首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Endophytic bacteria of eggplant, cucumber and groundnut were isolated from different locations of Goa, India. Based on in vitro screening, 28 bacterial isolates which effectively inhibited Ralstonia solanacearum, a bacterial wilt pathogen of the eggplant were characterized and identified. More than 50% of these isolates were Pseudomonas fluorescens in which a vast degree of variability was found to exist when biochemical characteristics were compared. In greenhouse experiments, the plants treated with Pseudomonas isolates (EB9, EB67), Enterobacter isolates (EB44, EB89) and Bacillus isolates (EC4, EC13) reduced the wilt incidence by more than 70%. All the selected isolates reduced damping off by more than 50% and improved the growth of seedlings in the nursery stage. Most of the selected antagonists produced an antibiotic, DAPG, which inhibited R. solanacearum under in vitro conditions and might have been responsible for reduced wilt incidence under in vivo conditions. Also production of siderophores and IAA in the culture medium by the antagonists was recorded, which could be involved in biocontrol and growth promotion in crop plants. From our study we conclude that Pseudomonas is the major antagonistic endophytic bacteria from eggplants which have the potential to be used as a biocontrol agent as well as plant growth-promoting rhizobacteria. Large scale field evaluation and detailed knowledge on antagonistic mechanism could provide an effective biocontrol solution for bacterial wilt of solanaceous crops.  相似文献   

2.
A rapid tomato seedling assay was developed for determining the relative wilt capacity of isolates of Fusarium oxysporum f. sp. radicis-lyco-persici (FORL), a virulent strain of the tomato pathogen. The procedures for the assay require that 5-day-old cv. Bonny Best tomato seedlings be dipped in 30-day cell-free concentrated culture filtrates of FORL isolates, which were grown in Czapek-Dox medium with 2% Bacto-casamino acids (CDA). The seedlings in the culture filtrates were then incubated at 30 C under artificial light (1200 ftcandles) at 28% relative humidity in a wind stream of 100–150 m min. The relative pathogenicity of the isolates was determined by inoculating the roots of 18-day-old seedlings with cultures of FORL isolates. The pattern of cell-free filtrate wilt among the isolates was the same as that for the disease caused by cultures of the isolates. The seedlings treated with the filtrate from the most virulent isolate (Harrow HRS-182) wilted in 20 min. The filtrates from less virulent isolates took progressively longer. up to 90 min. to cause comparable wilt. Isolate HRS-082 was the first isolate also to induce disease in 10-day-old seedling assay. Both assays indicate three levels of wilt and disease capacities amongthe isolates examined. The utility of the assay in research and breeding for resistance is discussed.  相似文献   

3.
We studied (a) the extent adhesion of Penicillium oxalicum conidia to tomato roots after application of P. oxalicum conidial formulations with or without stickers, (b) the relationship between the extent of conidial adhesion to roots and biocontrol of the conidial formulations against tomato wilt, and (c) colonisation of roots by P. oxalicum. Adhesion of P. oxalicum conidia to tomato roots occurred within the first minute of contact between the root and the conidial formulation and the bonding strength was sufficiently strong to prevent conidial removal from the roots. In addition, some formulations with stickers that increased conidial adhesion to roots improved the biocontrol of tomato wilt, when compared to that of formulations without stickers. A “dried conidia without stickers” with 0.025% Nu-Film 17 had no effect on the biocontrol of tomato wilt, despite good adherence of the conidia to the roots. The numbers of P. oxalicum conidia that adhered to the roots was constant for 60 days after application of a “dried conidia without stickers” conidial formulation. The significance of these results (speed of adhesion, number of adhered conidia, and variability of conidial external surface) are discussed in relation to the biocontrol success of tomato wilt using different types of conidial formulations with and without stickers.  相似文献   

