首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
利用RAPD(Random amplified polymorphic DNA)分子标记技术,寻找谭清苏铁(Cycas tanqingii)中与性别相关的分子标记,筛选了160个10bp的随机引物,产生了2500多个RAPD条带。只有引物S0465 (CCCCGGTAAC)产生了一条大约500bp的雌性特异RAPD标记,该分子标记出现在所有的供试雌性植株中,而所有的供试雄性植株都不具有该标记。对该特异片段进行了克隆和序列测定,并根据序列分析结果将RAPD标记转化为重复性和特异性更好的特异特征序列扩增区域(SCAR)分子标记,并命名为STQC-S465-483。分子标记的建立可用于谭清苏铁幼苗性别的早期鉴定,为谭清苏铁就地保护和迁地保护提供技术支持。  相似文献   

2.
Woolly apple aphid (WAA; Eriosoma lanigerum Hausm.) can be a major economic problem to apple growers in most parts of the world, and resistance breeding provides a sustainable means to control this pest. We report molecular markers for three genes conferring WAA resistance and placing them on two linkage groups (LG) on the genetic map of apple. The Er1 and Er2 genes derived from ‘Northern Spy’ and ‘Robusta 5,’ respectively, are the two major genes that breeders have used to date to improve the resistance of apple rootstocks to this pest. The gene Er3, from ‘Aotea 1’ (an accession classified as Malus sieboldii), is a new major gene for WAA resistance. Genetic markers linked to the Er1 and Er3 genes were identified by screening random amplification of polymorphic deoxyribonucleic acid (DNA; RAPD) markers across DNA bulks from resistant and susceptible plants from populations segregating for these genes. The closest RAPD markers were converted into sequence-characterized amplified region markers and the genome location of these two genes was assigned to LG 08 by aligning the maps around the genes with a reference map of ‘Discovery’ using microsatellite markers. The Er2 gene was located on LG 17 of ‘Robusta 5’ using a genetic map developed in a M.9 × ‘Robusta 5’ progeny. Markers for each of the genes were validated for their usefulness for marker-assisted selection in separate populations. The potential use of the genetic markers for these genes in the breeding of apple cultivars with durable resistance to WAA is discussed.  相似文献   

3.
Powdery mildew caused by Erysiphe pisi D.C. is one of the most serious diseases that inflict heavy losses to pea crop world-wide. Identification of resistance sources and their incorporation into susceptible cultivars remains the most effective method of controlling the disease. The present study investigated the resistance phenotype, inheritance, and genomic location of gene(s) controlling resistance to powdery mildew in pea genotype ‘JI2480’. The powdery mildew resistance in ‘JI2480’ appeared to be a spatial phenomenon showing expression only in leaf tissues. By segregation analysis of an F2 progeny of cross ‘Lincoln/JI2480’, the leaf resistance of ‘JI2480’ was shown to be controlled by a single recessive gene, presumed to be er2. Through linkage analysis of 111 resistant F2 progeny plants with simple sequence repeat (SSR) and random amplified polymorphic DNA (RAPD) markers adopted from the published linkage maps, the er2 gene was localized on pea linkage group III (LGIII). The assignment of er2 to LGIII, a position different from that reported for er1, has resolved the long standing controversy in the literature regarding the existence and genomic location of er2 gene. A RAPD marker OPX-17_1400, exhibiting cis phase linkage (2.6 cM) to er2 was successfully converted to a sequence characterized amplified region (SCAR) marker, ScX17_1400. The SCAR marker ScX17_1400 will ensure speedy and precise introgression of er2 into susceptible cultivars by permitting selection of er2 heterozygotes amongst BC n F1s without progeny tests and resistance screening.  相似文献   

4.
To construct a molecular-marker-assisted selection (MAS) system, research was done on identifying molecular markers linking to longer frond length, a crucial selection index in the breeding of the commercially important seaweed Saccharina japonica. An F2-segregant population of 92 individuals was obtained by crossing two prominent S. japonica strains. Genomic DNA from ten individuals with the longest frond and ten individuals with the shortest frond in the F2-segregant population were mixed to create two DNA pools for screening polymorphic markers. In bulked-segregant analysis (BSA), out of 100 random amplified polymorphic DNA (RAPD) primers only two produced three polymorphic RAPD markers between the two DNA pools. In conversion of the three RAPD markers into sequence-characterized amplified region (SCAR) markers, only one was successfully converted into a SCAR marker FL-569 linking to the trait of longer frond. Test of the marker FL-569 showed that 80% of the individuals with longest fronds in a wild population and 87.5% of individuals with the longest fronds in an inbred line “Zhongke No. 2” could be detected by FL-569. Additionally, genetic linkage analysis showed that the SCAR marker could be integrated into the reported genetic map and QTL mapping showed that FL-569 linking to qL1-1. The obtained marker FL-569 will be beneficial to MAS in S. japonica breeding.  相似文献   

