early Xenopus embryos is regulated by a combination of FGF, activin and BMP signaling.  相似文献   

17.
The homeobox gene tinman plays a key role in the specification of Drosophila heart progenitors and the visceral mesoderm of the midgut, both of which arise at defined positions within dorsal areas of the mesoderm. Here, we show that in addition to the heart and midgut visceral mesoderm, tinman is also required for the specification of all dorsal body wall muscles. Thus it appears that the precursors of the heart, visceral musculature, and dorsal somatic muscles are all specified within the same broad domain of dorsal mesodermal tinman expression. Locally restricted activities of tinman are also observed during its early, general mesodermal expression, where tinman is required for the activation of the homeobox gene buttonless in precursors of the “dorsal median” (DM) glial cells along the ventral midline. These observations, together with others showing only mild effects of ectopic tinman expression on heart development, indicate that tinman function is obligatory, but not sufficient to determine individual tissues within the mesoderm. Therefore, we propose that tinman has a role in integrating positional information that is provided by intersecting domains of additional regulators and signals, which may include Wingless, Sloppy Paired, and Hedgehog in the dorsal mesoderm and EGF-signaling at the ventral midline. Previous studies have shown that Dpp acts as an inductive signal from dorsal ectodermal cells to induce tinman expression in the dorsal mesoderm, which, in turn, is needed for heart and visceral mesoderm formation. In the present report, we show that Thickveins, a type I receptor of Dpp, is essential for the transmission of Dpp signals into the mesoderm. Constitutive activity of Tkv in the entire mesoderm induces ectopic tinman expression in the ventral mesoderm, and this results in the ectopic formation of heart precursors in a defined area of the ventrolateral mesoderm. We further show that Screw, a second BMP2/4-related gene product, Tolloid, a BMP1-related protein, and the zinc finger-containing protein Schnurri, are required to allow full levels of tinman induction during this process. It is likely that some of these functional and regulatory properties of tinman are shared by tinman-related genes from vertebrates that have similarly important roles in embryonic heart development. Dev. Genet. 22:187–200, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

18.
19.
During vertebrate embryogenesis, the newly formed mesoderm is allocated to the paraxial, intermediate, and lateral domains, each giving rise to different cell and tissue types. Here, we provide evidence that the forkhead genes, Foxc1 and Foxc2, play a role in the specification of mesoderm to paraxial versus intermediate fates. Mouse embryos lacking both Foxc1 and Foxc2 show expansion of intermediate mesoderm markers into the paraxial domain, lateralization of somite patterning, and ectopic and disorganized mesonephric tubules. In gain of function studies in the chick embryo, Foxc1 and Foxc2 negatively regulate intermediate mesoderm formation. By contrast, their misexpression in the prospective intermediate mesoderm appears to drive cells to acquire paraxial fate, as revealed by expression of the somite markers Pax7 and Paraxis. Taken together, the data indicate that Foxc1 and Foxc2 regulate the establishment of paraxial versus intermediate mesoderm cell fates in the vertebrate embryo.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号