首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We previously reported that soluble, stable YU2 gp140 trimeric human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein immunogens could elicit improved breadth of neutralization against HIV-1 isolates compared to monomeric YU2 gp120 proteins. In this guinea pig immunization study, we sought to extend these data and determine if adjuvant could quantitatively or qualitatively alter the neutralizing response elicited by trimeric or monomeric immunogens. Consistent with our earlier studies, the YU2 gp140 immunogens elicited higher-titer neutralizing antibodies against homologous and heterologous isolates than those elicited by monomeric YU2 gp120. Additionally, the GlaxoSmithKline family of adjuvants AS01B, AS02A, and AS03 induced higher levels of neutralizing antibodies compared to emulsification of the same immunogens in Ribi adjuvant. Further analysis of vaccine sera indicated that homologous virus neutralization was not mediated by antibodies to the V3 loop, although V3 loop-directed neutralization could be detected for some heterologous isolates. In most gp120-inoculated animals, the homologous YU2 neutralization activity was inhibited by a peptide derived from the YU2 V1 loop, whereas the neutralizing activity elicited by YU2 gp140 trimers was much less sensitive to V1 peptide inhibition. Consistent with a less V1-focused antibody response, sera from the gp140-immunized animals more efficiently neutralized heterologous HIV-1 isolates, as determined by two distinct neutralization formats. Thus, there appear to be qualitative differences in the neutralizing antibody response elicited by YU2 gp140 compared to YU2 monomeric gp120. Further mapping analysis of more conserved regions of gp120/gp41 may be required to determine the neutralizing specificity elicited by the trimeric immunogens.  相似文献   

2.
We have previously reported that a chimpanzee infected with a primary human immunodeficiency virus type 1 (HIV-1) isolate (HIV-1(DH12)) developed an extremely potent virus-neutralizing antibody. Immunoglobulin G purified from this animal conferred sterilizing immunity following passive transfer to macaques which were subsequently challenged with simian immunodeficiency virus/HIV-1 chimeric virus strain DH12. In addition to being highly strain specific, the chimpanzee antiserum did not bind to the V3 loop peptide of HIV-1(DH12), nor did it block the interaction of gp120 with the CD4 receptor. When neutralization was examined in the context of virus particles carrying chimeric envelope glycoproteins, the presence of all five hypervariable regions (V1 to V5) was required for optimal neutralization. Virions bearing chimeric gp120 containing the V1-V2 and V4 regions of HIV-1(DH12) could also be neutralized, but larger quantities of the chimpanzee antiserum were needed to block infection. These results indicate that the HIV-1 gp120 epitope(s) targeted by the chimpanzee antiserum is highly conformational, involving surface elements contributed by all of the hypervariable domains of the envelope glycoprotein.  相似文献   

3.
Animals immunized with the human immunodeficiency virus type 1 gp160 glycoprotein or certain recombinant envelope components develop potent virus-neutralizing activity. This activity is principally due to antibodies directed toward a hypervariable region of gp120 between cysteine residues 302 and 337 and is virus isolate specific. These antisera, as well as two neutralizing monoclonal antibodies directed against the same hypervariable sequence, do not appreciably block gp120 from binding CD4. In contrast, serum samples from infected humans possess high titers of antibodies that block gp120-CD4 binding; these titers approximately correlate with the serum neutralization titers. Our results suggest that there are at least two targets on the envelope glycoprotein for virus neutralization. The target responsible for the broader neutralizing activity of human serum may be a conserved region of gp120 involved in CD4 binding. The antibodies directed at the hypervariable region of the envelope inhibit a different step in virus infection which is subsequent to receptor binding. The extent to which these two different epitopes of gp120 may be involved in protection against human immunodeficiency virus infection is discussed.  相似文献   