4.
Rhizoctonia solani is one of the most problematic soil-borne pathogenic fungi for several crop cultures worldwide. This study highlights the effectiveness of high-antagonistic Streptomyces rochei strain PTL2, isolated from root tissues of Panicum turgidum, in controlling the R. solani damping-off and growth promotion of tomato (cv. Marmande) seedlings. The isolate PTL2 was characterised for in vitro biocontrol and plant growth-promoting traits. It exhibited remarkable positive results in all trials, including production of hydrogen cyanide, siderophores, 1-aminocyclopropane-1-carboxylate deaminase and phytohormones, chitinolytic activity and inorganic phosphate solubilisation. PTL2 spores were formulated as wettable talcum powder, sodium alginate pellets and sodium alginate-clay pellets. Their abilities in the biocontrol of R. solani and plant growth promotion were investigated in autoclaved and non-autoclaved soils. Talcum powder and sodium alginate pellets significantly reduced the damping-off severity index compared to a positive control. The talcum powder exhibited the highest protective activity, reducing the disease incidence from 89.3% to 14.1%, whereas chemical seed treatment with Thiram® provided a disease incidence of 16.7%. Furthermore, the talc-based powder formulation resulted in greatest increases in the root length, shoot length and dry weight of seedlings. The interesting biocontrol potential and growth enhancement of tomato seedlings open up promising perspectives for the possible application of talcum powder formulation based on PTL2 spores in crop improvement.  相似文献   

5.
Three fluorescent pseudomonads isolated from rhizosphere/rhizoplane of crop plants showed in vitro antibiosis against seven fungal and two bacterial plant pathogens on iron-deficient KB medium. Seed bacterization of chick- pea (Cicer arientinum L.), egg plant (Solanum melongena L.), soybean (Glycine max Merr.) and tomato (Lycopersicon esculentum Mill.) with these organisms showed an increased seed germination, shoot height, root length, fresh weight, dry weight and yield. Seed bacterization with one of these strains, RB 8, reduced the number of chick-pea wilted plants in wilt-sick (Fusarium oxysporum f.sp. ciceris) soil. Addition of iron into the soil eliminated the disease suppression. The disease suppression and/or growth enhancement along with the positive root colonization by these organisms indicate their possible use as plant growth-promoting rhizobacteria (PGPR)/biocontrol agents against chick-pea wilt.  相似文献   

6.
The biocontrol potential of two arbuscular mycorrhizal fungi (AMF) (Funneliformis mosseae and Acaulospora laevis) and Trichoderma viride was assessed against tomato wilt caused by Fusarium oxysporum Schlecht. f. sp. lycopersici under pot condition. All the bioagent showed appreciable results in increasing plant growth. Combined inoculation of F. mosseae, A. laevis and T. viride showed maximum increases in plant height, shoot fresh weight, root dry weight, number of leaves and number of branches per plant while dual inoculation of F. mosseae and T. viride increased rest of the growth parameters like shoot dry weight, root fresh weight, root length and leaf area. AM colonisation and spore number was found highest in single inoculation of AMF, which decreases with the addition of T. viride. But, this decrease has no effect on biocontrol efficiency of bioagents. Photosynthesis, chlorophyll content and nutrient content were markedly decreased by pathogen infection. Bioagent application overcomes this effect and a remarkable increase in the plant phosphorus and nitrogen content was recorded. Among both the AMF, F. mosseae proved to be more effective strain compared to A. laevis for tomato. Maximum reduction in disease incidence and severity was recorded in combined inoculation of F. mosseae, A. laevis and T. viride. Whereas control plants without any bioagent showed maximum occurrence of disease. The findings of this study concludes that soil inoculation with F. mosseae along with root inoculation with conidial suspension of T. viride before transplantation offered better survival and resistance to tomato seedlings against Fusarium wilt.  相似文献   

7.
Tomato is a popular vegetable widely grown in the tropics, which is mainly attacked by fusarium wilt incited by Fusarium oxysporum f. sp. lycopersici (FOL). In the present scenario, an ecofriendly alternative strategy such as use of fungi from rhizosphere is being explored to combat the phytopathogen invasion. This study was carried out to evaluate the efficacy of Trichoderma asperellum MSST to promote the growth and yield parameters of tomato S-22, a susceptible variety. This study was also undertaken to manage fusarium wilt disease under in vitro and in vivo conditions. Significant increase in vegetative parameters like root length, shoot length, plant weight and chlorophyll content 60 days after sowing (DAS) was observed. There was reduction in the incidence of fusarium wilt in tomato up to 85%. Increase in the level of total phenol, peroxidase, polyphenoloxidase and phenylalanine ammonium lyase activity at 10th day of pathogen inoculation showed enhancement of plant defence mechanism by T. asperellum MSST against FOL. Overall study revealed that isolate MSST was proven to be potential biocontrol agent showing induced resistance against FOL.  相似文献   