5.
 Previous studies have established that chloroplasts are inherited paternally in Actinidia interspecific crosses. However, fertilisation problems in interspecific crosses may affect the transmission of organelles. Six female clones, i.e. ‘Abbott’, ‘Bruno’, ‘Greensill’, ‘Hayward’, ‘Jones’, ‘Monty’, and four male clones were used to identify cpDNA polymorphisms within the cultivated kiwifruit species A. deliciosa. The restriction patterns by HpaII of a chloroplast fragment amplified by PCR with a pair of universal primers revealed a polymorphism at the intraspecific level. The inheritance of cpDNA in 143 seedlings from three intraspecific crosses in kiwifruit (Actinidia deliciosa) was studied. All offspring displayed the restriction pattern of the paternal parent, indicating that maternal inheritance of cpDNA in kiwifruit is rare at best. Strict maternal inheritance of mtDNA was confirmed in the same crosses used to investigate cpDNA transmission. Studies of cytoplasmic inheritance in the Actinidia genus represent to date the best documented report of differential organelle inheritance of cpDNA and mtDNA in angiosperms. Received: 10 November 1998 / Accepted: 14 December 1998  相似文献   

6.
 We report the molecular mapping of the py-1 gene for resistance to corky root rot [Pyrenochaeta lycopersici (Schneider and Gerlach)] in tomato using RAPD and RFLP marker analysis. DNA from near-isogenic lines (NILs) of tomato differing in corky root rot resistance was screened with 575 random oligonucleotide primers to detect polymorphic DNAs linked to py-1. Three primers (OPW-04, OPC-02, OPG-19) revealed polymorphisms between the NILs. Twelve resistant and eight susceptible DNA pools derived from segregating F3 families were used to confirm that the RAPD markers were linked to the py-1 gene. Two of the linked amplified fragments, corresponding to OPW-04 and OPC-02, were subsequently cloned and mapped on the tomato molecular linkage map as RFLPs. These clones were located between TG40 and CT31 on the short arm of chromosome 3. Further analysis with selected RFLP markers showed that 7% (8.8 cM) of chromosome 3 of the resistant line ‘Moboglan’ was introgressed from the L. peruvianum donor parent. Three RFLP markers (TG40, TG324, and TG479) from the introgressed part of chromosome 3 were converted to cleaved amplified polymorphism (CAP) markers for use in a polymerase chain reaction (PCR) assay. These PCR markers will allow rapid large-scale screening of tomato populations for corky root rot resistance. Received: 2 January 1998 / Accepted: 12 January 1998  相似文献   

7.
To develop a SCAR primer related to the hairy-fruit trait in the genusActinidia, we took a PCR-RAPD approach using arbitrary 10-mer primers. PCR with the UBC 376 primer generated specific fragments from three species with hairy fruit skin. Those fragments were then cloned to determine their nucleotide sequences. Two SCAR primers were designed from the UBC 376 primer and nucleotide sequences were obtained from the PCR fragments. A SCAR primer, OKC385, specifically amplified a 385-bp fragment from one clone ofActinidia eriantha, four ofActinidia chinensis, and four ofActinidia deliciosa. Deduced amino acid sequences of this fragment showed high sequence homology with plant cellulose synthases, which are involved in the biosynthesis of cellulose, a major cell wall component. The 385-bp fragment was specifically detected only in the seriesPerfectae C.F. Liang of sectionStellatae Li. This type has many hairs on the leaves, fruits, and stems, suggesting that the gene containing the PCR fragment is involved in hair formation in this phylogenetic group. Taken together, our results suggest that the SCAR primer, OKC385, can be used as a specific primer for early selection of the non-hair trait in breeding of the genusActinidia.  相似文献   

