首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The link between poor reproductive success and diet was investigated in yellow‐eyed penguins Megadyptes antipodes, by assessing diet at two localities separated by about 30 km: the north coast of Stewart Island where breeding success is low (0.38–0.67 chicks per pair in recent years), and Codfish Island where breeding success is higher (0.96–1.51 chicks per pair), and relating this to published data from South Island localities, where average breeding success was 1.1 chicks per pair. Diet composition, meal sizes and energetic content of meals and prey were determined from stomach contents, and stable isotope analyses of chick down, fledgling feathers and adult blood provided information on diet throughout the fledging period. The high proportion of stomachs that were empty or lacked diagnostic remains reduced sample size considerably, and variability between samples reduced the power to detect significant differences in meal size, proportions of empty stomachs and prey diversity of meals. Energetic content of Stewart Island meals was less than Codfish Island meals, and there was a non‐significant trend for smaller meal sizes and reduced prey diversity among Stewart Island samples. Both localities had lower prey diversity and smaller meals than South Island penguins. Blue cod Parapercis colias accounted for 99% of prey biomass in Stewart Island and 70% in Codfish Island stomach samples, where 27% of prey biomass was opalfish Hemerocoetes monopterygius. Isotopic mixing models carried out on larger sample sizes indicated that opalfish comprised a large proportion of the diet at both locations, with adults selectively provisioning chicks with opalfish while feeding mainly on blue cod themselves. We suggest the large blue cod consumed by Codfish Island and Stewart Island penguins, larger than those consumed by South Island penguins, is difficult to transfer to chicks by regurgitation. Oyster dredging around Stewart Island may have reduced the availability and abundance of alternative prey to Stewart Island penguins.  相似文献   

2.
Abstract

Blue penguins, Eudyptula minor, breeding on Penguin Island, Western Australia are considerably larger than other blue penguins in Australia. If genetic isolation is the cause, it may have implications for the conservation status of some blue penguin populations. We compared the sequences of two mitochondrial gene regions (cytochrome‐b and the control region) from Western Australian blue penguins with other populations of blue penguins from Australia and New Zealand. We found few differences between sequences from Western Australia, Phillip Island, Victoria and Otago, New Zealand, although all three differed considerably from other New Zealand blue penguins. Sequences for the control region from the Western Australian blue penguins and 30 more birds breeding at various Australasian sites provided further support for two major clades within Eudyptula; an Australian clade (including Otago) and a New Zealand clade.  相似文献   

3.
Abstract

A study of the nesting habits and breeding biology of blue penguin Eudyptula minor was undertaken over the 1995–96 and 1996–97 breeding seasons on Matiu‐Somes Island, Wellington, New Zealand. Male and female blue penguins tended to be faithful to both mates and nest sites, although there was insufficient evidence to detect any association between a bird's breeding success in 1995 and a subsequent change of mate or nest in 1996. Over the 1995 and 1996 seasons the recorded hatching success (0.51 ±0.11 and 0.63 ± 0.10 respectively), fledging success (0.81 ±0.12 and 0.85 ±0.10 respectively) and reproductive success (0.41 + 0.11 and 0.54 ± 0.11 respectively) were similar each season. There was no significant difference between the proportion of eggs laid, or eggs hatched and chicks fledged, between the two seasons. The mean number of chicks raised over the two seasons was 0.94 ± 0.05 per nest. Replacement clutches were laid by 11 per cent of failed breeders in each season, but only in 1996 were they successful in fledging chicks.

No significant difference was found between the breeding success of the Matiu‐Somes Island blue penguin colony recorded during this study and a previous study undertaken on the island 40 years ago.  相似文献   

4.
The rockhopper penguins Eudyptes chrysocome have recently been split into the northern E. moseleyi and the southern E. chrysocome rockhopper penguin. It is therefore crucial to have a comprehensive understanding of the biology of each species in order to develop appropriate conservation measures. We investigated the breeding biology of the southern rockhopper on New Island, in the western part of the Falklands Islands, by following the breeding attempt of 160 pairs during the 2006/2007 season and examining the effect of lay time and colony habitat on breeding success. Specifically, we compared survival and growth parameters between A- and B-eggs and chicks from non-manipulated and artificially manipulated nests to investigate why southern rockhopper penguins in the Falkland Islands are more able to fledge an A-egg (first laid) than conspecifics elsewhere. Breeding was highly synchronous, with no significant difference in the breeding success between early and late breeders or between pairs breeding in different habitats. We demonstrate for the first time that the A-egg produced by the southern rockhopper penguin has, when alone, the same theoretical intrinsic potential to lead to a fledged chick as the B-egg. In contrast, the hatching success and survival of the B-chick was similar when alone or in a two-egg clutch.  相似文献   