8.
Experiments were performed under greenhouse conditions to control bacterial wilt of potato (potato brown rot), caused by Ralstonia solanacearum race 3 biovar 2, Phylotype II, sequevar 1 using various biocontrol strategies. These strategies involved the use of the bacterial biocontrol agent Stenotrophomonas maltophilia (PD4560), in clay or sandy soils, planted with cowpea, maize or tomato which was grown separately in different pots in the inoculated soils. After harvest, the soil derived from each cultivated crop was inoculated with a mixture of three virulent R. solanacearum strains (K3, K10 and K16) to achieve a final concentration of 5 × 10cfu/g dry soil and used in pots under greenhouse conditions to cultivate potato seed tubers. The highest survival of S. maltophilia in soil (more than 160 days) coincided with a remarkable suppressing effect on disease incidence caused by R. solanacearum that expressed by wilt severity (up to 100% reduction), area under disease progress curve (AUDPC) (up to 99% reduction) and counts of the pathogen in soil (up to 75% reduction), rhizosphere (up to 80% reduction) and plant tissue (up to 97% reduction) of potato plants. The amino acid analysis of root exudates of crops under investigation revealed high percentages of asparagines (15.5–21%), glutamine (16–20%) and sulphur‐containing methionine (7–9%) in both of the cowpea and maize, respectively. In tomato root exudates, high percentages of arginine (around 26%) and lysine (around 23%) were detected. Methionine is known to favour the growth of S. maltophilia suggesting that especially cowpea and maize are suitable for crop rotation with potato and will enhance the sustainability of the biocontrol agent S. maltophilia.  相似文献   

9.
【背景】利迪链霉菌(Streptomyces lydicus)对多种作物均有较好的促生效果,且对病原真菌具有广谱抑制作用,但该菌对细菌性青枯病的防控研究较少。【目的】探究利迪链霉菌M01能否促进番茄生长并抑制番茄青枯病,以及M01对番茄生长的影响是否通过影响根际细菌群落结构实现。【方法】采用温室盆栽试验和扩增子高通量测序技术研究M01对番茄生长、青枯病发病率及根际细菌群落组成的影响。【结果】施用利迪链霉菌M01的番茄植株鲜重、干重、株高、用土壤与作物分析开发(soil and plant analyzer develotrnent, SPAD)方法测量的叶绿素浓度、根系活力和植株P含量比对照分别提高了22.7%、12.5%、16.0%、28.1%、18.4%和17.9%,其中对株高、SPAD值和植株磷含量影响显著(P<0.05)。M01处理延缓了番茄青枯病的发病时间,接种9周后发病率比对照降低了41.8%。此外,M01对番茄根际细菌群落无显著影响(门水平群落组成,P=0.4;属水平群落组成,P=0.4)。【结论】利迪链霉菌M01可促进番茄植株生长并抑制番茄青枯病,利迪链霉菌M01对番茄生长的影响并非通过调控根际细菌群落实现。  相似文献   

10.
【目的】为探究盐生植物田菁及其根际功能微生物改良盐碱地的效果,本研究从黄河三角洲盐碱区田菁根际土壤中分离促生菌,并明确其耐盐促生效果。【方法】采用选择培养方法从田菁根际土壤中分离固氮菌、解磷菌以及解钾菌,并进行16S rRNA分子生物学鉴定。之后对菌株的耐盐及促生特性进行测定,筛选性状优良菌株进行玉米促生作用研究。【结果】共分离得到105株根际促生菌,其中N102兼具多种促生特性且耐盐性达15%。田菁种子发芽试验表明,N102可显著提高田菁发芽率(47%,P<0.05)、芽长(48.5%,P<0.05)和根长(60%,P<0.05);玉米盆栽试验结果表明,N102对盐胁迫下玉米的株高、根长、叶绿素含量、地上部干重以及根干重具有显著的促进作用。经系统发育分析,N102与Enterobacter soli ATCC BAA-2102 (NR117547)序列相似度为99.30%,鉴定属于Enterobacter属。【结论】菌株N102具有多种植物促生耐盐特性,具有开发成有效促进盐碱地作物生长的微生物肥的良好前景。  相似文献   

