首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wheat curl mite (WCM, Aceria tosichella Keifer) and WCM-transmitted wheat streak mosaic virus (WSMV, genus Tritimovirus) are devastating production constraints for wheat in the US Great Plains. Breeding wheat cultivars with genetic resistance to WCM and WSMV is a viable and economically feasible way to reduce yield loss. The objectives of this study were to (a) identify tightly linked markers for WCM resistance in the wheat cultivar TAM 112 (PI 643143) using linkage and association analysis with the 90K Infinium iSelect SNP array and genotyping-by-sequencing, respectively and (b) develop and test kompetitive allele specific PCR (KASP) single-nucleotide polymorphisms (SNPs) for marker-assisted selection (MAS) of WCM resistance. We tested 124 F5:7 recombinant inbred lines (RILs) derived from the cross of TAM 112 and the WCM-susceptible cultivar TAM 111 (PI 631352). All lines were infested with a Texas WCM collection 2 (TWCMC2) that is virulent to resistance found on the wheat-rye 1AL.1RS translocation at the two-leaf stage and were rated for symptoms on the first and second week after infestation. Linkage maps were constructed with 4890 markers, including SNPs, simple sequence repeats (SSRs), and sequence-tagged site (STS) markers covering 21 chromosomes. A WCM resistance gene present in TAM 112 (CmcTAM112) was mapped onto chromosome arm 6DS. A genome-wide association study of wheat streak mosaic (WSM) symptoms from a separate experiment in Colorado showed significant marker-trait associations at the target regions on 6DS where CmcTAM112 was located, which demonstrated the effectiveness of this gene to reduce symptom severity. Four SNPs flanking CmcTAM112 were mapped within 3.6 cM in the biparental mapping population. We developed two KASP markers that are within 1.3 cM distal to CmcTAM112 and tested in diverse germplasm. These two markers can be used in MAS for improving WCM resistance in some wheat genetic backgrounds.  相似文献   

2.
Summary Three lines derived from wheat (6x) x Agropyron elongatum (10x) that are resistant to wheat streak mosaic virus (WSMV) were analyzed by chromosome pairing, banding, and in situ hybridization. Line CI15321 was identified as a disomic substitution line where wheat chromosome 1D is replaced by Ag. elongatum chromosome 1Ae-1. Line 87-94-1 is a wheat-Ag. elongatum ditelosomic addition 1Ae-1L. Line CI15322 contains an Ag. elongatum chromosome, 1Ae-2, that substitutes for chromosome 1D. The short arm of 1Ae-2 paired with the short arm of 1Ae-1 at metaphase I (MI) in 82% of the pollen mother cells (PMCs). However, the long arms of these two chromosomes did not pair with each other. In CI15322, the long arm of chromosome 4D has an Agropyron chromosome segment which was derived from the distal part of 1Ae-1L. This translocation chromosome is designated as T4DS·4DL-1L. T4DS·4DL-1Ae-1L has a 0.73 m distal part of the long arm of 4D replaced by a 1.31 m distal segment from 1Ae-1L. The major WSMV resistance gene(s) in these lines is located on the distal part of 1Ae-1L.Contribution No. 92-599-J from the Kansas Agricutural Experiment Station, Kansas State University, Manhattan, Kansas, USA  相似文献   

3.
The wheat curl mite (WCM), Aceria tosichella Keifer (Trombidiformes: Eriophyidae), is a major pest in cropping regions of the world and is recognised as the primary vector of several yield-reducing pathogens, primarily affecting wheat. Management of WCM is complicated due to several aspects of the mite’s biology and ecology; however, commercially viable mite resistant wheat varieties may offer practical long-term management options. Unfortunately, mite populations have adapted to previously identified sources of resistance, highlighting the need for further sources of resistance and the value of stacking different resistances to give greater degrees and longevity of control. In this study we assessed the susceptibility of 42 wheat-derived genotypes to mite population growth using a new experimental method that overcomes methodological limitations of previous studies. Experimental wheat lines included a variety of wheat genotypes, related Triticeae species, wheat-alien chromosome amphiploids, and chromosome addition or substitution lines. From these we identify new promising sources of WCM resistance associated with Thinopyrum intermedium, Th. ponticum and Hordeum marinum chromosomes. More specifically we identify group 1J and 5J chromosomes of the L3 and L5 wheat-Th. intermedium addition lines as new sources of resistance that could be exploited to transfer resistance onto homoeologous wheat chromosomes. This study offers new methods for reliable in situ estimations of mite abundance on cereal plants, and new sources of WCM resistance that may assist management of WCM and associated viruses in wheat.  相似文献   