8.
Fusarium wilt caused by the fungus Fusarium oxysporum f. sp. cubense race 4 (FOC4) results in vascular tissue damage and ultimately death of banana (Musa spp.) plants. Somaclonal variants of in vitro micropropagated banana can hamper success in propagation of genotypes resistant to FOC4. Early identification of FOC4 resistance in micropropagated banana plantlets is difficult, however. In this study, we identified sequence-characterized amplified region (SCAR) markers of banana associated with resistance to FOC4. Using pooled DNA from resistant or susceptible genotypes and 500 arbitrary 10-mer oligonucleotide primers, 24 random amplified polymorphic DNA (RAPD) products were identified. Two of these RAPD markers were successfully converted to SCAR markers, called ScaU1001 (GenBank accession number HQ613949) and ScaS0901 (GenBank accession number HQ613950). ScaS0901 and ScaU1001 could be amplified in FOC4-resistant banana genotypes (“Williams 8818-1” and Goldfinger), but not in five tested banana cultivars susceptible to FOC4. The two SCAR markers were then used to identify a somaclonal variant of the genotype “Williams 8818-1”, which lost resistance to FOC4. Hence, the identified SCAR markers can be applied for a rapid quality control of FOC4-resistant banana plantlets immediately after the in vitro micropropagation stage. Furthermore, ScaU1001 and ScaS0901 will facilitate marker-assisted selection of new banana cultivars resistant to FOC4.  相似文献   

9.
‘SI1300’ is a self-incompatible Brassica napus line generated by introgressing an S haplotype from B. rapa ‘Xishuibai’ into a rapeseed cultivar ‘Huayou No. 1’. Five S-locus specific primer pairs were employed to develop cleaved amplified polymorphic sequences (CAPS) markers linked the S haplotype of ‘SI1300’. Two segregating populations (F2 and BC1) from the cross between ‘SI1300’ and self-compatible European spring cultivar ‘Defender’, were generated to verify the molecular markers. CAPS analysis revealed no desirable polymorphism between self-incompatible and self-compatible plants. Twenty primer pairs were designed based on the homology-based candidate gene method, and six dominant sequence characterized amplified region (SCAR) markers linked with the S-locus were developed. Of the six markers, three were derived from the SRK and SP11 alleles of class II B. rapa S haplotypes and linked with S haplotype of ‘SI1300’. The other three markers were designed from the SLG-A10 and co-segregated with S haplotype of ‘Defender’. We successfully combined two pairs of them and characterized two multiplex PCR markers which could discriminate the homozygous and heterozygous genotypes. These markers were further validated in 24 F3 and 22 BC1F2 lines of ‘SI1300 × Defender’ and another two segregating populations from the cross ‘SI1300 × Yu No. 9’. Nucleotide sequences of fragments linked with S-locus of ‘SI1300’ showed 99% identity to B. rapa class II S-60 haplotype, and fragments from ‘Defender’ were 97% and 94% identical to SLG and SRK of B. rapa class I S-47 haplotype, respectively. ‘SI1300’ was considered to carry two class II S haplotypes and the S haplotype on the A-genome derived from B. rapa ‘Xishuibai’ determines the SI phenotype, while ‘Defender’ carry a class I S haplotype derived from B. rapa and a class II S haplotype from B. oleracea. SCAR markers developed in this study will be helpful for improving SI lines and accelerating marker-assisted selection process in rapeseed SI hybrid breeding program.  相似文献   

10.
谭清苏铁性别连锁的RAPD和SCAR分子标记   总被引:2,自引:0,他引:2  
利用RAPD(Random amplified polymorphicDNA)分子标记技术,寻找谭清苏铁(Cycas tanqingii)中与性别相关的分子标记,筛选了160个10bp的随机引物,产生了2500多个RAPD条带。只有引物S0465(CCCCGGTAAC)产生了一条大约500bp的雌性特异RAPD标记,该分子标记出现在所有的供试雌性植株中,而所有的供试雄性植株都不具有该标记。对该特异片段进行了克隆和序列测定,并根据序列分析结果将RAPD标记转化为重复性和特异性更好的特异特征序列扩增区域(SCAR)分子标记,并命名为STQC-S465-483。分子标记的建立可用于谭清苏铁幼苗性别的早期鉴定,为谭清苏铁就地保护和迁地保护提供技术支持。  相似文献   

