首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
We have made observations, by double fluorescence staining of the same cell, of the distributions of surface receptors, and of intracellular actin and myosin, on cultured normal fibroblasts and other flat cells, and on lymphocytes and other rounded cells. The binding of multivalent ligands (a lectin or specific antibodies) to a cell surface receptor on flat cells clusters the cell receptors into small patches, which line up directly over the actin- and myosin-containing stress fibers inside the cell. Similar ligands binding to rounded cells can cause their surface receptors to be collected into caps on the surface, and these caps are invariably found to be associated with concentrations of actin and myosin under the capped membrane. Although these ligand-induced surface phenomena appear to be different on flat and rounded cells, we propose that in both cases clusters of receptors become linked across the membrane to actin- and myosin-containing structures. In flat cells these structures are very long stress fibers; therefore, when clusters of receptors become linked to these fibers, the clusters are immobilized. In round cells, membrane-associated actin- and myosin-containing structures are apparently much less extensive than in flat cells; therefore, clusters of receptors linked to these structures are still mobile in the plane of the membrane. We suggest that in this case the clusters are then actively collected into a cap by an analogue of the muscle sliding filament mechanism. To explain the transmembrane linkage, we propose that actin is associated with the plasma membrane as a peripheral protein which is directly or indirectly bound to an integral protein (or proteins) X of the membrane. Individual molecules of any receptor are not bound to X, but after they are specifically clustered into patches, a patch of receptors then becomes bound to S and hence to actin/myosin. Patching and capping of specific receptors on rounded cells is often accompanied by a specific endocytosis of the ligand-receptor complexes. This represents one common transport mechanism of a protein (the ligand) across the plasma membrane. The possibility is discussed that this type of endocytosis is mediated by a transmembrane linkage of the clustered receptor to actin/myosin. Another mechanism of endocytosis involves the “coated pit” structures that are observed by electron microscopy of plasma membranes. The possible relationships between an actin/myosin and a coated pit mechanism of endocytosis are explored.  相似文献   

2.
3.
Translocation of proteins across membranes   总被引:1,自引:0,他引:1  
  相似文献   

4.
When human red cells are treated with the mercurial sulfhydryl reagent, p-chloromercuribenzene sulfonate, osmotic water permeability is suppressed and only diffusional water permeability remains (Macey, R.I. and Farmer, R.E.L. (1970) Biochim. Biophys. Acta 211, 104–106). It has been suggested that the route for the remaining water permeation is by diffusion through the membrane lipids. However, after making allowance for the relative lipid area of the membrane, the water diffusion coefficient through lipid bilayers which contain cholesterol is too small by a factor of two or more. We have measured the permeability coefficient of normal human red cells by proton T1 NMR and obtained a value of 4.0 · 10?3 cm · s?1, in good agreement with published values. In order to study permeation-through red cell lipids we have perturbed extracted red cell lipids with the lipophilic anesthetic, halothane, and found that halothane increases water permeability. The same concentration of halothane has no effect on the water permeability of human red cells, after maximal pCMBS inhibition. In order to compare halothane mobility in extracted red cell membrane lipids with that in red cell ghost membranes, we have studied halothane quenching of N-phenyl-1-naphthylamine by equilibrium fluorescence and fluorescence lifetime methods. Since halothane mobility is similar in these two preparations, we have concluded that the primary route of water diffusion in pCMBS-treated red cells is not through membrane lipids, but rather through a membrane protein channel.  相似文献   

5.
It has been demonstrated that the content of extracellular Ca in the nervous system is inversely related to the content of gangliosides. The results obtained on invertebrates, lower and higher vertebrates indicate that the highest content of extracellular Ca is typical of the nervous tissue of invertebrates, whereas the lower one--of the nervous tissue of higher vertebrates (mammals). Ganglioside content, on the contrary, is the highest in the brain tissue of the higher vertebrates (mammals and birds), being significantly lower in lower vertebrates; no gangliosides was found at all in the nervous tissue of protostomian invertebrates. The highest ganglioside content in the organism of vertebrates is characteristic to the surface membranes of the nervous cells, especially in the region of synapses. Functional significance of the inverse relationship between the content of extracellular Ca and gangliosides is discussed from the standpoint of one of the authors (R. Veh) who postulated the existence of calcium--ganglioside buffer in the vicinity of the surface of the nervous cells.  相似文献   