11.
Recent works suggest that the combination of several PGPRs could be more effective than individual strains as a horticultural product. LS213 is a product formed by a combination of two PGPRs, Bacillus subtilis strain GB03 (a growth-promoting agent), B. amyloliquefaciens strain IN937a (an inducer of systemic resistance) and chitosan. The aim of this work is to establish if the combination of three PGPR, B. licheniformis CECT 5106, Pseudomonas fluorescens CECT 5398 and Chryseobacterium balustinum CECT 5399 with LS213 would have a synergistic effect on growth promotion and biocontrol on tomato and pepper against Fusarium wilt and Rhizoctonia damping off. When individual rhizobacterium and the LS213 were put together, the biometric parameters were higher than with individual rhizobacterium both in tomato and pepper, revealing a synergistic effect on growth promotion, being the most effective combination that of B. licheniformis and LS213. When P. fluorescens CECT 5398 was applied alone, it gave good results, which could be due to the production of siderophores by this strain. Biocontrol results also indicate that those treatments that combined LS213 and each of the bacteria (Treatments: T7 and T8) gave significantly higher percentages of healthy plants for both tomato (T7: 65%) and pepper (T7: 75% and T8: 70%) than the LS213 alone (45% of healthy plants for tomato and 60% for pepper) three weeks after pathogen attack. The effects in pepper were more marked than in tomato. The best treatment in biocontrol was the combination of P. fluorescens and LS213. In summary, the combination of microorganisms gives better results probably due to the different mechanisms used.  相似文献   

12.
Aims: Fluorescent pseudomonads are widely used as bioinoculants for improving plant growth and controlling phytopathogenic fungi. Piriformospora indica (Pi), a symbiotic root endophyte, also has beneficial effects on a number of plants. The present study focuses on the improvement of growth yields of tomato plants and control of Fusarium wilt using inorganic carrier‐based formulations of two fluorescent pseudomonad strains (R62 and R81) and Pi. Methods and Results: The inorganic carrier‐based formulations of pseudomonad strains and Pi were tested for plant growth promotion of tomato plants under glass house and field conditions. In controlled glass house experiments, 8·8‐fold increase in dry root weight and 8·6‐fold increase in dry shoot weight were observed with talcum powder‐based consortium formulation of R81 and Pi. Field trial experiments ascertained the glfass house results with a considerable amount of increase in plant growth responses, and amongst all the treatments, R81 + Pi treatment performed consistently well in field conditions with an increase of 2·6‐, 3·1‐ and 3·9‐fold increase in dry root weight, shoot weight and fruit yield, respectively. The fluorescent pseudomonad R81 and Pi also acted as biocontrol agents, as their treatments could control the incidence of wilt disease caused by Fusarium oxysporum f.sp. lycopersici in tomato plants under glass house conditions. Conclusions: The culture broths of pseudomonads R62, R81 and Pi were successfully used for development of talcum‐ and vermiculite‐based bioinoculant formulations. In controlled glasshouse experiments, the talcum‐based bioinoculant formulations performed significantly better over vermiculite‐based formulations. In field experiments the talcum‐based consortium formulation of pseudomonad R81 and Pi was most effective. Significance and Impact of the Study: This study suggests that the formulations of pseudomonad strains (R62 and R81) and Pi can be used as bioinoculants for improving the productivity of tomato plants. The application of such formulations is a step forward towards sustainable agriculture.  相似文献   

13.
R. Utkhede 《BioControl》2006,51(3):393-400
The arbuscular mycorrhizal fungi Glomus monosporum, G. vesiculiferum, G. deserticola, G. intraradices, G. mosseae, and two unidentified species were tested to determine their effect on plant growth and fruit production of tomato (Lycopersicon esculentum Mill.) cv. Trust inoculated with Fusarium oxysporum f. sp. radicis-lycopersici (FORL) under near-commercial greenhouse conditions. Inoculation with G. monosporum and G. mosseae significantly increased fruit yield and fruit number of tomato plants grown hydroponically in sawdust. Plant height and plant dry weight increased significantly when inoculated with G. monosporum and G. mosseae. Further, plants inoculated with G. monosporum and G. mosseae showed significantly lower FORL root infection than the untreated control plants.  相似文献   

14.
The current study aimed at evaluating the possibility of native Bacillus pumilus species to control Fusarium wilt in tomato and examine its effect on plant growth. Biocontrol traits of B. pumilus strains, biofilm assay, root colonisation and in vivo studies under pot conditions were determined. Strain ToIrMA-KC806242 formed biofilm efficiently and could colonise and survive on tomato rhizosphere (3.1 × 104 CFU/g of root). The amount of auxin production was recorded 29.7 μg/ml at the 96th hour of incubation. Siderophore production was determined positive, while ToIrMA was not able to solubilise phosphate compounds or produce cyanide hydrogen. Statistical analysis of data revealed that the increase in root and shoot length was recorded 60 and 84%, respectively, over control. In addition, about 73% reduction in disease incidence was determined in vivo experiments. In conclusion, this study suggests B. pumilus ToIrMA strain as a possible biocontrol agent in the field experiments.  相似文献   