11.
A novel genic male sterile (GMS) line in Brassica napus L., which was identified in 1999, was found to be controlled by a monogenic dominant gene, which we have designated as MDGMS. The microspores of the MDGMS abort before the degradation of the tapetal cell layer. The F1 fertility from any fertile lines crossed with MDGMS segregated and the ratio was close to 1:1. Bulked segregation analysis (BSA) was employed to identify random amplified polymorphic DNA (RAPD) markers linked to the Ms gene in MDGMS. Among 880 random 10-mer oligonucleotide primers screened against the bulk DNA of sterile and fertile, one primer S243 (5′-CTATGCCGAC-3′) gave a repeatable 1500-bp DNA polymorphic segment S2431500 between the two bulks. Analysis of individual plants of each bulks and other types of GMS and cytoplasmic male sterility (CMS) lines suggest that the RAPD marker S2431500 is closely linked to the MDGMS locus in rapeseed. This RAPD marker has been converted into sequence characterized amplified region (SCAR) marker to aid identification of male-fertility genotypes in segregating progenies of MDGMS in marker-assisted selection (MAS) breeding programs.  相似文献   

12.
 RAPD (random amplified polymorphic DNA) analysis was used to identify molecular markers linked to the Dn2 gene conferring resistance to the Russian wheat aphid (Diuraphis noxia Mordvilko). A set of near-isogenic lines (NILs) was screened with 300 RAPD primers for polymorphisms linked to the Dn2 gene. A total of 2700 RAPD loci were screened for linkage to the resistance locus. Four polymorphic RAPD fragments, two in coupling phase and two in repulsion phase, were identified as putative RAPD markers for the Dn2 gene. Segregation analysis of these markers in an F2 population segregating for the resistance gene revealed that all four markers were closely linked to the Dn2 locus. Linkage distances ranged from 3.3 cM to 4.4 cM. Southern analysis of the RAPD products using the cloned RAPD markers as probes confirmed the homology of the RAPD amplification products. The coupling-phase marker OPB10880c and the repulsion-phase marker OPN1400r were converted to sequence characterized amplified region (SCAR) markers. SCAR analysis of the F2 population and other resistant and susceptible South African wheat cultivars corroborated the observed linkage of the RAPD markers to the Dn2 resistance locus. These markers will be useful for marker-assisted selection of the Dn2 gene for resistance breeding and gene pyramiding. Received: 1 July 1997 / Accepted: 20 October 1997  相似文献   

13.
Subgenus Cerasus species are useful genetic resources for cherry breeding programs. A total of 17 morphological traits together with 19 random amplified polymorphic DNA (RAPD) primers were used to study 39 accessions including 34 wild Cerasus subgenus genotypes belonging to Prunus avium L., P. cerasus L., P. mahaleb L., P. microcarpa Boiss., P. incana Pall., and P. brachypetala Boiss. species, along with an unknown wild Cerasus sample, two advanced cherry cultivars (‘Lambert’ and ‘Bulgar’), and two rootstocks (‘Colt’ and ‘Gisela 6’). Genotypes were separated into different groups according to their species and collection sites using cluster analysis performed by Ward’s clustering method based on morphological data. Nineteen RAPD primers from 60 screened produced 304 polymorphic reproducible bands (98.15% polymorphism). According to the similarity matrix, the lowest similarity was obtained between P. avium and P. microcarpa samples. A dendrogram was prepared by the unweighted pair-group method with arithmetic average (UPGMA), and the accessions were separated according to their species and geographic origin. In both morphological and molecular results, the advanced cultivars and rootstocks were separated from wild genotypes, and the unknown genotype was grouped with P. mahaleb accessions. Grouping by morphological characteristics was compared with the results of RAPD analysis, with no significant correlations between morphological and molecular data being found. This is the first report of molecular (RAPD) genetic diversity study in wild Cerasus subgenus genotypes from Iran, and the results demonstrate the high potential of RAPD analysis for discrimination of Cerasus subgenus genotypes.  相似文献   