4.
The wheat curl mite (WCM), Aceria tosichella, is an important pest of wheat and other cereal crops that transmits wheat streak mosaic virus and several other plant viruses. Wheat curl mite has long been considered a single polyphagous species, but recent studies in Poland revealed a complex of genetically distinct lineages with divergent host‐acceptance traits, ranging from highly polyphagous to host‐specific. This diversity of WCM genotypes and host‐acceptance phenotypes in Europe, the presumed native range of WCM, raises questions about the lineage identities of invasive WCM populations on other continents and their relationships to European lineages. The goals of this study were to examine the global presence of WCM and determine the relatedness of lineages established in different continents, on the basis of phylogenetic analyses of mitochondrial and nuclear DNA sequence data. Host‐range bioassays of a highly polyphagous WCM lineage were performed to supplement existing data on this lineage's ability to colonise graminaceous and non‐graminaceous hosts. Invasive WCM populations in North and South America and Australia assorted with the only three known polyphagous and pestiferous WCM lineages (‘MT‐1’, ‘MT‐7’ and ‘MT‐8’) from a total of eight currently described lineages. These results show that the most polyphagous lineages were more successful colonisers and reflect a need for extensive surveys for WCM on both crops and wild grass species in invaded continents. The most invasive lineage (‘MT‐1’) was shown to successfully colonise all 10 plant species tested in three families and has spread to North and South America and Australia from its presumed origins in Eurasia.  相似文献   

5.
Thinopyrum intermedium was identified previously as resistant to Tapesia yallundae, cause of eyespot of wheat. Using GUS-transformed isolates of T. yallundae as inoculum, we determined that wheat lines carrying Th. intermedium chromosome 4Ai#2 or the short arm of chromosome 4Ai#2 were as resistant to the pathogen as the eyespot-resistant wheat- Th. ponticum chromosome substitution line SS767 (PI 611939) and winter wheat cultivar Madsen, which carries gene Pch1 for eyespot resistance. Chromosome 4E from Th. elongatum and chromosome 4J from Th. bessarabicum did not confer resistance to T. yallundae. Genome-specific PCR primers confirmed the presence of Thinopyrum chromatin in these wheat- Thinopyrum lines. Genomic in situ hybridization using an St genomic probe from Pseudoroegneria strigosa demonstrated that chromosome 4Ai#2 belongs to the Js genome of Thinopyrum. The eyespot resistance in the wheat- Th. intermedium lines is thus controlled by the short arm of this Js chromosome. This is the first report of resistance to T. yallundae controlled by a Js genome chromosome of Th. intermedium.  相似文献   

6.
A study to determine yield response to the Russian wheat aphid, Diuraphis noxia (Mordvilko), was conducted during the 1997-1998 and 1998-1999 growing seasons at three eastern Colorado locations, Akron, Fort Collins, and Lamar, with three wheat lines containing either Russian wheat aphid-resistant Dn4 gene, Dn6 gene, or resistance derived from PI 222668, and TAM 107 as the susceptible control. Russian wheat aphids per tiller were greater on TAM 107 than the resistant wheat lines at the 10x infestation level at Fort Collins and Akron in 1999. Yield, seed weight, and number of seeds per spike for each wheat line were somewhat affected by Russian wheat aphid per tiller mainly at Fort Collins. The infested resistant wheat lines harbored fewer Russian wheat aphids and yielded more than the infested susceptible wheat lines. Wheat lines containing the Dn4, Dn6, and PI 222668 genes contain different levels of antibiosis or antixenosis and tolerance. Although differences existed among sites and resistance, there is a benefit to planting resistant wheat when there is a potential for Russian wheat aphid infestations.  相似文献   