15.
Bacterial wilt (Ralstonia solanacearum) of tomato, Lycopersicon esculentum, causes a considerable amount of damage to tomato in Southern China. Biological control is one of the more promising approaches to reduce the disease incidence and yield losses caused by this disease. Based on antagonistic activity against R. solanacearum and three soil-borne fungal pathogens as well as biocontrol efficacy in the greenhouse, two bacterial strains Xa6 (Acinetobacter sp.) and Xy3 (Enterobacter sp.) were selected out of fourteen candidates as potential biocontrol agents. In order to find a suitable antagonist inoculation method, we compared the methods of root-dipping with soil-drenching in the aspects including rhizocompetence, biocontrol efficacy, and effect of promoting plant growth under greenhouse conditions. The drenching treatment resulted in a higher biocontrol efficacy and plant-yield increase, and this method was also easier to operate in the field on a large scale. Field trials were conducted for further evaluation of these two antagonistic strains. In both greenhouse and field experiments, the strain Xy3 had a better control effect against bacterial wilt than Xa6 did, while Xa6 caused higher biomass or yield increases. As recorded on the 75th day after treatment in two field experiments, biocontrol efficacy of Xy3 was about 65% in both field trials, and the yield increases caused by Xa6 were 32.4 and 40.7%, respectively, in the two trials. This is the first report of an Acinetobacter sp. strain used as a BCA against Ralstonia wilt of tomato.  相似文献   

16.
Sixteen endophytic actinobacteria isolated from roots of native plants were evaluated for their antagonistic potential against soil-borne phytopathogenic fungi. Among them, three strong antagonistic isolates were selected and characterised for in vitro plant-growth-promoting and biocontrol traits, including production of hydrogen cyanide, indole-3-acetic acid and siderophores, chitinase and β-1,3-glucanase activities, and inorganic phosphate solubilisation. In all trials, the strain Streptomyces sp. SNL2 revealed promising features. The selected actinobacteria were investigated for the biocontrol of Fusarium oxysporum f. sp. radicis lycopersici and for growth promotion of tomato (Solanum lycopersicum L. cv. Aïcha) seedlings in autoclaved and non-autoclaved soils. All seed-bacterisation treatments significantly reduced the root rot incidence compared to a positive control (with infested soil), and the isolate SNL2 exhibiting the highest protective activity. It reduced the disease incidence from 88.5% to 13.2%, whereas chemical seed treatment with Thiram® provided 14.6% disease incidence. Furthermore, isolate SNL2 resulted in significant increases in the dry weight, shoot and root length of seedlings. 16S rDNA sequence analysis showed that isolate SNL2 was related to Streptomyces asterosporus NRRL B-24328T (99.52% of similarity). Its interesting biocontrol potential and growth enhancement of tomato seedlings open up attractive uses of the strain SNL2 in crop improvement.  相似文献   

17.
Fusarium wilt is caused by F. oxysporum Schlecht end. Fr. f. sp. ciceris (FOC) is a devastating disease of chickpea in Algeria. In this study, antagonistic effects of B. subtilis MF352017 (Bs1) and Trichoderma harzianum KX523899 (T5) isolated from the rhizosphere of chickpea were investigated separately and in combination for their efficacy in controlling the disease in vivo. The efficacy of the antagonistic biocontrol agents on Fusarium wilt was evaluated based on vegetative and root growth parameters of chickpea. Seed bacterisation with B. subtilis MF352017 (Bs1) and seed treatment with T. harzianum (T5) significantly protected chickpea seedlings from FOC as compared to untreated plants. Plant protection was more pronounced in T. harzianum-treated plants than in bacterised plants. The application of both antagonists effectively suppressed 93.67% of the disease and also enhanced plant growth leading to increased plant height, root length, fresh and dry weights of shoot and root. The mixture of antagonists increased the effectiveness of B. subtilis MF352017 (Bs1) isolate on Fusarium wilt and improved chickpea growth.  相似文献   