4.
Attempts to elicit broadly neutralizing antibody responses by human immunodeficiency virus type 1 (HIV-1) vaccine antigens have been met with limited success. To better understand the requirements for cross-neutralization of HIV-1, we have characterized the neutralizing antibody specificities present in the sera of three asymptomatic individuals exhibiting broad neutralization. Two individuals were infected with clade B viruses and the third with a clade A virus. The broadly neutralizing activity could be exclusively assigned to the protein A-reactive immunoglobulin G (IgG) fraction of all three donor sera. Neutralization inhibition assays performed with a panel of linear peptides corresponding to the third hypervariable (V3) loop of gp120 failed to inhibit serum neutralization of a panel of HIV-1 viruses. The sera also failed to neutralize chimeric simian immunodeficiency virus (SIV) and HIV-2 viruses displaying highly conserved gp41-neutralizing epitopes, suggesting that antibodies directed against these epitopes likely do not account for the broad neutralizing activity observed. Polyclonal IgG was fractionated on recombinant monomeric clade B gp120, and the neutralization capacities of the gp120-depleted samples were compared to that of the original polyclonal IgG. We found that the gp120-binding antibody population mediated neutralization of some isolates, but not all. Overall, the data suggest that broad neutralization results from more than one specificity in the sera but that the number of these specificities is likely small. The most likely epitope recognized by the monomeric gp120 binding neutralizing fraction is the CD4 binding site, although other epitopes, such as the glycan shield, cannot be excluded.  相似文献   

5.
This study was undertaken to establish whether antibody directed against the human immunodeficiency virus type 1 (HIV-1) principal gp120 type-specific neutralization determinant can abolish the infectivity of HIV-1 in chimpanzees. Challenge inocula of the IIIb virus isolate were mixed in vitro with either immunoglobulin G (IgG) from an uninfected chimpanzee, nonneutralizing IgG from an HIV-seropositive human, a virus-neutralizing murine monoclonal antibody directed against the HIV-1 IIIb isolate, or virus-neutralizing IgG from a chimpanzee infected with the IIIb isolate. Both neutralizing antibodies were directed against the principal neutralization determinant of the challenge isolate. Establishment of infection following inoculation of each virus-antibody mixture into chimpanzees was assessed by virus-specific antibody development and by virus isolation. No protective effect was noted either with the control IgG or with the nonneutralizing anti-HIV IgG. By contrast, the polyclonal chimpanzee virus-neutralizing IgG prevented HIV-1 in vivo infection, while the neutralizing monoclonal antibody notably decreased the infectivity of the challenge virus. Hence, antibody to the gp120 principal neutralization determinant is able both to prevent HIV-1 infection in vitro and to inhibit infection in vivo.  相似文献   

6.
Plasma samples from individuals infected with human immunodeficiency virus type 1 (HIV-1) are known to be highly strain specific in their ability to neutralize HIV-1 infectivity. Such plasma samples exhibit significant neutralizing activity against autologous HIV-1 isolates but typically exhibit little or no activity against heterologous strains, although some cross-neutralizing activity can develop late in infection. Monkeys infected with the simian-human immunodeficiency virus (SHIV) clone DH12 generated antibodies that neutralized SHIV DH12, but not SHIV KB9. Conversely, antibodies from monkeys infected with the SHIV clone KB9 neutralized SHIV KB9, but not SHIV DH12. To investigate the role of the variable loops of the HIV-1 envelope glycoprotein gp120 in determining this strain specificity, variable loops 1 and 2 (V1/V2), V3, or V4 were exchanged individually or in combination between SHIV DH12 and SHIV KB9. Despite the fact that both parental viruses exhibited significant infectivity and good replication in the cell lines examined, 3 of the 10 variable-loop chimeras exhibited such poor infectivity that they could not be used further for neutralization assays. These results indicate that a variable loop that is functional in the context of one particular envelope background will not necessarily function within another. The remaining seven replication-competent chimeras allowed unambiguous assignment of the sequences principally responsible for the strain specificity of the neutralizing activity present in SHIV-positive plasma. Exchange of the V1/V2 loop sequences conferred a dominant loss of sensitivity to neutralization by autologous plasma and a gain of sensitivity to neutralization by heterologous plasma. Substitution of V3 or V4 had little or no effect on the sensitivity to neutralization. These data demonstrate that the V1/V2 region of HIV-1 gp120 is principally responsible for the strain specificity of the neutralizing antibody response in monkeys infected with these prototypic SHIVs.  相似文献   

