首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ca2+/calmodulin-dependent protein kinase (CaMK) is an important downstream target of Ca2+ in the hypertrophic signaling pathways. We previously showed that the activation of apoptosis signal-regulating kinase 1 (ASK1) or NF-kappaB is sufficient for cardiomyocyte hypertrophy. Infection of isolated neonatal cardiomyocytes with an adenoviral vector expressing CaMKIIdelta3 (AdCaMKIIdelta3) induced the activation of ASK1, while KN93, an inhibitor of CaMKII, inhibited phenylephrine-induced ASK1 activation. Overexpression of CaMKIIdelta3 induced characteristic features of in vitro cardiomyocyte hypertrophy. Infection of cardiomyocytes with an adenoviral vector expressing a dominant negative mutant of ASK1 (AdASK(KM)) inhibited the CaMKIIdelta3-induced hypertrophic responses. Overexpression of CaMKIIdelta3 increased the kappaB-dependent promoter/luciferase activity and induced IkappaBalpha degradation. Coinfection with AdCaMKIIdelta3 and AdASK(KM), and pre-incubation with KN93 attenuated CaMKIIdelta3- and phenylephrine-induced NF-kappaB activation, respectively. Expression of a degradation resistant mutant of IkappaBalpha inhibited CaMKIIdelta3-induced hypertrophic responses. These results indicate that CaMKIIdelta3 induces cardiomyocyte hypertrophy mediated through ASK1-NF-kappaB signal transduction pathway.  相似文献   

2.
We have examined the involvement of Rac1 in nuclear factor kappaB (NFkappaB) activation by interleukin 1 (IL1). IL1 induced a rapid and sustained activation of Rac1 in the thymoma cell line EL4.NOB-1. Transient transfection with dominant negative RacN17 inhibited IL1-induced kappaB-dependent reporter gene expression but not IkappaBalpha degradation, whereas constitutively active RacV12 potentiated kappaB-dependent reporter gene expression in response to IL1 but had no effects on its own. Using porcine aortic endothelial cells stably transfected with RacV12 or RacN17 under the control of an inducible promoter, we confirmed that RacV12 did not affect IkappaBalpha degradation, nor did RacN17 inhibit the IL1-induced response. RacV12 was also unable to induce nuclear translocation of NFkappaB. These effects suggested a role for Rac1 in p65-mediated transactivation of NFkappaB, independent of IkappaBalpha regulation. In support of this we found that IL1 activated a pathway leading to increased p65 transactivation activity and that RacV12 alone could drive this response in both cell systems. Additionally, RacN17 inhibited IL1-driven p65-mediated transactivation. From data using specific inhibitors of p38 and p42/p44 kinases we propose that both p38 and p42/p44 lie downstream of Rac1 on the IL1 pathway leading to enhanced transactivation by p65.  相似文献   

3.
4.
We have examined the involvement of components of the interleukin-1 (IL-1) signaling pathway in the transactivation of gene expression by the p65 subunit of NF-kappaB. Transient transfection of cells with plasmids encoding wild-type MyD88, IL-1 receptor-associated kinase 1 (IRAK-1), and TRAF-6 drove p65-mediated transactivation. In addition, dominant negative forms of MyD88, IRAK-1, and TRAF-6 inhibited the IL-1-induced response. In cells lacking MyD88 or IRAK-1, no effect of IL-1 was observed. Together, these results indicate that MyD88, IRAK-1, and TRAF-6 are important downstream regulators of IL-1-mediated p65 transactivation. We have previously shown that the low-molecular-weight G protein Rac1 is involved in this response. Constitutively active RacV12-mediated transactivation was not inhibited by dominant negative MyD88, while dominant negative RacN17 inhibited the MyD88-driven response, placing Rac1 downstream of MyD88 on this pathway. Dominant negative RacN17 inhibited wild-type IRAK-1- and TRAF-6-induced transactivation, and in turn, dominant negative IRAK-1 and TRAF-6 inhibited the RacV12-driven response, suggesting a mutual codependence of Rac1, IRAK-1, and TRAF-6 in regulating this pathway. Finally, Rac1 was found to associate with the receptor complex via interactions with both MyD88 and the IL-1 receptor accessory protein. A pathway emanating from MyD88 and involving IRAK-1, TRAF-6, and Rac1 is therefore involved in transactivation of gene expression by the p65 subunit of NF-kappaB in response to IL-1.  相似文献   