5.
Abstract

Daily nest checks were used to determine the yellow-eyed penguin’s pattern of nest relief during incubation, and to examine the inter-pair variability in incubation period. Nests at two breeding areas on the Otago Peninsula were visited between September and December in 1985 and 1986. At each visit, status of the nest and the identity and behaviour of the sitting bird was recorded. Incubation is shared between the sexes, with males tending to sit longer than females. Incubation spells ranged from 1–7 days with a mode of 1–2 days. Records of lone incubation following mate death show the yelloweyed penguin to be capable of 15 day unrelieved spells at the nest The incubation period of the yellow-eyed penguin ranges from 39–51 days and is the most variable of all penguins. This variability is because of the failure of some individuals to adequately cover the clutch until up to 5 days after the laying of the second egg.  相似文献   

6.
The monoicous peatmoss Sphagnum subnitens has a tripartite distribution that includes disjunct population systems in Europe (including the Azores), northwestern North America and New Zealand. Regional genetic diversity was highest in European S. subnitens but in northwestern North America, a single microsatellite‐based multilocus haploid genotype was detected across 16 sites ranging from Coos County, Oregon, to Kavalga Island in the Western Aleutians (a distance of some 4115 km). Two multilocus haploid genotypes were detected across 14 sites on South Island, New Zealand. The microsatellite‐based regional genetic diversity detected in New Zealand and North American S. subnitens is the lowest reported for any Sphagnum. The low genetic diversity detected in both of these regions most likely resulted from a founder event associated with vegetative propagation and complete selfing, with one founding haploid plant in northwest North America and two in New Zealand. Thus, one plant appears to have contributed 100% of the gene pool for the population systems of S. subnitens occurring in northwest North America, and this is arguably the most genetically uniform group of plants having a widespread distribution yet detected. Although having a distribution spanning 12.5° of latitude and 56° of longitude, there was no evidence of any genetic diversification in S. subnitens in northwest North America. No genetic structure was detected among the three regions, and it appears that European plants of S. subnitens provided the source for New Zealand and northwest North American populations.  相似文献   

7.
Aim Determine the phylogeny and dispersal patterns of the cicada genus Kikihia in New Zealand and the origin of the Norfolk, Kermadec, and Chatham Island cicadas. Location New Zealand, Norfolk Island, Kermadec Islands and Chatham Island. Methods DNA sequences from 16 species and four soon to be described species of cicadas from New Zealand and Norfolk Island (Australia) were examined. A total of 1401 base pairs were analysed from whole genome extraction of three mitochondrial genes (cytochrome oxidase subunit II, ATPase6 and ATPase8). These DNA sequences were aligned and analysed using standard likelihood approaches to phylogenetic analysis. Dates of divergences between clades were determined using a molecular clock based on Bayesian statistics. Results Most species in the genus Kikihia diverged between 3 and 5 million years ago (Ma) coincident with a period of rapid mountain building in New Zealand. Cicada species on the Kermadec and Norfolk Islands invaded recently from New Zealand and are closely related to the New Zealand North Island species Kikihia cutora. Main conclusions Speciation in the genus Kikihia was likely due in large part to the appearance of new habitats associated with the rise of the Southern Alps, starting c. 5 Ma. Dispersal of Kikihia species within mainland New Zealand probably occurred gradually rather than through long‐distance jumps. However, invasion of Norfolk, the Kermadecs and Chatham Islands had to have occurred through long‐distance dispersal.  相似文献   