7.
We characterized human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein epitopes recognized by neutralizing antibodies from monkeys recently infected by molecularly cloned simian-human immunodeficiency virus (SHIV) variants. The early neutralizing antibody response in each infected animal was directed mainly against a single epitope. This primary neutralizing epitope, however, differed among individual monkeys infected by identical viruses. Two such neutralization epitopes were determined by sequences in the V2 and V3 loops of the gp120 envelope glycoprotein, while a third neutralization epitope, apparently discontinuous, was determined by both V2 and V3 sequences. These results indicate that the early neutralizing antibody response in SHIV-infected monkeys is monospecific and directed against epitopes composed of the gp120 V2 and V3 variable loops.  相似文献   

8.
Characterization of biological and immunological properties of human immunodeficiency virus type 1 (HIV-1) is critical to developing effective therapies and vaccines for AIDS. With the use of a novel CD4+ T-cell line (PM-1) permissive to infection by both monocytotropic (MT) and T-cell-tropic virus types, we present a comparative analysis of the immunological properties of a prototypic primary MT isolate of HIV-1 strain JR-CSF (MT-CSF) with those of a T-cell-tropic variant (T-CSF) of the same virus, which emerged spontaneously in vitro. The parental MT-CSF infected only PM-1 cells and was markedly resistant to neutralization by sera from HIV-1-infected individuals, rabbit antiserum to recombinant MT-CSF gp120, and anti-V3 monoclonal antibodies. The T-CSF variant infected a variety of CD4+ T-cell lines, contained positively charged amino acid substitutions in the gp120 V3 region, and was highly sensitive to antibody neutralization. Neutralization and antibody staining of T-CSF-expressing cells were significantly inhibited by HIV-1 V3 peptides; in contrast, the MT strain showed only weak V3-specific binding of polyclonal and monoclonal antibodies. Exposure of PM-1 cells to a mixture of both viruses in the presence of human anti-HIV-1 neutralizing antiserum resulted in infection with only MT-CSF. These results demonstrate that although the V3 region of MT viruses is immunogenic, the target epitopes in the V3 principal neutralizing domain on the membrane form of the MT envelope appear to be cryptic or hidden from blocking antibodies.  相似文献   

9.
We have compared the abilities of human immunodeficiency virus type 1 (HIV-1) envelope V3 peptides and recombinant gp120 to induce antibodies that neutralize simian/human immunodeficiency viruses (SHIVs). SHIV-89.6 is a nonpathogenic SHIV that expresses the envelope protein of primary HIV-1 isolate 89.6. SHIV-89.6P, clone KB9, is a pathogenic SHIV variant derived from SHIV-89.6. Infection of rhesus monkeys with these SHIVs rarely induces anti-V3 region antibodies. To determine the availability of the gp120 V3 loop for neutralizing antibody binding on SHIV-89.6 and KB9 virions, we have constructed immunogenic C4-V3 peptides from these SHIVs and induced anti-V3 antibodies in guinea pigs and rhesus monkeys. We found that both SHIV-89.6 and KB9 C4-V3 peptides induced antibodies that neutralized SHIV-89.6 but that only SHIV-KB9 C4-V3 peptide induced antibodies that neutralized SHIV-KB9. Immunoprecipitation assays demonstrated that SHIV-KB9 C4-V3 peptide-induced antibodies had a greater ability to bind SHIV-KB9 envelope proteins than did antibodies raised against SHIV-89.6 C4-V3 peptide. We have used a series of mutant HIV-1 envelope constructs to map the gp120 determinants that affect neutralization by anti-V3 antibodies. The residue change at position 305 of arginine (in SHIV-89.6) to glutamic acid (in SHIV-KB9) played a central role in determining the ability of peptide-induced anti-V3 antiserum to neutralize primary isolate SHIVs. Moreover, residue changes in the SHIV-89.6 V1/V2 loops also played roles in regulating the availability of the V3 neutralizing epitope on SHIV-89.6 and -KB9. Thus, SHIV-89.6 and -KB9 V3 region peptides are capable of inducing neutralizing antibodies against these primary isolate SHIVs, although the pathogenic SHIV-KB9 is less easily neutralized than its nonpathogenic variant SHIV-89.6. In contrast to natural infection with SHIV-89.6, in which few animals make anti-V3 antibodies, C4-V3 peptides frequently induced anti-V3 antibodies that neutralized primary isolate SHIV strains.  相似文献   