5.
6.
Small guanine nucleotide-binding proteins of the Ras and Rho (Rac, Cdc42, and Rho) families have been implicated in cardiac myocyte hypertrophy, and this may involve the extracellular signal-related kinase (ERK), c-Jun N-terminal kinase (JNK), and/or p38 mitogen-activated protein kinase (MAPK) cascades. In other systems, Rac and Cdc42 have been particularly implicated in the activation of JNKs and p38-MAPKs. We examined the activation of Rho family small G proteins and the regulation of MAPKs through Rac1 in cardiac myocytes. Endothelin 1 and phenylephrine (both hypertrophic agonists) induced rapid activation of endogenous Rac1, and endothelin 1 also promoted significant activation of RhoA. Toxin B (which inactivates Rho family proteins) attenuated the activation of JNKs by hyperosmotic shock or endothelin 1 but had no effect on p38-MAPK activation. Toxin B also inhibited the activation of the ERK cascade by these stimuli. In transfection experiments, dominant-negative N17Rac1 inhibited activation of ERK by endothelin 1, whereas activated V12Rac1 cooperated with c-Raf to activate ERK. Rac1 may stimulate the ERK cascade either by promoting the phosphorylation of c-Raf or by increasing MEK1 and/or -2 association with c-Raf to facilitate MEK1 and/or -2 activation. In cardiac myocytes, toxin B attenuated c-Raf(Ser-338) phosphorylation (50 to 70% inhibition), but this had no effect on c-Raf activity. However, toxin B decreased both the association of MEK1 and/or -2 with c-Raf and c-Raf-associated ERK-activating activity. V12Rac1 cooperated with c-Raf to increase expression of atrial natriuretic factor (ANF), whereas N17Rac1 inhibited endothelin 1-stimulated ANF expression, indicating that the synergy between Rac1 and c-Raf is potentially physiologically important. We conclude that activation of Rac1 by hypertrophic stimuli contributes to the hypertrophic response by modulating the ERK and/or possibly the JNK (but not the p38-MAPK) cascades.  相似文献   

7.
The small GTPase Rac1 can stimulate various signaling pathways following a tightly controlled GDP-GTP exchange. A splicing variant designated Rac1b was found to exist predominantly in the active GTP-bound state but the functional consequences of its expression remain unknown. Here we used mouse fibroblasts as a model to assess the signaling properties of Rac1b. We show that, in contrast to Rac1, expression of wild-type Rac1b is sufficient to stimulate cyclin D1 accumulation and G1/S progression in these cells. Moreover, expression of wild-type Rac1b, but not of wild-type Rac1, dramatically increased cell survival in the presence of only minimal growth stimuli. Both cellular responses were blocked by the NF-kappaB super-repressor IkappaBalpha(A32A36). Active Rac1b induced the phosphorylation and membrane translocation of IkappaBalpha, a prerequisite for the activation of NF-kappaB. These data demonstrate that Rac1b is a highly active Rac1 variant that stimulates cell cycle progression and cell survival in pathways involving NF-kappaB.  相似文献   

8.
c-Jun N-terminal protein kinase (JNK) and p38, two distinct members of the mitogen-activated protein (MAP) kinase family, regulate gene expression in response to various extracellular stimuli, yet their physiological functions are not completely understood. In this report we show that JNK and p38 exerted opposing effects on the development of myocyte hypertrophy, which is an adaptive physiological process characterized by expression of embryonic genes and unique morphological changes. In rat neonatal ventricular myocytes, both JNK and p38 were stimulated by hypertrophic agonists like endothelin-1, phenylephrine, and leukemia inhibitory factor. Expression of MAP kinase kinase 6b (EE), a constitutive activator of p38, stimulated the expression of atrial natriuretic factor (ANF), which is a genetic marker of in vivo cardiac hypertrophy. Activation of p38 was required for ANF expression induced by the hypertrophic agonists. Furthermore, a specific p38 inhibitor, SB202190, significantly changed hypertrophic morphology induced by the agonists. Surprisingly, activation of JNK led to inhibition of ANF expression induced by MEK kinase 1 (MEKK1) and the hypertrophic agonists. MEKK1-induced ANF expression was also negatively regulated by expression of c-Jun. Our results demonstrate that p38 mediates, but JNK suppresses, the development of myocyte hypertrophy.  相似文献   