18.
In the present study, the effects of the arbuscular mycorrhizal fungus (AMF) Glomus intraradices Schenck & Smith and four rhizobacteria (RB; 58/1 and D/2: Pseudomonas fluorescens biovar II; 17: P. putida; 21: Enterobacter cloacae), which are the important members of the rhizosphere microflora and biological control agents against plant diseases, were examined in the pathosystem of Fusarium oxysporum f. sp. lycopersici [(Sacc) Syd. et Hans] (FOL) and tomato with respect to morphological parameters (fresh and dry root weight) and phosphorous (P) concentration in the roots. Treatments with single and dual inoculation with G. intraradices and RB strains reduced disease severity by 8.6–58.6%. Individual bacteria inoculations were more effective than both the single AMF and dual (G. intraradices + RB) inoculations. In addition, the RB and G. intraradices enhanced dry root weight effectively. Significant increases in root weights were recorded particularly in the triple inoculations compared with single or dual inoculations. Compared with the non‐treated controls all biological control agents increased P‐content of treated roots of plants. Colonization with RB increased especially in triple (FOL + G. intraradices + RB) inoculations whereas colonization of G. intraradices was significantly decreased in treatment of FOL + G. intraradices compared with triple inoculations. The results suggest that suitable combinations of these biocontrol agents may ameliorate plant growth and health.  相似文献   

19.
An endophytic fungal isolate (Fs-K), identified as a Fusarium solani strain, was obtained from root tissues of tomato plants grown on a compost which suppressed soil and foliar pathogens. Strain Fs-K was able to colonize root tissues and subsequently protect plants against the root pathogen Fusarium oxysporum f.sp. radicis-lycopersici (FORL), and elicit induced systemic resistance against the tomato foliar pathogen Septoria lycopersici. Interestingly, attenuated expression of certain pathogenesis-related genes, i.e. PR5 and PR7, was detected in tomato roots inoculated with strain Fs-K compared with non-inoculated plants. The expression pattern of PR genes was either not affected or aberrant in leaves. A genetic approach, using mutant tomato plant lines, was used to determine the role of ethylene and jasmonic acid in the plant's response to infection by the soil-borne pathogen F. oxysporum f.sp. radicis-lycopersici (FORL), in the presence or absence of isolate Fs-K. Mutant tomato lines Never ripe (Nr) and epinastic (epi1), both impaired in ethylene-mediated plant responses, inoculated with FORL are not protected by isolate Fs-K, indicating that the ethylene signalling pathway is required for the mode of action used by the endophyte to confer resistance. On the contrary, def1 mutants, affected in jasmonate biosynthesis, show reduced susceptibility to FORL, in the presence Fs-K, which suggests that jasmonic acid is not essential for the mediation of biocontrol activity of isolate Fs-K.  相似文献   

20.
Rhizospheric and root-associated/endophytic (RAE) bacteria were isolated from tomato plants grown in three suppressive compost-based plant growth media derived from the olive mill, winery and Agaricus bisporus production agro-industries. Forty-four (35 rhizospheric and 9 RAE) out of 329 bacterial strains showed in vitro antagonistic activity against at least one of the soil-borne fungal pathogens, Fusarium oxysporum f.sp. radicis-lycopersici (FORL), F. oxysporum f.sp. raphani, Phytophthora cinnamomi, P. nicotianae and Rhizoctonia solani. The high percentage of total isolates showing antagonistic properties (13%) and their common chitinase and β-glucanase activities indicate that the cell wall constituents of yeasts and macrofungi that proliferate in these compost media may have become a substrate that favours the establishment of antagonistic bacteria to soil-borne fungal pathogens. The selected bacterial strains were further evaluated for their suppressiveness to tomato crown and root rot disease caused by FORL. A total of six rhizospheric isolates, related to known members of the genera Bacillus, Lysinibacillus, Enterobacter and Serratia and one RAE associated with Alcaligenes faecalis subsp. were selected, showing statistically significant decrease of plant disease incidence. Inhibitory effects of extracellular products of the most effective rhizospheric biocontrol agent, Enterobacter sp. AR1.22, but not of the RAE Alcaligenes sp. AE1.16 were observed on the growth pattern of FORL. Furthermore, application of cell-free culture extracts, produced by Enterobacter sp. AR1.22, to tomato roots led to plant protection against FORL, indicating a mode of biological control action through antibiosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号