10.
A major challenge in human immunodeficiency virus type 1 (HIV-1) vaccine development is to elicit potent and broadly neutralizing antibodies that are effective against primary viral isolates. Previously, we showed that DNA prime-protein boost vaccination using HIV-1 gp120 antigens was more effective in eliciting neutralizing antibodies against primary HIV-1 isolates than was a recombinant gp120 protein-only vaccination approach. In the current study, we analyzed the difference in antibody specificities in rabbit sera elicited by these two immunization regimens using peptide enzyme-linked immunosorbent assay and a competitive virus capture assay. Our results indicate that a DNA prime-protein boost regimen is more effective than a protein-alone vaccination approach in inducing antibodies that target two key neutralizing domains: the V3 loop and the CD4 binding site. In particular, positive antibodies targeting several peptides that overlap with the known CD4 binding area were detected only in DNA-primed sera. Different profiles of antibody specificities provide insight into the mechanisms behind the elicitation of better neutralizing antibodies with the DNA prime-protein boost approach, and our results support the use of this approach to further optimize Env formulations for HIV vaccine development.  相似文献   

11.
Monoclonal antibodies (MAbs) directed against epitopes in the V2 domain of human immunodeficiency virus type 1 gp120 often possess neutralizing activity, but these generally are highly type specific, neutralize only laboratory isolates, or have low potency. The most potent of these is C108g, directed against a type-specific epitope in HXB2 and BaL gp120s, which is glycan dependent and, in contrast to previous reports, dependent on intact disulfide bonds. This epitope was introduced into two primary Envs, derived from a neutralization-sensitive (SF162) and a neutralization-resistant (JR-FL) isolate, by substitution of two residues and, for SF162, addition of an N-linked glycosylation site. C108g effectively neutralized both variant Envs with considerably higher potency than standard MAbs against the V3 and CD4-binding domains and the broadly neutralizing MAbs 2G12 and 2F5. These amino acid substitutions also introduced the epitope recognized by a second V2-specific MAb, 10/76b, but this MAb possessed potent neutralizing activity only in the absence of the glycan required for C108g reactivity. In contrast to other gp120-specific neutralizing MAbs, C108g did not block binding of soluble Env proteins to either the CD4 or the CCR5 receptor, but studies with a fusion-arrested Env indicated that C108g neutralized at a step preceding the one blocked by the gp41-specific MAb, 2F5. These results indicate that the V1/V2 domain possesses targets that mediate potent neutralization of primary viral isolates via a novel mechanism and suggest that inclusion of carbohydrate determinants into these epitopes may help overcome the indirect masking effects that limit the neutralizing potency of antibodies commonly produced after infection.  相似文献   

12.
Previous studies characterized the third variable (V3) loop of the envelope gp120 as the principal neutralizing determinant for laboratory T-cell-line-adapted (TCLA) strains of human immunodeficiency virus type 1 (HIV-1). However, primary viruses isolated from infected individuals are more refractory to neutralization than TCLA strains, suggesting that qualitatively different neutralizing antibodies may be involved. In this study, we investigated whether the V3 loop constitutes a linear target epitope for antibodies neutralizing primary isolates. By using peptides representative of the V3 regions of various primary isolates, an early, relatively specific and persistent antibody response was detected in sera from HIV-infected patients. To assess the relationship between these antibodies and neutralization, the same peptides were used in competition and depletion experiments. Addition of homologous V3 peptides led to a competitive inhibition in the neutralization of the TCLA strain HIVMN/MT-4 but had no effect on the neutralization of the autologous primary isolate. Similarly, the removal of antibodies that bind to linear V3 epitopes resulted in a loss of HIVMN/MT-4 neutralization, whereas no decrease in the autologous neutralization was measured. The different roles of V3-specific antibodies according to the virus considered were thereby brought to light. This confirmed the involvement of V3 antibodies in the neutralization of a TCLA strain but emphasized a more pronounced contribution of either conformational epitopes or epitopes outside the V3 loop as targets for antibodies neutralizing primary HIV-1 isolates. This result underlines the need to focus on new vaccinal immunogens with epitopes able to induce broadly reactive and efficient antibodies that neutralize a wide range of primary HIV-1 isolates.  相似文献   