9.
Opportunistic infections, common in HIV-1-infected patients, increase HIV replication; however, the intracellular signaling mechanisms involved are not clearly known. We have shown that Toll-like receptor 2 (TLR2), TLR4, and TLR9 mediate microbial Ag-induced HIV-long terminal repeat (HIV-LTR) trans-activation and HIV-1 replication, and that LPS-induced HIV-LTR trans-activation is mediated through myeloid differentiation adapter protein. Recently, Toll-IL-1R domain-containing adapter protein (TIRAP) has been identified as an adapter molecule that mediates responses to TLR2 and TLR4 ligands, and TIRAP was suggested to provide signaling specificity for different TLRs. Rac1, a small GTP-binding protein that is activated upon LPS stimulation of macrophages, activates phosphatidylinositol 3-kinase and Akt and leads to NF-kappaB activation. The roles of Rac1 and TIRAP in LPS activation of HIV replication is not known. In the present study we show that LPS stimulation of human microvessel endothelial cells leads to Rac1 activation. Constitutively active Rac1 (Rac1V12) simulated the effect of LPS to activate HIV-LTR, whereas the expression of dominant negative Rac1 (Rac1N17) partially blocked LPS-induced HIV-LTR trans-activation. Rac1V12-induced HIV-LTR activation was independent of myeloid differentiation adapter protein, and dominant negative TIRAP blocked Rac1V12-induced HIV-LTR trans-activation. In this study we show for the first time that activation of Rac1 leads to HIV-LTR trans-activation, and this is mediated through TIRAP. Together these results underscore the importance of Rac1 and TIRAP in TLR4 activation of HIV replication and help delineate the signaling pathways induced by TLRs to mediate microbial Ag-induced HIV replication and HIV pathogenesis.  相似文献   

10.
Cardiac hypertrophy is a major cause of morbidity and mortality worldwide. The hypertrophic process is mediated, in part, by oxidative stress-mediated signaling pathways. We hypothesized that isorhapontigenin (ISO), a new resveratrol analog, inhibits cardiac hypertrophy by blocking oxidative stress and oxidative stress-mediated signaling pathways. We treated cardiomyocytes with angiotensin II (Ang II) with or without ISO and found that ISO inhibited Ang II-induced cardiac hypertrophy. These effects were associated with a decrease in the levels of reactive oxygen species and H2O2 and the content of intracellular malonaldehyde and an increase in the activities of superoxide dismutase and glutathione peroxidase. Ang II induced the phosphorylation of PKC, Erk1/2, JNK, and p38 in cardiomyocytes and such phosphorylation was inhibited by ISO. ISO also blocked the PKC-dependent PI3K-Akt-GSK3beta/p70S6K pathway. These effects lead to direct or indirect inhibition of NF-kappaB and AP-1 activation. Our results revealed that pretreatment with ISO significantly inhibited Ang II-mediated NF-kappaB through affecting the degradation and phosphorylation of IkappaBalpha and the activity of IKKbeta and AP-1 activation by influencing the expression of c-Fos and c-Jun proteins. In addition, we also established the molecular link between activation of PKC and MAPKs and activation of NF-kappaB and AP-1 in cardiomyocytes. We also found that ISO treatment significantly attenuated heart weight/body weight ratio by approximately 25%, decreased posterior wall thickness and left ventricle diastolic and systolic diameters, and increased 10% fractional shortening in an aortic-banded rat model. Furthermore, treatment with ISO significantly decreased cardiac myocyte size and systolic blood pressure. These findings suggest that ISO prevents the development of cardiac hypertrophy through an antioxidant mechanism involving inhibition of different intracellular signaling transduction pathways.  相似文献   