6.
7.
8.
9.
Indole has many, diverse roles in bacterial signaling. It regulates the transition from exponential to stationary phase, it is involved in the control of plasmid stability, and it influences biofilm formation, virulence, and stress responses (including antibiotic resistance). Its role is not restricted to bacteria, and recently it has been shown to include mutually beneficial signaling between enteric bacteria and their mammalian hosts. In many respects indole behaves like the signaling component of a quorum-sensing system. Indole synthesized within the producer bacterium is exported into the surroundings where its accumulation is detected by sensitive cells. A view often repeated in the literature is that in Escherichia coli the AcrEF-TolC and Mtr transporter proteins are involved in the export and import, respectively, of indole. However, the evidence for their involvement is indirect, and it has been known for a long time that indole can pass directly through a lipid bilayer. We have combined in vivo and in vitro approaches to examine the relative importance of protein-mediated transport and direct passage across the E. coli membrane. We conclude that the movement of indole across the E. coli membrane under normal physiological conditions is independent of AcrEF-TolC and Mtr. Furthermore, direct observation of individual liposomes shows that indole can rapidly cross an E. coli lipid membrane without the aid of any proteinaceous transporter. These observations not only enhance our understanding of indole signaling in bacteria but also provide a simple explanation for the ability of indole to signal between biological kingdoms.  相似文献   

10.
Glutathione-mediated transport across intestinal brush-border membranes   总被引:1,自引:0,他引:1  
Glutathione transport was studied in brush-border membrane vesicles of rabbit small intestine in which gamma-glutamyl transpeptidase (EC 2.3.2.2) had been inactivated by a specific affinity-labeling reagent, L-(alpha S,5S)-alpha-amino-3-chloro-4,5-dihydro-5-isoxazoleacetic acid (AT125). Transport of intact [glycine-2-3H]GSH occurred into an osmotically active intravesicular space of AT125-treated membranes. The 0.1 M NaSCN gradient (Na+ inside greater than Na+ outside) in the transport medium could be replaced with KSCN or NaCl without affecting transport activity. The initial rate of GSH transport followed Michaelis-Menten saturation kinetics (Km = 17 microM). The results suggest that, in these membranes, there was an Na+-independent mediated transport for intact GSH with marked specificity and affinity. In fact glycine, glutamic acid and cysteine did not decrease GSH uptake, as was also true for glycylglycine and glycylglycylglycine; only gamma-glutamylcysteinylglycyl ester, a derivative of GSH, partially inhibited GSH transport.  相似文献   

11.
Copper transport across pea thylakoid membranes   总被引:6,自引:0,他引:6       下载免费PDF全文
The initial rate of Cu2+ movement across the thylakoid membrane of pea (Pisum sativum) chloroplasts was directly measured by stopped-flow spectrofluorometry using membranes loaded with the Cu(2+)-sensitive fluorophore Phen Green SK. Cu2+ transport was rapid, reaching completion within 0.5 s. The initial rate of uptake was dependent upon Cu2+ concentration and saturated at about 0.6 microm total Cu2+. Cu2+ uptake was maximal at a thylakoid lumen pH of 7.0. Cu2+ transport was inhibited by Zn2+ but was largely unaffected by Mn2+ and Cu+. Zn2+ inhibited Cu2+ transport to a maximum of 60%, indicating that there may be more than one transporter for copper in pea thylakoid membranes.  相似文献   

12.
Scott DA  Das U  Tang Y  Roy S 《Neuron》2011,70(3):441-454
Proteins vital to presynaptic function are synthesized in the neuronal perikarya and delivered into synapses via two modes of axonal transport. While membrane-anchoring proteins are conveyed in fast axonal transport via motor-driven vesicles, cytosolic proteins travel in slow axonal transport via mechanisms that are poorly understood. We found that in cultured axons, populations of cytosolic proteins tagged to photoactivatable GFP (PAGFP) move with a slow motor-dependent anterograde bias distinct from both vesicular trafficking and diffusion of untagged PAGFP. The overall bias is likely generated by an intricate particle kinetics involving transient assembly and short-range vectorial spurts. In vivo biochemical studies reveal that cytosolic proteins are organized into higher order structures within axon-enriched fractions that are largely segregated from vesicles. Data-driven biophysical modeling best predicts a scenario where soluble molecules dynamically assemble into mobile supramolecular structures. We propose a model where cytosolic proteins are transported by dynamically assembling into multiprotein complexes that are directly/indirectly conveyed by motors.  相似文献   