13.
During human immunodeficiency virus type 1 (HIV-1) infection, patients develop various levels of neutralizing antibody (NAb) responses. In some cases, patient sera can potently neutralize diverse strains of HIV-1, but the antibody specificities that mediate this broad neutralization are not known, and their elucidation remains a formidable challenge. Due to variable and nonneutralizing determinants on the exterior envelope glycoprotein (Env), nonnative Env protein released from cells, and the glycan shielding that assembles in the context of the quaternary structure of the functional spike, HIV-1 Env elicits a myriad of binding antibodies. However, few of these antibodies can neutralize circulating viruses. We present a systematic analysis of the NAb specificities of a panel of HIV-1-positive sera, using methodologies that identify both conformational and continuous neutralization determinants on the HIV-1 Env protein. Characterization of sera included selective adsorption with native gp120 and specific point mutant variants, chimeric virus analysis, and peptide inhibition of viral neutralization. The gp120 protein was the major neutralizing determinant for most sera, although not all neutralization activity against all viruses could be identified. In some broadly neutralizing sera, the gp120-directed neutralization mapped to the CD4 binding region of gp120. In addition, we found evidence that regions of the gp120 coreceptor binding site may also be a target of neutralizing activity. Sera displaying limited neutralization breadth were mapped to the immunogenic V3 region of gp120. In a subset of sera, we also identified NAbs directed against the conserved, membrane-proximal external region of gp41. These data allow a more detailed understanding of the humoral responses to the HIV-1 Env protein and provide insights regarding the most relevant targets for HIV-1 vaccine design.  相似文献   

14.
The antibody responses elicited in rhesus macaques immunized with soluble human immunodeficiency virus (HIV) Env gp140 proteins derived from the R5-tropic HIV-1 SF162 virus were analyzed and compared to the broadly reactive neutralizing antibody responses elicited during chronic infection of a macaque with a simian/human immunodeficiency virus (SHIV) expressing the HIV-1 SF162 Env, SHIV(SF162P4), and humans infected with heterologous HIV-1 isolates. Four gp140 immunogens were evaluated: SF162gp140, DeltaV2gp140 (lacking the crown of the V2 loop), DeltaV3gp140 (lacking the crown of the V3 loop), and DeltaV2DeltaV3gp140 (lacking both the V2 and V3 loop crowns). SF162gp140 and DeltaV2gp140 have been previously evaluated by our group in a pilot study, but here, a more comprehensive analysis of their immunogenic properties was performed. All four gp140 immunogens elicited stronger anti-gp120 than anti-gp41 antibodies and potent homologous neutralizing antibodies (NAbs) that primarily targeted the first hypervariable region (V1 loop) of gp120, although SF162gp140 also elicited anti-V3 NAbs. Heterologous NAbs were elicited by SF162gp140 and DeltaV2gp140 but were weak in potency and narrow in specificity. No heterologous NAbs were elicited by DeltaV3gp140 or DeltaV2DeltaV3gp140. In contrast, the SHIV(SF162P4)-infected macaque and HIV-infected humans generated similar titers of anti-gp120 and anti-gp41 antibodies and NAbs of significant breadth against primary HIV-1 isolates, which did not target the V1 loop. The difference in V1 loop immunogenicity between soluble gp140 and virion-associated gp160 Env proteins derived from SF162 may be the basis for the observed difference in the breadth of neutralization in sera from the immunized and infected animals studied here.  相似文献   