7.
Summary The seed proteins of Chinese Spring wheat stocks which possess single chromosomes from other plant species related to wheat have been separated by gel electrophoresis in the presence of sodium dodecyl sulphate. Marker protein bands have been detected for both arms of barley chromosome 5, chromosome E (= 1R) and B (= 2R) of rye, chromosomes A,B (= 1Cu) and C (= 5Cu) of Aegilops umbellulata and chromosomes I and III of Agropyron elongatum. These studies, and previous findings, indicate that chromosome 5 of barley, chromosome 1R of rye, chromosome I of Ag. elongatum and possibly chromosome 1Cu of Ae. umbellulata are similar to chromosomes 1A, 1B and 1D in hexaploid wheat in that they carry genes controlling prolamins on their short arms and genes controlling high-molecular-weight (apparent molecular weight greater than 86,000) seed protein species on their long arms. These findings support the idea that all these chromosomes are derived from a common ancestral chromosome and that they have maintained their integrity since their derivation from that ancestral chromosome.  相似文献   

8.
 Wheat streak mosaic virus (WSMV), vectored by the wheat curl mite (WCM), is one of the most important viral diseases of wheat (Triticum aestivum) in the world. Genetic resistance to WSMV and the WCM does not exist in wheat. Resistance to WSMV and the WCM was evaluated in five different partial amphiploids namely Agrotana, OK7211542, ORRPX, Zhong 5 and TAF 46, which were derived from hybrids of wheat with decaploid Thinopyrum ponticum or with hexaploid Th. intermedium. Agrotana was shown to be immune to WSMV and the WCM; the other four partial amphiploids were susceptible to the WCM. Genomic in situ hybridization (GISH) using genomic DNA probes from Th. elongatum (EE, 2n=14), Th. bessarabicum (JJ, 2n=14), Pseudoroegneria strigosa (SS, 2n=14) and T. aestivum (AABBDD, 2n=42) demonstrated that three of the partial amphiploids, Agrotana, OK7211542 and ORRPX, have almost identical alien genome constitutions: all have 16 alien chromosomes, with 8 chromosomes being closely related to the Js genome and 8 chromosomes belonging to the E or J genomes and no evidence of any S-genome chromosomes. GISH confirmed that the alien genomes of Agrotana and OK7211542, like ORRPX, were all derived from Th. ponticum, and not from Th. intermedium. However, in contrast to Agrotana, ORRPX and OK7211542 were susceptible to the WCM and WSMV. The partial amphiploid Zhong 5 had a reconstituted alien genome composed of 4 S-and 4 Js-genome chromosomes of Th. intermedium with 6 translocated chromosomes between the S and Js genomes. This line was highly resistant to WSMV, but was susceptible to the WCM. TAF 46, which contained a synthetic genome consisting of 3 pairs of S-genome chromosomes and 4 pairs of E- or J-genome chromosomes in addition to the 21 pairs of wheat chromosomes, was susceptible to the WCM, but moderately resistant to WSMV. Agrotana offers great potential for transferring WSMV and WCM resistance into wheat. Received: 27 January 1998 / Accepted: 10 February 1998  相似文献   

9.
Summary A set of four normal chromosomes (1D, 2D, 3D, and 6D), and three translocation chromosomes (4DS·5DS, 5DL·7DS, and 7DL·4DL) involving all 14 chromosome arms of the D-genome were obtained as monosomic additions from Aegilops squarrosa (genome D, n=7) in Triticum durum Desf. cv PBW114 (genome AB, n=14). The cyclical translocation occurred during the synthesis of the amphiploid probably as a result of misdivision and reunion of the univalents during meiosis of the F1 hybrid T. durum x A. Squarrosa. The amphiploid was backcrossed twice with the durum parent to obtain monosomic addition lines. The monosomic addition chromosomes were identified by C-banding and associated phenotypic traits. All monosomic addition lines were fertile. The development of disomic and ditelosomic addition lines is underway, which will be useful for cytogenetic analysis of individual D-genome chromosomes in the background of T. Durum.Contribution No. 90-117-J from the Wheat Genetics Resource Center and Kansas Agricultural Experiment Station, Kansas State University, Manhattan  相似文献   