13.
The fluxes of carbohydrates across the plasma membranes of higher-plant cells are catalysed mainly by monosaccharide and disaccharide-H+ symporters. cDNAs encoding these different transporters have been cloned recently and the functions and properties of the encoded proteins have been studied extensively in heterologous expression systems. Several of the proteins have been identified biochemically in these expression systems and their location in plants has been shown immunohistochemically or with transgenic plants which were transformed with reporter genes, expressed under the control of the promoters of individual transporter genes. In this paper we summarize the current knowledge on the molecular biology and biochemistry of higher-plant sugar transport proteins.  相似文献   

14.
All cells need to transport proteins across hydrophobic membranes. Several mechanisms have evolved to facilitate this transport, including: (i) the universally-conserved Sec system, which transports proteins in an unfolded conformation and is thought to be the major translocation pathway in most organisms and (ii) the Tat system, which transports proteins that have already obtained some degree of tertiary structure. Here, we present the current understanding of these processes in the domain Archaea, and how they compare to the corresponding pathways in bacteria and eukaryotes.  相似文献   

15.
16.
Lipid distribution and transport across cellular membranes   总被引:1,自引:0,他引:1  
In eukaryotic cells, the membranes of different intracellular organelles have different lipid composition, and various biomembranes show an asymmetric distribution of lipid types across the membrane bilayer. Membrane lipid organization reflects a dynamic equilibrium of lipids moving across the bilayer in both directions. In this review, we summarize data supporting the role of specific membrane proteins in catalyzing transbilayer lipid movement, thereby controlling and regulating the distribution of lipids over the leaflets of biomembranes.  相似文献   

17.
Barley (Hordeum vulgare L.) plants were grown hydroponically with or without inorganic phosphate (Pi) in the medium. Leaves were analyzed for the intercellular and the intracellular distribution of Pi. Most of the leaf Pi was contained in mesophyll cells; Pi concentrations were low in the xylem sap, the apoplast and in the cells of the epidermis. The vacuolar concentration of Pi in mesophyll cells depended on Pi availability in the nutrient medium. After infiltrating the intercellular space of leaves with solutions containing Pi, Pi was taken up by the mesophyll at rates higher than 2.5 mol· (g fresh weight)–1 · h–1. Isolated mesophyll protoplasts did not possess a comparable capacity to take up Pi from the medium. Phosphate uptake by mesophyll protoplasts showed a biphasic dependence on Pi concentration. Uptake of Pi by Pi-deficient cells was faster than uptake by cells which had Pi stored in their vacuoles, although cytoplasmic Pi concentrations were comparable. Phosphate transport into isolated mesophyll vacuoles was dependent on their Pi content; it was stimulated by ATP. In contrast to the vacuolar Pi concentration, and despite different kinetic characteristics of the uptake systems for pi of the plasmalemma and the tonoplast, the cytoplasmic pi concentration was regulated in mesophyll cells within narrow limits under very different conditions of Pi availability in the nutrient medium, whereas vacuolar Pi concentrations varied within wide limits.Dedicated to Professor Wilhelm Simonis on the occasion of his 80th birthdayThis investigation was part of the research efforts of the Sonderforschungsbereich 176 of the Bayerische Julius-Maximilians-Universität Würzburg. We are grateful to Dr. Olaf Wolf for introducing us to the method for preparation of xylem sap of barley plants and to Mr. Yin Zuhua for fluorimetric experiments with the dye pyranine. T. Mimura is indebted to the Alexander-von-Humboldt-Stiftung for a postdoctoral research fellowship.  相似文献   

18.
Ubiquitin-assisted dissection of protein transport across membranes.   总被引:12,自引:4,他引:12       下载免费PDF全文
We describe a new way to analyze targeting in protein translocation. A fusion in which ubiquitin (Ub) is positioned between a signal sequence and a reporter domain is cleaved by Ub-specific proteases (UBPs) in the cytosol unless the fusion can 'escape' into a compartment such as the endoplasmic reticulum (ER). The critical step involves rapid folding of the newly formed Ub moiety, which precludes its translocation and makes possible its cleavage by UBPs. However, if a sufficiently long spacer is present between the signal sequence and Ub, then by the time the Ub polypeptide emerges from the ribosome, the latter is already docked at the transmembrane channel, allowing the translocation of both the Ub and reporter domains of the fusion into the ER. We show that Ub fusions can be used as in vivo probes for kinetic and stochastic aspects of targeting in protein translocation, for distinguishing directly between cotranslational and posttranslational translocation, and for comparing the strengths of different signal sequences. This method should also be applicable to non-ER translocation.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号