15.
Sera from human immunodeficiency virus type 1 (HIV-1)-infected North American patients recognized a fusion protein expressing a V3 loop from a clade B primary isolate virus (JR-CSF) but not from a clade A primary isolate virus (92UG037.8), while most sera from Cameroonian patients recognized both fusion proteins. Competition studies of consensus V3 peptides demonstrated that the majority of the cross-reactive Cameroonian sera contained cross-reactive antibodies that reacted strongly with both V3 sequences. V3-specific antibodies purified from all six cross-reactive sera examined had potent neutralizing activity for virus pseudotyped with envelope proteins (Env) from SF162, a neutralization-sensitive clade B primary isolate. For four of these samples, neutralization of SF162 pseudotypes was blocked by both the clade A and clade B V3 fusion proteins, indicating that this activity was mediated by cross-reactive antibodies. In contrast, the V3-reactive antibodies from only one of these six sera had significant neutralizing activity against viruses pseudotyped with Envs from typically resistant clade B (JR-FL) or clade A (92UG037.8) primary isolates. However, the V3-reactive antibodies from these cross-reactive Cameroonian sera did neutralize virus pseudotyped with chimeric Envs containing the 92UG037.8 or JR-FL V3 sequence in Env backbones that did not express V1/V2 domain masking of V3 epitopes. These data indicated that Cameroonian sera frequently contain cross-clade reactive V3-directed antibodies and indicated that the typical inability of such antibodies to neutralize typical, resistant primary isolate Env pseudotypes was primarily due to indirect masking effects rather than to the absence of the target epitopes.  相似文献   

16.
We have used an indirect-capture enzyme-linked immunosorbent assay to quantitate the reactivity of sera from human immunodeficiency virus type 1 (HIV-1)-infected humans with native recombinant gp120 (HIV-1 IIIB or SF-2) or with the gp120 molecule (IIIB or SF-2) denatured by being boiled in the presence of dithiothreitol with or without sodium dodecyl sulfate. Denaturation of IIIB gp120 reduced the titers of sera from randomly selected donors by at least 100-fold, suggesting that the majority of cross-reactive anti-gp120 antibodies present are directed against discontinuous or otherwise conformationally sensitive epitopes. When SF-2 gp120 was used, four of eight serum samples reacted significantly with the denatured protein, albeit with ca. 3- to 50-fold reductions in titer. Only those sera reacting with denatured SF-2 gp120 bound significantly to solid-phase-adsorbed SF-2 V3 loop peptide, and none bound to IIIB V3 loop peptide. Almost all antibody binding to reduced SF-2 gp120 was blocked by preincubation with the SF-2 V3 loop peptide, as was about 50% of the binding to native SF-2 gp120. When sera from a laboratory worker or a chimpanzee infected with IIIB were tested, the pattern of reactivity was reversed, i.e., there was significant binding to reduced IIIB gp120, but not to reduced SF-2 gp120. Binding of these sera to reduced IIIB gp120 was 1 to 10% that to native IIIB gp120 and was substantially decreased by preincubation with IIIB (but not SF-2) V3 loop peptide. To analyze which discontinuous or conformational epitopes were predominant in HIV-1-positive sera, we prebound monoclonal antibodies (MAbs) to IIIB gp120 and then added alkaline phosphatase-labelled HIV-1-positive sera. MAbs (such as 15e) that recognize discontinuous epitopes and compete directly with CD4 reduced HIV-1-positive sera binding by about 50%, whereas neutralizing MAbs to the C4, V2, and V3 domains of gp120 were either not inhibitory or only weakly so. Thus, antibodies to the discontinuous CD4-binding site on gp120 are prevalent in HIV-1-positive sera, antibodies to linear epitopes are less common, most of the antibodies to linear epitopes are directed against the V3 region, and most cross-reactive antibodies are directed against discontinuous epitopes, including regions involved in CD4 binding.  相似文献   