10.
The Russian wheat aphid (RWA), Diuraphis noxia Mordvilko, is a serious economic pest of wheat and barley in North America, South America, and South Africa. Using aphid-resistant cultivars has proven to be a viable tactic for RWA management. Several dominant resistance genes have been identified in wheat, Triticum aestivum, including Dn1 in PI 137739, Dn2 in PI 262660, and at least three resistance genes (Dn5+) in PI 294994. The identification of RWA-resistant genes and the development of resistant cultivars may be accelerated through the use of molecular markers. DNA of wheat from near-isogenic lines and segregating F2 populations was amplified with microsatellite primers via PCR. Results revealed that the locus for wheat microsatellite GWM111 (Xgwm111), located on wheat chromosome 7DS (short arm), is tightly linked to Dn1, Dn2 and Dn5, as well as Dnx in PI 220127. Segregation data indicate RWA resistance in wheat PI 220127 is also conferred by a single dominant resistance gene (Dnx). These results confirm that Dn1, Dn2 and Dn5 are tightly linked to each other, and provide new information about their location, being 7DS, near the centromere, instead of as previously reported on 7DL. Xgwm635 (near the distal end of 7DS) clearly marked the location of the previously suggested resistance gene in PI 294994, here designated as Dn8. Xgwm642 (located on 1DL) marked and identified another new gene Dn9, which is located in a defense gene-rich region of wheat chromosome 1DL. The locations of markers and the linked genes were confirmed by di-telosomic and nulli-tetrasomic analyses. Genetic linkage maps of the above RWA resistance genes and markers have been constructed for wheat chromosomes 1D and 7D. These markers will be useful in marker-assisted breeding for RWA-resistant wheat. Received: 17 May 2000 / Accepted: 13 June 2000  相似文献   

11.
C-banding polymorphism was analyzed in 14 accessions of Triticum searsii from Israel, and a generalized idiogram of the species was established. One accession was homozygous for whole arm translocations T1SsS·4SsS and T1SsL·4SsL. C-banding analysis was also used to identify 7 T. aestivum cv Chinese Spring-T. searsii disomic chromosome addition lines, 14 ditelosomic chromosome addition lines, 21 disomic whole chromosome, and 31 ditelosomic chromosome substitution lines. The identity of these lines was further confirmed by meiotic pairing analysis. Sporophytic and gametophytic compensation tests were used to determine the homoeologous relationships of the T. searsii chromosomes. The results show that the T. searsii chromosomes do not compensate well for their wheat homoeologues. The C-banding patterns of T. searsii chromosomes are distinct from those of other S-genome species and from the B-genome chromosomes of wheat, indicating that T. searsii is not a direct B-genome donor species of T. turgidum and T. aestivum.Contribution No. 95-72-J from the Kansas Agricultural Experiment Station, Kansas State University, Manhattan, Kansas, USA  相似文献   

12.
Effect of gene Lr34 in the enhancement of resistance to leaf rust of wheat   总被引:1,自引:0,他引:1  
Summary Leaf rust resistance gene Lr34 is present in many wheat cultivars throughout the world that have shown durable resistance to leaf rust. Fourteen pair-wise combinations of Lr34 and seedling leaf rust resistance genes were developed by intercrossing near isogenic Thatcher lines. In both seedling and adult plant tests homozygous paired combinations of specific resistance genes with Lr34 had enhanced resistance relative to either parent to different numbers of isolates that were avirulent to the additional resistance genes. The TcLr34, 18 line also expressed enhanced resistance to specific isolates virulent to Lr18 in seedling and adult plant stages. In rust nursery tests, homozygous lines were more resistant than either parent, if the additional leaf rust gene conditioned an effective of resistance when present singly. The ability of Lr34 to interact with other genes conditioning effective resistance may contribute to the durability of leaf rust resistance in cultivars with Lr34. Contribution 1453 Agriculture Canada  相似文献   

13.

Key message

The major QTL for FHB resistance from hexaploid wheat line PI 277012 was successfully introgressed into durum wheat and minor FHB resistance QTL were detected in local durum wheat cultivars. A combination of these QTL will enhance FHB resistance of durum wheat.

