首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The control of generalist predator populations is increasingly adopted as a management tool to combat declines in ground‐nesting bird populations. However, compensatory predation by uncontrolled species frequently occurs, so determining the relative impacts of different predatory species, and hence the relative benefits of their control, can be difficult. Islands, with their reduced faunas, provide natural experimental units for investigating specific predator–prey interactions in detail. We studied Northern Lapwing Vanellus vanellus breeding success on an island where feral Ferrets Mustela furo and Hooded Crows Corvus cornix were subjected to trial control regimes over 2 years. In both years, Lapwing hatching success was >80%, with neither Ferret nor Crow control selected as important predictors. Fledging rates in both years were 0.7 young per pair, despite highly effective predator removal, although Crow control potentially resulted in compensatory predation by Common Ravens C. corax. Neither mustelid nor corvid control produced significant immediate benefits for Lapwings. This suggests that mesopredator release of mustelids in mainland situations is unlikely to be a consistent threat to Lapwing, and provides further evidence that declines in this species are unlikely to be tackled successfully through predator management alone.  相似文献   

2.
The introduction of mammalian predators to oceanic islands has led to dramatic declines in the abundance of many native species. Conservation management of these species often relies on low‐cost predator control techniques that can be implemented over large scales. Assessing the effectiveness of such management techniques is difficult, but using population viability analyses (PVA), which identify the population growth rate (λ) and extinction risk of threatened species, may offer a solution. PVA provide the opportunity to compare the relative effectiveness of various management options and can identify knowledge gaps to prioritize research efforts. We used PVA to assess the population viability of whio (Hymenolaimus malacorhynchos), a rare riverine duck endemic to New Zealand. Current populations are threatened by introduced mammalian predators and are rapidly declining in both distribution and abundance. Whio conservation management is dominated by large‐scale, low‐intensity predator control, targeting introduced stoats (Mustela erminea). There is evidence that such control increases whio productivity but it is unknown if this increase is sufficient for long‐term population persistence. We undertook a stochastic PVA to assess the viability of whio populations under different management scenarios using data obtained from a 6‐year study of whio demographic responses to predator control. Populations with no predator control and low productivity will rapidly decline to extinction. Increasing productivity through predator control increased population viability but populations still showed a declining trajectory. A perturbation analysis showed that the growth rate of whio populations was largely driven by adult survival. Therefore, future research should target obtaining more robust estimates of adult survival, particularly how it is affected by predator control. Overall, our analysis indicated that large‐scale predator control increases the short‐term viability of whio populations but is insufficient for long‐term population persistence.  相似文献   

3.
While there have been significant conservation successes through restoration of island biodiversity following the eradication of invasive predators, a major challenge remains to reintroduce native species within larger mainland systems that support suites of introduced mammalian predators. Strategies to enhance establishment and persistence of reintroduced populations include pre‐release management to reduce post‐release dispersal, and habitat restoration such as predator control at release sites. Evaluation of such strategies critically requires strategic and intensive post‐release monitoring to identify drivers of success or the specific causes of failures. The buff weka (Gallirallus australis hectori), a flightless rail, was reintroduced to an unfenced mainland island on New Zealand's South. Past reintroductions on the mainland have all failed, but lack of post‐release monitoring has meant the exact cause and timing of failures is unknown. We investigate the ability of buff weka to establish a mainland population in conjunction with high intensity predator control. Nineteen buff weka (15 males, 4 females) were transferred from predator‐free islands in Lake Wakatipu, South Island, to Motatapu Station and held in a pre‐release enclosure for 6 weeks. Using a combination of very high frequency (VHF) and Global Positioning System (GPS) telemetry, released birds were monitored every 2 days for 4 months post‐release. Following release, no buff weka dispersed off Motatapu Station. Survival, however, was low and by the end of the study, 12 (63%) buff weka had been predated by introduced mustelids, ferrets (Mustela furo) and stoats (Mustela erminea). The lack of dispersal by buff weka suggests the presence of favourable resources on Motatapu Station. However, the low survival rate indicates that the predator‐trapping network was insufficient to suppress predator numbers to a level low enough for buff weka population persistence.  相似文献   

4.
The influence of host plant traits of five potato cultivars: Savalan, Agria, Morene, Kondor and Diamant on the population density of two-spotted spider mite (TSM) Tetranychus urticae Koch, and ovipositional preference, predation rate and life history parameters of its predator Orius minutus L. were studied under laboratory conditions (23 ± 1°C, 50 ± 5% RH and 14L:10D). The density of TSM adults on Savalan, Agria and Morene was significantly lower than on Kondor and Diamant. In both no-choice and free-choice experiments, the females of the predator laid more eggs on TSM-infested leaves of Savalan (6 eggs/leaf and 24 eggs/plant) than on Agria, Morene, Kondor and Diamant. In predation rate experiments, the females of O. minutus consumed more TSM on the infested leaves of Savalan (32 TSM/predator during 48 hours) than on Agria, Morene, Kondor and Diamant. In performance experiments, the predator nymphs developed faster when reared on TSM-infested leaves of Savalan (16 days) than on Kondor and Diamant. Moreover, the survival rate, from egg to adult, of O. minutus on TSM-infested leaves of Savalan (52.8%) was better than on Kondor and Diamant. The fecundity of O. minutus reared on TSM-infested leaves of Savalan (11.7 eggs/female) was significantly higher than on Agria, Morene, Kondor and Diamant. The intrinsic rate of natural increase and the population growth rate of O. minutus were highest when reared on TSM-infested leaves of Savalan (rm = 0.089 day?1 and λ = 1.094 day?1). These results suggest that using Savalan cultivar integrated with O. minutus could result in improved efficacy of this predator and lead to effective and more sustainable management of T. urticae in potato fields.  相似文献   