14.
 A 400-bp RAPD marker generated by a primer of random decamer sequence has been found associated with the male sex phenotype in 14 dioecious cultivars and accessions of hemp (Cannabis sativa L.). The primer OPA8 generates a set of bands, most of which polymorphic among all the individual plants tested, and 1 of which, named OPA8400, present in all male plants and absent in female plants. A screening of 167 plants belonging to different genotypes for the association of the OPA8400 marker with the sex phenotype revealed that only in 3 cases was the 400-bp band was present in plants phenotypically female; on the contrary, in male plants the band was never missing, while in monoecious plants it was never present. Despite this sex-specific association, the sequences corresponding to OPA8400 were present in both staminate and carpellate plants, as revealed by Southern blotting and hybridization with the cloned RAPD band. The RAPD marker was sequenced, and specific primers were constructed. These primers generated, on the same genotypes used for RAPD analysis, a SCAR marker 390 bp in length and male-specific. This SCAR is suitable for a precise, early and rapid identification of male plants during breeding programs of dioecious and monoecious hemp. Received: 16 January 1998 / Accepted: 30 April 1998  相似文献   

15.
Crown rust is an important disease of oat caused by Puccinia coronata Corda f. sp. avenae Eriks. Crown rust is efficiently and effectively managed through the development of resistant oat varieties. Pc91 is a seedling crown rust resistance gene that is highly effective against the current P. coronata population in North America. The primary objective of this study was to develop DNA markers linked to Pc91 for purposes of marker-assisted selection in oat breeding programs. The Pc91 locus was mapped using a population of F7-derived recombinant inbred lines developed from the cross ‘CDC Sol-Fi’/‘HiFi’ made at the Crop Development Centre, University of Saskatchewan. The population was evaluated for reaction to P. coronata in field nurseries in 2008 and 2009. Pc91 mapped to a linkage group consisting of 44 Diversity Array Technology (DArT) markers. DArTs were successfully converted to sequence characterized amplified region (SCAR) markers. Five robust SCARs were developed from three non-redundant DArTs that co-segregated with Pc91. SCAR markers were developed for different assay systems, such that SCARs are available for agarose gel electrophoresis, capillary electrophoresis, and Taqman single nucleotide polymorphism detection. The SCAR markers accurately postulated the Pc91 status of 23 North American oat breeding lines.  相似文献   

16.
Summary Randomly amplified polymorphic DNA (RAPD) techniques were applied to assess genetic instability among micropropagated tea [Camellia sinensis (L.) O. Kuntze] eultivar ‘T-78’. Out of 49 random 10-mer primers, 11 generated polymorphism in four out of 17 micropropagated plants and one mother plant. A total of 221 bands, ranging from 525 bp to 2.5 kb, were produced by the 49 primers. Twenty-four were polymorphic for those four plants. However, the remaining bands were monomorphic among all plants. Polymorphism among those four plants showed an identifical banding pattern suggesting the occurrence of a single mutation. Our results demonstrated that RAPD can be used successfully to determine the genetic instability among micropropagated plants which otherwise were morphologically indistinguishable.  相似文献   

17.
Betelvine (Piper betle L., family Piperaceae) is an important, traditional and widely cultivated crop of India. The cultivators and consumers recognize more than 100 cultivars (landraces) based on regional and organoleptic considerations, while in terms of phytochemical constituents only five groups have been identified for all the landraces. Since betelvine is an obligate vegetatively propagated species, genomic changes, if any, may have become ‘fixed’ in the landraces. We carried out random amplified polymorphic DNA (RAPD) analysis in several landraces considered in four groups, namely, ‘Kapoori’, ‘Bangla’, ‘Sanchi’ and ‘Others’ in order to ascertain their genetic diversity. On the basis of the data from eleven RAPD primers, we distinguished genetic variation within and among the four groups of landraces. The results indicate the’Kapoori’ group is the most diverse. The neighbour joining (NJ) tree after a bootstrap (500 replicate) test of robustness clearly shows the four groups to be well separated. Interestingly, all known male or female betelvine landraces have separated in the NJ tree indicating an apparent gender-based distinction among the betelvines.  相似文献   