11.
Ras regulates NFAT3 activity in cardiac myocytes   总被引:4,自引:0,他引:4  
  相似文献   

12.
CD5 acts as a coreceptor on T lymphocytes and plays an important role in T-cell signaling and T-cell–B-cell interactions. Costimulation of T lymphocytes with anti-CD5 antibodies results in an increase of the intracellular Ca2+ levels, and subsequently in the activation of Ca2+/calmodulin-dependent (CaM) kinase type IV. In the present study, we have characterized the initial signaling pathway induced by anti-CD5 costimulation. The activation of phosphatidylinositol (PI) 3-kinase through tyrosine phosphorylation of its p85 subunit is a proximal event in the CD5-signaling pathway and leads to the activation of the lipid kinase activity of the p110 subunit. The PI 3-kinase inhibitors wortmannin and LY294002 inhibit the CD5-induced response as assessed in interleukin-2 (IL-2) secretion experiments. The expression of an inactivated Rac1 mutant (Rac1 · N17) in T lymphocytes transfected with an IL-2 promoter-driven reporter construct also abrogates the response to CD5 costimulation, while the expression of a constitutively active Rac1 mutant (Rac1-V12) completely replaces the CD5 costimulatory signal. The Rac1-specific guanine nucleotide exchange factor Vav is heavily phosphorylated on tyrosine residues upon CD5 costimulation, which is a prerequisite for its activation. A role for Vav in the CD5-induced signaling pathway is further supported by the findings that the expression of a dominant negative Vav mutant (Vav-C) completely abolishes the response to CD5 costimulation while the expression of a constitutively active Vav mutant [Vav(Δ1–65)] makes the CD5 costimulation signal superfluous. Wortmannin is unable to block the Vav(Δ1–65)- or Rac1 · V12-induced signals, indicating that both Vav and Rac1 function downstream from PI 3-kinase. Vav and Rac1 both act upstream from the CD5-induced activation of CaM kinase IV, since KN-62, an inhibitor of CaM kinases, and a dominant negative CaM kinase IV mutant block the Vav(Δ1–65)-and Rac1 · V12-mediated signals. We propose a model for the CD5-induced signaling pathway in which the PI 3-kinase lipid products, together with tyrosine phosphorylation, activate Vav, resulting in the activation of Rac1 by the Vav-mediated exchange of GDP for GTP.  相似文献   

13.
The nonreceptor Abl tyrosine kinase stimulates F-actin microspikes and membrane ruffles in response to adhesion and growth factor signals. We show here that induced dimerization of Abl-FKBP, but not the kinase-defective AblKD-FKBP, inhibits cell spreading on fibronectin. Conversely, knockdown of cellular Abl by shRNA stimulates cell spreading. The Abl kinase inhibitor, imatinib, also stimulates cell spreading and its effect is overridden by the imatinib-resistant AblT315I. Expression of Abl but not AbkKD in Abl/Arg-deficient cells again inhibits spreading. Furthermore, Abl inhibits spreading of cells that express the activated Rac, RacV12, correlating with RacV12 localization to dorsal membrane protrusions. Ectopic expression of CrkII, a Rac activator that is inactivated by Abl-mediated tyrosine phosphorylation, antagonizes Abl-mediated dorsal membrane localization of RacV12. Ectopic expression of a dynamin-2 mutant, previously shown to induce Rac-GTP localization to the dorsal membrane, abolishes the stimulatory effect of imatinib on cell spreading. These results suggest that Abl tyrosine kinase, through CrkII phosphorylation and in collaboration with dynamin-2 can regulate the partitioning of Rac-GTP to favor dorsal ruffles during cell spreading. The Abl-dependent dorsal membrane localization of activated Rac explains its positive role in ruffling and negative role in cell spreading and migration.  相似文献   

14.
15.
PKD is the founding member of a novel protein kinase family that also includes PKD2 and PKD3. PKD has been the focus of most studies up to date, but little is known about the mechanisms that mediate PKD3 activation. Here, we show that addition of aluminum fluoride to COS-7 cells cotransfected with PKD3 and Galpha13 or Galpha12 induced PKD3 activation, which was associated with a transient plasma membrane translocation of cytosolic PKD3. Treatment with Clostridium difficile toxin B blocked PKD3 activation induced by either bombesin or by aluminum fluoride-stimulated Galpha12/13 but did not affect Galphaq-induced PKD3 activation. Furthermore, PKD3 immunoprecipitated from cells cotransfected with a constitutively active Rac (RacV12) exhibited a marked increase in PKD3 basal catalytic activity. In contrast, cotransfection with active Rho (RhoQ63L), Cdc42 (Cdc42Q61L), or Ras (RasV12) did not promote PKD3 activation. Expression of either COOH-terminal dominant-negative fragment of Galpha13 or dominant negative Rac (Rac N17) attenuated bombesin-induced PKD3 activation. Treatment with protein kinase C (PKC) inhibitors prevented the increase in PKD3 activity induced by RacV12 and aluminum fluoride-stimulated Galpha12/13. The catalytic activation of PKD3 in response to RacV12, alpha12/13 signaling or bombesin correlated with Ser-731/Ser-735 phosphorylation in the activation loop of this enzyme. Our results indicate that Galpha12/13 and Rac are important components in the signal transduction pathways that mediate bombesin receptor-induced PKD3 activation.  相似文献   