8.
We examined the comparative phylogeography of all species within the endemic New Zealand skink genus Cyclodina to gain insight into the influence of historical processes on the biogeography of the North Island fauna. Until 1–2 kya, six Cyclodina species occurred sympatrically across the North Island of New Zealand. However, most species have undergone dramatic distributional declines subsequent to the introduction of mammals and the arrival of humans. We compare the phylogeographic patterns evident in Cyclodina species in three biogeographic categories: widespread species (Cyclodina aenea, Cyclodina ornata), North Island disjunct relics (Cyclodina macgregori, Cyclodina whitakeri), and northeastern island relics (Cyclodina alani, Cyclodina oliveri, Cyclodina townsi). Mitochondrial DNA (ND2) sequence data was obtained from across the entire range of each Cyclodina species. We used Neighbour‐joining, maximum likelihood and Bayesian methods to examine the phylogeographic patterns present in each species. Phylogeographic patterns varied among species in different biogeographic categories. Substantial phylogeographic structure was evident in the two widespread species (C. aenea, C. ornata), with Pliocene and Pleistocene divergences between clades evident. Divergences among island groups in the three northeastern island relic species (C. alani, C. oliveri, C. townsi) occurred during the late Pliocene–Pleistocene. By contrast, relatively shallow structure, indicative of late Pleistocene divergences, was present in the two North Island disjunct species (C. macgregori, C. whitakeri). The results strongly suggest that the Poor Knights Islands population of C. ornata represents a new species. We suggest that the contrasting phylogeographic patterns exhibited by Cyclodina species in different biogeographic categories might be related to body size, ecology, and habitat preferences. © 2008 The Linnean Society of London, Biological Journal of the Linnean Society, 2008, 95 , 388–408.  相似文献   

9.
Nuclear ITS sequences and ISSR profiles provide evidence that Raoulia rubra is endemic to the Tararua Range in the southern part of the North Island of New Zealand. Populations in the South Island previously ascribed to R. rubra are better ascribed to R. eximia. Our findings suggest that glaciation of the central mountains of the South Island during the last ice age have had a major impact on the evolution of the South Island cushion Raoulia species in New Zealand. However, simple hypotheses accounting for the effect of Pleistocene climate change are insufficient to explain patterns of endemism in the group.  相似文献   

10.
Egg predation is a major cause of reproductive failure among birds, and can compromise the viability of affected populations. Some egg predators aggregate near colonially breeding birds to exploit the seasonal increase of prey resources. We investigated spatial and temporal variations in the abundance of an egg predator (little raven Corvus mellori; Corvidae) to identify whether ravens aggregate spatially or temporally to coincide with any of three potential prey species: burrow‐nesting little penguin (Eudyptula minor; Spheniscidae), short‐tailed shearwater (Ardenna tenuirostris; Procellariidae), and surface‐nesting silver gull (Chroicocephalus novaehollandiae; Laridae). We derived spatially explicit density estimates of little ravens using distance sampling along line transects throughout a calendar year, which encompassed little penguin, short‐tailed shearwater and silver gull breeding and non‐breeding seasons. High raven abundance coincided temporally with penguin and gull egg laying periods but not with that of shearwaters. The spatial distribution of raven density corresponded with the little penguin colony but not with shearwater or gull colonies. Thus, the presence of little penguin eggs in burrows correlated strongly with little raven activity, and this implies that little ravens may have learnt to exploit the plentiful subsurface food resource of little penguin eggs. Corvid management may be required to maintain the viability of this socially and economically important penguin colony.  相似文献   

11.
Focussed searches were made across New Zealand between 2013 and 2016, for endemic aphids from the Schizaphis (Rhopalosiphina) genus, which is currently represented by two putative, undescribed species from the endemic host plants Aciphylla and Dracophyllum. Cytochrome c oxidase I (COI) gene sequences (48 in total) from the Schizaphis were analysed together with those from a broader collection of New Zealand endemic aphids that has been assembled since the year 2000. The bulk of the Schizaphis belonged to two clusters corresponding to the host plant genera. Two aphids from central North Island Dracophyllum represented a much diverged lineage without clear affiliations to other New Zealand Schizaphis. Inter-population variation in the New Zealand Schizaphis was high compared with that seen in international studies of Aphidinae and among populations of other endemic New Zealand Aphidina. Within Schizaphis from Dracophyllum, geography played an apparent role in genetic structuring, with populations from Taranaki (North Island) and especially Mt Lyford (South Island) being divergent from those on the South Island main divide. Two distinct lineages of Schizaphis, which co-occurred at some sites, were found on Aciphylla. Our sequence comparisons, including GMYC analyses, indicated up to five New Zealand Schizaphis lineages, and two newly discovered endemic Aphis species from the host plants Clematis and Hebe.  相似文献   