5.
SUMMARY.
  • 1 The direct and indirect effects of predation by larval fish (Rhamdia sapo) on zooplankton in rearing tanks are analysed. Rhamdia sapo larvae showed an unusual species-selectivity for Acanthocyclops robustus, the main invertebrate predator present.
  • 2 Acanthocyclops robustus populations were markedly reduced, presumably as a direct consequence of species-selective removal. Other zooplanktonic prey were not significantly affected by R. sapo predation.
  • 3 Rotifers increased in tanks with fish, but this was not related to herbivorous crustacean variables (biomass, mean weight, abundance and species composition). On the contrary, rotifer biomass was negatively correlated with some A. robustus variables (biomass and mean weight of adults + copepodites and nauplii biomass). Thus, the rotifer increase appears to be an indirect effect of predation on A. robustus by R. sapo larvae.
  相似文献   

6.
The effectiveness of the predatory mite, Phytoseiulus persimilis Athias-Henriot (Acari: Phytoseidae), as a suppressive agent of the twospotted spider mite, Tetranychus urticae Koch (Acari: Tetranychidae), was evaluated on greenhouse ivy geraniums at predator:prey release ratios of 1:60, 1:20, and 1:4. Releases at each predator:prey ratio were made at moderate and high T. urticae densities to determine if initial pest population size influenced the suppressive ability of the predator. At ratios of 1:4 and 1:20, P. persimilis significantly reduced T. urticae populations 1 week after release and kept them at low levels thereafter. Plant damage also was significantly reduced at these densities. After 4 weeks, the P. persimilis that were released at a ratio of 1:4 consistently reduced T. urticae populations from densities as high as 30 T. urticae per leaf to fewer than 0.6 per leaf. We found no interaction between release ratio and T. urticae density, indicating that predator effectiveness remains constant, at least within the range of T. urticae densities used. Our work demonstrates the potential of P. persimilis to provide effective control of T. urticae on a greenhouse-grown floricultural crop at a moderately low predator:prey ratio (1:20) and over a range of initial pest densities. However, we recommend that P. persimilis be released at a ratio of 1:4 for greatest reliability and successful control of T. urticae on ivy geraniums.  相似文献   

7.
8.
The traditional way to deal with hunting interests is often focused on predator control. This approach requires a detailed understanding of predator responses to game management. Control methods can be non-selective and, consequently, can potentially have a negative impact on non-target predator species, affecting carnivore guild. In order to assess the potential risks associated with non-selective predator control in the presence of intraguild competition, the classical Lotka?CVolterra competition model was used, but with two additional factors: a linear factor for capture mortality (mortality caused by predator control) and a factor for vacated niche occupancy associated with immigration. Simulation in a scenario with three species revealed that one of them, the red fox Vulpes vulpes, which presented the highest intrinsic growth rate, can show population increases even under moderate control, whereas the population of European badger Meles meles, with a lower intrinsic growth rate, was reduced and, in some cases, may even become extinct. Lastly, the stone marten Martes foina presented a differential response, depending on the removal intensity and strategy employed. This behaviour is compatible with the results observed in a Mediterranean environment subjected to two types of game management: non-selective predator control (culling) and no control. In areas with non-selective control and moderate predator removal, the red fox population remained stable, while the stone marten and the European badger populations reduced markedly or disappeared.  相似文献   

9.
İsmail Kasap 《BioControl》2011,56(3):327-332
This study examined the efficacy of the predatory mite Typhlodromus athiasae Porath and Swirski (Acari: Phytoseiidae) as a biological control agent of the citrus red mite Panonychus citri (McGregor) (Acari: Tetranychidae) on seedlings of Washington and Valencia citrus cultivars at 1:10, 1:20 and 1:40 predator:prey release ratios under greenhouse conditions. At predator:prey ratios of 1:10, significant reductions on P. citri populations were observed one week after release of T. athiasae, and populations remained at low levels thereafter. The highest mean numbers of P. citri were found in the third week on the Washington cultivar and in the fourth week on Valencia, in a control group with no predators. This study demonstrates the potential of T. athiasae to effectively control P. citri on Washington and Valencia cultivars under greenhouse conditions at predator:prey ratios of 1:10. However, T. athiasae was unable to control the citrus red mite populations when the predator:prey ratio was reduced to 1:40. We therefore recommend a release ratio of 1:10 for effective control of P. citri in greenhouses on seedlings of Washington and Valencia citrus.  相似文献   