16.
Arai A  Aoki M  Weihua Y  Jin A  Miura O 《Cellular signalling》2006,18(12):2162-2171
Intracellular signaling mechanisms regulating SDF-1-induced chemotaxis of hematopoietic cells have remained elusive. Here we demonstrate that overexpression of the adaptor molecule CrkL enhances SDF-1-induced chemotaxis of hematopoietic BaF3 and 32Dcl3 cells. Overexpression of CrkL also enhanced SDF-1-induced activation of the Raf-1/MEK/Erk signaling pathway as well as that of the small GTPases Ras, Rap1, and Rac, while a dominant negative mutant of Ras or Rac suppressed CrkL-enhanced Erk activation. SDF-1 stimulation induced tyrosine phosphorylation of CrkL, which was inhibited by the Src family kinase inhibitor PP1 or by dominant negative mutants of Lyn, thus indicating that Lyn mediated SDF-1-induced phosphorylation of CrkL. However, inhibition of the Lyn kinase activity failed to affect SDF-1-induced activation of the small GTPases and Erk. On the other hand, SDF-1-induced activation of the Erk signaling pathway as well as chemotaxis was inhibited by overexpression of a CrkL mutant lacking the N-terminal SH3 domain, which mediates interaction with various signaling molecules including guanine nucleotide exchange factors for the Ras and Rho family GTPases. SDF-1-induced chemotaxis was also inhibited by the dominant negative Ras or Rac mutant as well as by the MEK inhibitor PD98059. These results indicate that CrkL mediates SDF-1-induced activation of the Raf-1/MEK/Erk signaling pathway through Ras as well as Rac in hematopoietic cells and, thereby, plays important roles in the induction of chemotactic response.  相似文献   

17.
Interleukin-1 (IL-1) mediates numerous host responses through rapid activation of nuclear factor-kappaB (NF-kappaB), but signal pathways leading to the NF-kappaB activation appear to be complicated and multiplex. We propose a novel regulatory system for NF-kappaB activation by the extracellular signal-related kinase (ERK) pathway. In a human glioblastoma cell line, T98G, IL-1-induced NF-kappaB activation was significantly augmented by the pretreatment of a specific MEK inhibitor, PD98059. In contrast, ectopic expression of a constitutive activated form of Raf (v-Raf) reduced IL-1-induced NF-kappaB activation, and this inhibition was completely reversed by PD98059. Interestingly, PD98059 sustained IL-1-induced NF-kappaB DNA binding activity by an electrophoretic mobility shift assay and also IkappaBalpha degradation, presumably by augmenting and sustaining the proteasome activation. Concomitantly, two NF-kappaB dependent genes, A20 and IkappaBalpha expression were prolonged with PD98059. These data suggested that MEK-ERK pathway exerts a regulatory effect on NF-kappaB activation, providing a novel insight on the role of MEK-ERK pathway.  相似文献   