12.
Cephaloziella tahora, a new species of Cephaloziella is described and illustrated from a lowland forest habitat in eastern Taranaki in the North Island of New Zealand. It has similarities to six other New Zealand species of Cephaloziella, and appears closest in New Zealand to Cephaloziella aenigmatica R.M.Schust. It is defined by a unique combination of features and distinguished from C. aenigmatica and other New Zealand species by having entire, distant leaves that reach the dorsal stem mid-line, and have large conspicuous hemispherical and hemi-ellipsoidal papillae, underleaves on gemmiparous and gynoecial shoots, and by its dioecy. The addition brings the number of New Zealand species of Cephaloziella to 18, 12 of which are endemic to New Zealand.  相似文献   

13.
Aim Increasing our understanding of the effects of the Last Glacial Maximum (LGM) and determining the location of refugia requires studies on widely distributed species with dense sampling of populations. We have reconstructed the biogeographic history of Clitarchus hookeri (White), a widespread species of New Zealand stick insect that exhibits geographic parthenogenesis, using phylogeographic analysis and ecological niche modelling. Location New Zealand. Methods We used DNA sequence data from the mitochondrial cytochrome c oxidase subunit I gene to reconstruct phylogenetic relationships among haplotypes from C. hookeri and two undescribed Clitarchus species. We also used distribution data from our own field surveys and museum records to reconstruct the geographic distribution of C. hookeri during the present and the LGM, using ecological niche modelling. Results The ecological niche models showed that the geographic distribution of C. hookeri has expanded dramatically since the LGM. Our model predicted large areas of suitable LGM habitat in upper North Island, and small patches along the east coast of South Island. The phylogeographic analysis shows that populations in the northern half of North Island contain much higher levels of genetic variation than those from southern North Island and South Island, and is congruent with the ecological niche model. The distribution of bisexual populations is also non-random, with males completely absent from South Island and very rare in southern North Island. Main conclusions During the LGM C. hookeri was most likely restricted to several refugia in upper North Island and one or more smaller refugia along the east coast of South Island. The unisexual populations predominate in post-glacial landscapes and are clearly favoured in the recolonization of such areas. Our study exemplifies the utility of integrating ecological niche modelling and phylogeographic analysis.  相似文献   

14.
New technologies enable tracking of the route, duration, and destination of previously unassessed long-distance movements. Fledgling Australasian Gannets Morus serrator from breeding populations in New Zealand had been reported to fly across the Tasman Sea to Australia, with this historic knowledge derived from the recovery of banded carcasses and from observations of initial flight direction. We deployed Argos satellite devices on ten M. serrator fledglings at Cape Kidnappers Gannetry, North Island, New Zealand, across 2 years. Birds that were tracked leaving the colony initially appeared to have landed on the sea. A male bird and two female birds were tracked moving along the east coast to the south tip of New Zealand. The two females then crossed the Tasman Sea to eastern Australian coastal waters in 4 and 5 days, respectively. We suggest that, contrary to historic reports, the route via Stewart Island constitutes a realized migration path for fledglings from Cape Kidnappers, which might minimize the distance traveled across the open sea to southeastern Australia or Tasmania. Our results further imply that initial direction of flight needs not be indicative of the subsequent migration route taken by M. serrator. This highlights the importance of direct tracking technology for adequate assessment of dispersal and migration in seabirds and other highly mobile species.  相似文献   

15.
Abstract

The distribution and movements of Buller's albatross in Australasian seas are analysed using results of shipborne surveys (13 238 10‐min counts), counts from trawlers, banding data, recoveries on beaches and fishing vessels, and records from the literature. Patterns of marine distribution are documented by monthly accounts and maps. During the breeding season, highest abundances are recorded over shelves and slopes off southern New Zealand (The Snares shelf to 41–43°S off the South Island, D. b. bulleri), around the Chatham Islands and over oceanic subtropical waters east of New Zealand (probably D. b. platei), with marked seasonal variations observed off southern New Zealand. Both subspecies disperse mostly outside Australasian waters during the non‐breeding season. Birds banded on The Snares were recovered off south‐eastern New Zealand (Stewart Island to Cook Strait) and in the eastern tropical Pacific. Immatures accounted for only 0.25% of birds censused during the ship‐borne surveys; they are recorded around the New Zealand mainland in August‐October and February‐May, off south‐eastern Australia and in the Tasman Sea in November‐December, February, and June‐July. Around New Zealand, males predominate among birds recovered along the eastern seaboard, whereas the sex ratio in south‐western waters tends to vary according to water depth and season. Distribution patterns and movements in New Zealand and Australian seas are discussed in relation to breeding events and breeding status.  相似文献   