Abstract

Fusarium head blight (FHB), caused by Fusarium graminearum, is a devastating disease of durum wheat. To combat the disease, great efforts have been devoted to introgress FHB resistance from its related tetraploid and hexaploid wheat species into adapted durum cultivars. However, most of the quantitative trait loci (QTL) for FHB resistance existing in the introgression lines are not well characterized or validated. In this study, we aimed to identify and map FHB resistance QTL in a population consisting of 205 recombinant inbred lines from the cross between Joppa (a durum wheat cultivar) and 10Ae564 (a durum wheat introgression line with FHB resistance derived from the hexaploid wheat line PI 277012). One QTL (Qfhb.ndwp-2A) from Joppa and two QTL (Qfhb.ndwp-5A and Qfhb.ndwp-7A) from 10Ae564 were identified through phenotyping of the mapping population for FHB severity and DON content in greenhouse and field and genotyping with 90K wheat Infinium iSelect SNP arrays. Qfhb.ndwp-2A explained 14, 15, and 9% of the phenotypic variation, respectively, for FHB severity in two greenhouse experiments and for mean DON content across the two greenhouse environments. Qfhb.ndwp-5A explained 19, 10, and 7% of phenotypic variation, respectively, for FHB severity in one greenhouse experiment, mean FHB severity across two field experiments, and mean DON content across the two greenhouse experiments. Qfhb.ndwp-7A was only detected for FHB severity in the two greenhouse experiments, explaining 9 and 11% of the phenotypic variation, respectively. This study confirms the existence of minor QTL in North Dakota durum cultivars and the successful transfer of the major QTL from PI 277012 into durum wheat.
  相似文献   

14.
Wheat midge, Sitodiplosis mosellana (Géhin) (Diptera: Cecidomyiidae), was first detected as early as 1901 in western Canada. The first major outbreak in Saskatchewan was recorded in 1983. Today wheat midge infests much of the wheat-growing area of Manitoba, Saskatchewan and North Dakota (USA), and is beginning to invade Alberta and Montana (USA). In 1984, Saskatchewan wheat midge populations were found to be parasitized by the egg-larval parasitoid, Macroglenes penetrans (Kirby) (Hymenoptera). Through the successful implementation of conservation techniques, this parasitoid now controls an average of 31.5% of the wheat midge across Saskatchewan. Estimated value of the parasitoid, due to reduction in insecticide costs in Saskatchewan alone, was estimated to be in excess of $248.3 million in the 1990s. The environmental benefits of not having to apply this amount of chemical insecticide are a bonus. To minimize the economic and ecological impact of S. mosellana today, wheat producers in western Canada have access to one of the most comprehensive management programs of any insect pest of field crops. Forecasts and risk warnings, monitoring tools, cultural control, agronomic practices, chemical control, biological control and plant resistance are all available for producers to manage wheat midge.  相似文献   

15.
Summary A new Hessian fly (Mayetiola destructor) resistance gene derived from Balbo rye and its transfer to hexaploid wheat via radiation-induced terminal and intercalary chromosomal translocations are described. Crosses between resistant Balbo rye and susceptible Suwon 92 wheat and between the F1 amphidiploids and susceptible TAM 106 and Amigo wheats produced resistant BC2F3 lines that were identified by C-banding analysis as being 6RL telocentric addition lines. Comparative chromosomal analyses and resistance tests revealed that the resistance gene is located on the 6RL telocentric chromosome. X-irradiated pollen of 6RL addition plants was used to fertilize plants of susceptible wheats TAM 106, TAM 101, and Vona. After several generations of selection for resistance, new sublines were obtained that were homogeneous for resistance. Thirteen of these lines were analyzed by C-banding, and three different wheat-6RL chromosomal translocations (T) were identified. Wheat chromosomes involved in the translocations were 6B, 4B, and 4A. Almost the complete 6RL arm is present in T6BS · 6BL-6RL. Only the distal half of 6RL is present in T4BS · 4BL-6RL, which locates the resistance gene in the distal half of 6RL. Only a very small segment (ca 1.0 m) of the distal region of 6RL is present in an intercalary translocation (Ti) Ti4AS · 4AL-6RL-4AL. The 6RL segment is inserted in the intercalary region between the centromere of chromosome 4A and the large proximal C-band of 4AL. The break-points of the translocations are outside the region of the centromere, indicating that they were induced by the X-ray treatment. All three translocations are cytologically stable and can be used directly in wheat breeding programs.Cooperative investigations of the Kansas Agricultural Experiment Station, Departments of Entomology and Plant Pathology, the Wheat Genetics Resource Center, Kansas State University, and the US Department of Agriculture, Agricultural Research Service. Contribution No. 91-117-JDeceased  相似文献   