17.
Here we report on the use of spectral map analysis of time-paired sequential neutralization data of 11 serum samples of a chimpanzee naturally infected with a simian immunodeficiency virus (SIVcpz-ant) and 8 primary consecutive SIVcpz-ant isolates, taken at about 4-month intervals. The analysis reveals the existence of three SIVcpz-ant isolate and serum neutralization clusters. Each cluster groups virus isolates and/or sera based on similarities of their neutralization spectra. On average, neutralization escape mutants emerged after 15 months and mounted a neutralization response approximately 8 months later. The entire gp160 regions of eight consecutive isolates were sequenced and analyzed by a new statistical method called polygram, which allowed the deduction of amino acid sequence motifs of gp160 which were specific for SIVcpz-ant isolates belonging to the same isolate neutralization clusters. Changes in specific amino acid quadruplets in V1, V2, C3, V4, V5, and CD4 domains of gp120 and gp40 were seen to correlate with the neutralization clusters with most of the specific changes occurring in the V4 region. This method of analysis may facilitate an understanding of the study of the dynamic interplay between human immunodeficiency virus (HIV) and host neutralization responses as well as providing possible insights into mechanisms of persistence of HIV-1-related lentiviruses in their natural hosts.  相似文献   

18.
SF162 is a primary (PR), non-syncytium-inducing, macrophagetropic human immunodeficiency virus type 1 (HIV-1) clade B isolate which is resistant to antibody-mediated neutralization. Deletion of the first or second hypervariable envelope gp120 region (V1 or V2 loop, respectively) of this virus does not abrogate its ability to replicate in peripheral blood mononuclear cells and primary macrophages, nor does it alter its coreceptor usage profile. The mutant virus with the V1 loop deletion, SF162ΔV1, remains as resistant to antibody-mediated neutralization as the wild-type virus SF162. In contrast, the mutant virus with the V2 loop deletion, SF162ΔV2, exhibits enhanced susceptibility to neutralization by certain monoclonal antibodies whose epitopes are located within the CD4-binding site and conserved regions of gp120. More importantly, SF162ΔV2 is now up to 170-fold more susceptible to neutralization than SF162 by sera collected from patients infected with clade B HIV-1 isolates. In addition, it becomes susceptible to neutralization by sera collected from patients infected with clade A, C, D, E, and F HIV-1 isolates. These findings suggest that the V2, but not the V1, loop of SF162 shields an as yet unidentified region of the HIV envelope rich in neutralization epitopes and that the overall structure of this region appears to be conserved among clade B, C, D, E, and F HIV-1 PR isolates.  相似文献   

19.
Serum neutralizing antibodies against the human immunodeficiency virus were frequently detected in infected individuals, and low or absent serum neutralizing titers correlated with poor prognosis. Multiple diverse human immunodeficiency virus isolates were found to exhibit similar susceptibility to neutralization by a panel of human seropositive sera, suggesting that neutralizing antibodies are largely directed against conserved viral domains. Furthermore, utilizing antisera raised against a library of synthetic env peptides, four regions which are important in the neutralization process have been identified within both human immunodeficiency virus envelope glycoproteins (gp41 and gp120). Three of these are in conserved domains and should be considered for inclusion in a candidate vaccine.  相似文献   

20.
Sera from human immunodeficiency virus type 1 (HIV-1)-infected individuals from the United States and Tanzania were examined for antibody reactivity to four synthetic peptides which corresponded to the principal neutralizing determinant from the V3 region of HIV-1 gp120. We observed that the majority of sera from both countries contained antibodies reactive with a V3 peptide whose sequence is based on that of the HIV-1 MN isolate. We were unable to establish a relationship between the presence of V3-reactive antibodies, as measured by enzyme-linked immunosorbent assay and neutralization of homologous HIV-1 isolates, in sera from either the United States or Tanzania. We observed that some sera which contained high antibody titers to the V3 peptides failed to neutralize HIV-1, while others with no antibody reactivity to the panel of V3 peptides exhibited in vitro neutralizing activity. These results suggest that neutralizing epitopes exist outside the V3 loop and that the presence of V3-reactive antibodies in sera does not imply in vitro neutralization of the homologous HIV-1 isolate. In addition, it appears that the V3 loop may consist of both neutralizing and nonneutralizing epitopes. The identification of neutralizing as well as nonneutralizing epitopes will be important for the design of potential HIV-1 vaccines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号