16.
Stenoperla helsoni is an endemic New Zealand stonefly characterised by distinctive sexually dimorphic wing loss. Previous distribution records indicated that this species was restricted to the South Island's Southern Alps, although our recent collections of wing-reduced specimens from a site in the Tararua Ranges suggest that this species may extend into the lower North Island. We amplified the mitochondrial COI gene to confirm the identity of North Island specimens, and to assess phylogeographic structuring within the species and genus. North Island specimens were confirmed as S. helsoni, indicating that this species has a much wider geographic range than previously thought. This broad distribution, combined with low levels of intraspecific divergence, suggests that female S. helsoni may be strong fliers, despite males being flightless. Distinct North Island and South Island populations were identified, with a 1.5% divergence between the two populations.  相似文献   

17.
Abstract The amphibian fauna of New Zealand consists of three native species (Leiopelma spp.), and three Litoria species introduced from Australia in the last 140 years. We conducted a molecular phylogeographical study that aimed to identify the Australian origins of two species, Litoria aurea and Litoria raniformis. We used partial sequences of the mitochondrial cytochrome oxidase I (cox1) gene from 59 specimens sampled from across the range of both species to identify the probable source populations for the New Zealand introductions, and to describe the current genetic diversity among New Zealand Litoria populations. Our genetic data suggest that L. aurea was introduced into the North Island of New Zealand from two regions in Australia, once from the northern part of coastal New South Wales and once from the southern part of coastal New South Wales. Our data indicate that L. raniformis introductions originated from the Melbourne region of southern Victoria and once established in the South Island of New Zealand, the species subsequently spread throughout both islands. In addition, we found a distinct haplotype in L. raniformis from Tasmania that strongly suggests, contrary to earlier reports, that this species was not introduced into New Zealand from Tasmania. Finally, we identified two very distinctive mitochondrial lineages of L. raniformis within the mainland Australia distribution, which may be previously unrecognized species.  相似文献   

18.
The New Zealand distributions of three species of Boeckella (Copepoda, Calanoida), B. triarticulata, B. dilatata and B. hamata are mapped. B. triarticulata is primarily a pond dweller but is also found in reservoirs and shallow lakes. B. dilatata is mainly found in the deeper glacial lakes and ponds in the central region of the South Island and B. hamata has a more widespread distribution in lakes and ponds in the South Island and lower half of the North Island. Differences in temperature optima, food requirements and dispersal ability among the three Boeckella species are related to vicariant events to explain their distribution in New Zealand.  相似文献   

19.
Courtship behaviour of the giant devil ray Mobula mobular is described from northern New Zealand, temperate southwest Pacific Ocean, for the first time. A mating train consisting of a full-term pregnant female and up to four males was observed over a period of 147 minutes. Their behaviour was similar to courtship behaviour observed in other large mobulids. Biting of the female was not observed, possibly due to the female’s use of the surface to prevent males positioning themselves above her. However, the lead male pressed the female’s abdomen and underside each time the female reached or stopped at the surface. The occurrence of pregnant females and mating behaviour off northern North Island confirms breeding occurs in New Zealand waters.  相似文献   

20.
Africa is home today to only a single breeding species of penguin, Spheniscus demersus (black‐footed penguin), which is endangered with extinction. Spheniscus demersus has been the only breeding species of penguin to share African coastlines with humans over the last 400 000 years. Interestingly, African penguin diversity was substantially higher before the evolution of archaic humans. The fossil record indicates that a diverse assemblage of penguin species inhabited the southern African coasts for much of the Neogene. Previous excavations have identified four distinct species in Early Pliocene coastal marine deposits. Here we extend this pattern of high diversity and report the oldest record of penguins from Africa. Seventeen penguin specimens were identified from the Saldanha Steel locality, revealing the presence of at least four distinct species in South Africa during the Miocene. The largest of these species reached the size of the extant Aptenodytes patagonicus (king penguin), whereas the smallest was approximately the size of the smallest extant penguin Eudyptula minor (little blue penguin). Recovery of Miocene penguin remains is in accordance with earlier predictions of multiple pre‐Pliocene colonizations of Africa and supports a higher level of ecological diversity amongst African penguins in the past. © 2013 The Linnean Society of London  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号