18.
Practically no molecular tools have been developed so far for safflower (Carthamus tinctorius L.) breeding. The objective of the present research was to develop molecular markers for the closely linked genes Li, controlling very high linoleic acid content, and Ms, controlling nuclear male sterility (NMS). A mapping population of 162 individuals was developed from the NMS line CL1 (64–79% linoleic acid) and the line CR-142 (84–90%), and phenotyped in the F2 and F3 generations. Bulked segregant analysis with random amplified polymorphic (RAPD) markers revealed linkage of five RAPD bands to the Li and Ms genes. RAPD fragments were converted into sequence-characterized amplified region (SCAR) markers. A linkage map including the five SCAR markers and the Li and Ms genes was constructed. SCAR markers flanked both loci at minimum distances of 15.7 cM from the Li locus and 3.7 cM from the Ms locus. These are the first molecular markers developed for trait selection in safflower.  相似文献   

19.
 Random amplified polymorphic DNA (RAPD) and genomic in situ hybridization (GISH) methods have been used to verify the hybridogenic origin and to identify the parental species of some ornamental cultivars in the subgenus Melanocrommyum of the genus Allium. The cultivars had been selected from seed obtained after uncontrolled pollination in breeders’ fields. The combination of GISH analysis with RAPD markers is very suitable for testing the hybridogenic origin of plants and to ascertain the parental species of the hybrids in such cases. As suspected, A. macleanii and A. cristophii are the parental species of ‘Globemaster’. The parental species of cultivar ‘Globus’ are A. karataviense and A. stipitatum, and not A. cristophii and A. giganteum as has been assumed on morphological grounds. Cultivars ‘Lucy Ball’ and ‘Gladiator’ are of hybrid origin, though only one of the parental species, A. hollandicum, could be confirmed. The cultivars ‘Purple Sensation’, ‘Mount Everest’, ‘White Giant’, ‘Michael H. Hoog’ and ‘Mars’ are not hybrids since neither GISH nor RAPD suggest the presence of a second genome. ‘Purple Sensation’ belongs to A. hollandicum, ‘Mount Everest’, ‘White Giant’ and ‘Mars’ to A. stipitatum,‘Michael H. Hoog’ to A. rosenorum. Received: 3 July 1997 / Accepted: 9 October 1997  相似文献   

20.
 The objective of this study was to detect the presence of alien chromatin in intergeneric hybrids of durum wheat (Triticum turgidum, 2n=4x=28; AABB genomes) with the perennial grass Thinopyrum junceiforme (2n=4x=28; J1J1J2J2) using RAPD markers. The first step was to identify amplification of species-specific DNA markers in the parental grass species and durum wheat cultivars. Initially, the genomic DNA of five grass species (Thinopyrum junceiforme, Th. bessarabicum, Lophopyrum elongatum, Leymus karataviensis and Elytrigia pycnantha) and selected durum cultivars (‘Langdon’, ‘Durox’, ‘Lloyd’, ‘Monroe’, and ‘Medora’) was screened with 40 oligonucleotide primers (nano-mers). Three oligonucleotides that amplified DNA fragments specific to a grass species or to a durum cultivar were identified. Primer PR21 amplified DNA fragments specific to each of the five durum cultivars, and primers PR22 and PR23 amplified fragments specific to each of the grass species. Intergeneric hybrids between the durum cultivars ‘Langdon’, ‘Lloyd’ and ‘Durox’ and Th. junceiforme, and their backcross (BC) progeny were screened with all 40 primers. Six primers amplified parent-specific DNA fragments in the F1 hybrids and their BC1 progeny. Three primers, PR22, PR23 and PR41, that amplified Th. junceiforme DNA fragments in both F1 and BC1 were further analyzed. The presence of an amplified 1.7-kb Th. junceiforme DNA fragment in the F1 hybrids and BC1 progeny was confirmed using Southern analysis by hybridization with both Th. junceiforme genomic DNA and Th. junceiforme DNA amplified with primer PR41. With the exception of line BC1F2 no. 5, five selfed progeny of BC1 and a BC2 of line 3 (BC1F2 no. 3בLloyd’) from a cross of ‘Lloyd’×Th. junceiforme showed the presence of the 1.7-kb DNA fragment. All selfed BC1 and BC2 lines retained the 600-bp fragment that was confirmed after hybridization with Th. junceiforme DNA amplified with primer PR22. Other experiments using RFLP markers also showed the presence of up to seven Th. junceiforme DNA fragments in the F1 hybrids and their BC progeny after hybridization with Th. junceiforme DNA amplified with primer PR41. These studies show the usefulness of molecular markers in detecting alien chromatin/DNA fragments in intergeneric hybrids with durum wheat. Received: 21 November 1996 / Accepted: 21 March 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号