18.
Cardiac hypertrophy is formed in response to hemodynamic overload. Although a variety of factors such as catecholamines, angiotensin II (AngII), and endothelin-1 (ET-1) have been reported to induce cardiac hypertrophy, little is known regarding the factors that inhibit the development of cardiac hypertrophy. Production of atrial natriuretic peptide (ANP) is increased in the hypertrophied heart and ANP has recently been reported to inhibit the growth of various cell types. We therefore examined whether ANP inhibits the development of cardiac hypertrophy. Pretreatment of cultured cardiomyocytes with ANP inhibited the AngII- or ET-1-induced increase in the cell size and the protein synthesis. ANP also inhibited the AngII- or ET-1-induced hypertrophic responses such as activation of mitogen-activated protein kinase (MAPK) and induction of immediate early response genes and fetal type genes. To determine how ANP inhibits cardiomyocyte hypertrophy, we examined the mechanism of ANP-induced suppression of the MAPK activation. ANP strongly induced expression of MAPK phosphatase-1 (MKP-1) and overexpression of MKP-1 inhibited AngII- or ET-1-induced hypertrophic responses. These growth-inhibitory actions of ANP were mimicked by a cyclic GMP analog 8-bromo-cyclic GMP. Taken together, ANP directly inhibits the growth factor-induced cardiomyocyte hypertrophy at least partly via induction of MKP-1. Our present study suggests that the formation of cardiac hypertrophy is regulated not only by positive but by negative factors in response to hemodynamic load.  相似文献   

19.
Cellular FLICE-like inhibitory protein (Flip) is a negative regulator of nuclear factor κB signaling which has been shown previously to complicate with cardiac hypertrophy. In the present study, we tested the hypothesis that the knockout of Flip would increase cardiac hypertrophy in vivo and in vitro. The effects of Flip knockout on cardiac hypertrophy were investigated using in vitro and in vivo models. Flip was downregulated in transverse aortic constriction (TAC)-induced animal hearts and cardiomyocytes that had been treated with angiotensin II or phenylephrine for 1 h. An in vivo, heart hypertrophy model, was performed by TAC in Flip knockdown and sham mice. The extent of hypertrophy of heart was quantitated by echocardiography, and further confirmed by pathological and molecular examination of heart tissue samples. Conditional knockout of Flip in the murine heart increases the hypertrophic response induced by TAC, whereas cardiac function was preserved with reduced Flip levels in response to hypertrophic stimuli. Western blot experiments further showed Flip knockout activated markedly ASK1/P38 signaling cascades in vivo and in vitro. In conclusion, Flip preserves cardiac functions and inhibits cardiac hypertrophy partially by blocking ASK1/P38 signaling.  相似文献   

20.
The signaling pathway involved in tumor necrosis factor-alpha (TNF-alpha)-induced intercellular adhesion molecule-1 (ICAM-1) expression was further studied in human A549 epithelial cells. TNF-alpha- or 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced ICAM-1 promoter activity was inhibited by a protein kinase C (PKC) inhibitor (staurosporine), tyrosine kinase inhibitors (genistein and herbimycin A), or an Src-specific tyrosine kinase inhibitor (PP2). TNF-alpha- or TPA-induced IkappaBalpha kinase (IKK) activation was also blocked by these inhibitors, which slightly reversed TNF-alpha-induced but completely reversed TPA-induced IkappaBalpha degradation. c-Src and Lyn, two members of the Src kinase family, were abundantly expressed in A549 cells, and their activation by TNF-alpha or TPA was inhibited by the same inhibitors. Furthermore, the dominant-negative c-Src (KM) mutant inhibited induction of ICAM-1 promoter activity by TNF-alpha or TPA. Overexpression of the constitutively active PKC or wild-type c-Src plasmids induced ICAM-1 promoter activity, this effect being inhibited by the dominant-negative c-Src (KM) or IKKbeta (KM) mutant but not by the nuclear factor-kappaB-inducing kinase (NIK) (KA) mutant. The c-Src (KM) mutant failed to block induction of ICAM-1 promoter activity caused by overexpression of wild-type NIK. In co-immunoprecipitation and immunoblot experiments, IKK was found to be associated with c-Src and to be phosphorylated on tyrosine residues after TNF-alpha or TPA treatment. Two tyrosine residues, Tyr188 and Tyr199, near the activation loop of IKKbeta, were identified as being important for NF-kappaB activation. Substitution of these residues with phenylalanines abolished ICAM-1 promoter activity and c-Src-dependent phosphorylation of IKKbeta induced by TNF-alpha or TPA. These data suggest that, in addition to activating NIK, TNF-alpha also activates PKC-dependent c-Src. These two pathways converge at IKKbeta and go on to activate NF-kappaB, via serine phosphorylation and degradation of IkappaB-alpha, and, finally, to initiate ICAM-1 expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号