16.
17.
Chromosome painting using multicolor fluorescence in situ hybridization showed that, in addition to the T1AL·1RS translocation derived from rye, a segment from chromosome 3Ae#1 of Agropyron elongatum (2n=10x =70), is present in Amigo wheat. The Agropyron chromosome segment is located on the satellite of chromosome 1B and the translocation chromosome is designated as T1BL·1BS-3Ae#1L. T1BL·1BS-3Ae#1L was inherited from Teewon wheat and carries resistance genes to stem rust (Sr24) and leaf rust (Lr24). The Agropyron chromosome segments in different Sr24/Lr24 carrier wheat lines, including Agent, TAP 48, TAP 67, Teewon, and Amigo, showed a diagnostic C-band, and were derived from the same chromosome, 3Ae#1.  相似文献   

18.
Summary A third set of malate dehydrogenase loci have been identified and located on the short arms of homoeologous group 5 chromosomes in wheat. Allelic differences have been found at each of the three Mdh-3 loci. However, Mdh-D3 appears to be least variable, with a second allele found only in Sears' Synthetic among a survey of 42 varieties. Homoeoloci were identified on chromosome 7 (5H) of Hordeum vulgare, the short arm of 5E in Agropyron elongatum and 5U in Aegilops umbellulata.  相似文献   

19.
Lophopyrum elongatum is a facultative halophyte related to wheat. Eleven unique clones corresponding to genes showing enhanced mRNA accumulation in the early stages of salt stress were previously isolated from a L. elongatum salt-stressed-root cDNA library. The chromosomal distribution of genes complementary to these clones in several genomes of the tribe Triticeae and their copy number in the L. elongatum and wheat genomes are reported. Genes complementary to clones pESI4, pESI14, pESI15, pESI28, and pESI32 were found in homoeologous group 5, those complementary to pESI18 and pESI35 in homoeologous group 6, and those complementary to pESI47, pESI48, pESI3, and pESI2 in homoeologous groups 1, 3, 4, and 7, respectively. The genes are present in a single copy per genome in L. elongatum with the exception of those complementary to pESI2 and pESI18 which are present in at least two and five copies, respectively. Since similar copy numbers per genome were found in wheat (except for pESI2), the ability of L. elongatum to accumulate higher mRNA levels than wheat in response to salt shock apears to have evolved by changes in the regulation of these genes.  相似文献   

20.
Wang J  Xiang F  Xia G 《Planta》2005,221(2):277-286
The introgressed small-chromosome segment of Agropyron elongatum (Host.) Neviski (Thinopyrum ponticum Podp.) in F5 line II-1-3 of somatic hybrid between common wheat (Triticum aestivum L.) and A. elongatum was localized by sequential fluorescence in situ hybridization (FISH), genomic in situ hybridization (GISH) and karyotype data. Karyotype analysis offered basic data of arm ratios and relative lengths of 21 pairs of chromosomes in parent wheat Jinan177 and hybrid II-1–3. Using special high repetitive sequences pSc119.2 and pAs1 for FISH, the entire B- and D-genome chromosomes were detected. The FISH pattern of hybrid II-1-3 was the same as that of parent wheat. GISH using whole genomic DNA from A. elongatum as probe determined the alien chromatin. Sequential GISH and FISH, in combination with some of the karyotype data, localized the small chromosome segments of A. elongatum on the specific sites of wheat chromosomes 2AL, 1BL, 5BS, 1DL, 2DL and 6DS. FISH with probe OPF-031296 from randomly amplified polymorphic DNA (RAPD) detected E-genome chromatin of A. elongatum, which existed in all of the small chromosome segments introgressed. Microsatellite primers characteristic for the chromosome arms above were used to check the localization and reveal the genetic identity. These methods are complementary and provide comprehensive information about the genomic constitution of the hybrid. The relationship between hybrid traits and alien chromatin was discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号