10.
Kennedy Roche 《Hydrobiologia》1990,198(1):163-183
Spatial overlap between Acanthocyclops robustus, with special emphasis on the adult females, and other zooplankton in one basin of a shallow (approximate depth of 2 m) eutrophic lake was studied.Horizontal distribution patterns were analysed on two dates. On both dates, most taxa examined showed large-scale patchiness between the three sections of the lake basin (approximate length of 1.2 km). Similarly, most taxa, with the important exception of the adult female Acanthocyclops robustus, were significantly patchily distributed on the small-scale (i.e. within sections). However, the intensity of such patchiness was, in general, relatively low. There was no consistent evidence of aggregation by the adult females or copepodites and adult males (the latter two were considered together) of the predator in such small-scale prey patches.Diurnal vertical distribution patterns were studied on two 24–25 hour periods. The first period was characterized by calm weather. Adult female, and perhaps male, Acanthocyclops robustus, Chydorus sphaericus, Bosmina Coregoni, Keratella cochlearis, Asplanchna species, Polyarthra vulgaris and Pompholyx sulcata seemed to show diurnal migration patterns, while seven other taxa showed consistent preferences for particular depths. Only copepod nauplii and Daphnia species were approximately evenly distributed. Negative correlations were found between the vertical distributions of the adult female predator and seven of the seventeen potential prey recognized.The first half of the second period was characterised by strong winds which abated during the second half. Most zooplankton taxa showed inconsistent heterogeneous vertical distributions or were homogeneously distributed with vertical heterogeneity developing towards the end of the period. Only Bosmina longirostris and Daphnia species seemed to show vertical migration patterns. Thus, no consistent vertical segregation between predator and prey was detected.  相似文献   

11.
Abstract Introduced vertebrate predators are one of the most important threats to endemic species throughout a range of ecosystems, in particular on islands in biodiversity hot spots. Consequently, the reduction of predator numbers is considered a key conservation action in the management of many native vertebrates vulnerable to predators. It is now established that control attempts may affect non‐target species through trophic interactions, but little is known concerning their consequences on competitive relationships. We study a mathematical model mimicking the effects of controlling introduced species in the presence of their competitors. We used two competing rodents to illustrate our study: black rats, Rattus rattus, and mice, Mus musculus. Analyses of the model show that control of only one introduced species logically results in the dramatic increase of the overlooked competitor. We present empirical data that confirm our theoretical predictions. Less intuitively, this process, which we term ‘the competitor release effect’, may also occur when both introduced competitors are simultaneously controlled. In our setting, controlling both predators can promote their coexistence. This occurs as soon as the inferior competitor benefits from the differential effect of the simultaneous control of both competitors, that is, when the indirect positive effect of control (the removal of their competitors) exceeds its direct negative effect (their own removal). Both control levels and target specificity have a direct influence on the extent of this process: counter‐intuitively, the stronger and more specific the control, the greater the effect. The theoretical validation of the competitor release effect has important implications in conservation, especially for control management.  相似文献   

12.
Interactions such as competition, intraguild predation (IGP), and cannibalism affect the development and coexistence of predator populations and can have significance for biological control of commonly exploited pest organisms. We studied the consequences of combined versus single release of two predaceous mite species (Phytoseiidae), with differing degrees of diet specialization, on their population dynamics and the suppression of the carmine spider mite, Tetranychus cinnabarinus Boisduval (Tetranychidae), on greenhouse-grown gerbera. Population growth of the specialist predator Phytoseiulus persimilis Athias-Henriot was greater and population decline steeper when released in combination with the generalist Neoseiulus californicus McGregor than when released alone. In contrast, the N. californicus population grew and declined more gradually when released in combination with P. persimilis, compared to the single species release. The differential impact on each other's population dynamics can be primarily attributed to contrasting properties in competition, IGP, and cannibalism. At the same overall predator density and as long as prey was abundant, the specialist P. persimilis was more strongly affected by intraspecific competition than by interspecific competition with the generalist N. californicus. In contrast, interspecific competition with P. persimilis had a greater impact on N. californicus than intraspecific competition. After prey depletion, the generalist predator N. californicus was more likely to engage in IGP than was the specialist predator P. persimilis. Overall, the study demonstrates that prey specificity has significance for the quality and intensity of predator–predator interactions and indicates potential implications for biological control of spider mites. All predator releases (i.e., either species alone and both species in combination) resulted in reduction of the spider mite population to zero density. Individual release of the specialist P. persimilis led to the most rapid spider mite suppression. Nonetheless, in perennial greenhouse-grown crops P. persimilis and N. californicus could have complementary effects and a combination of the two predators could enhance long-term biological control of spider mites. The potential risks and benefits associated with the release of both species are discussed.  相似文献   

13.
Introduced mammalian predators may pose a high risk for native and naïve prey populations, but little is known about how native fish species may recognize and respond to scents from introduced mammalian predators. We investigated the role of diet‐released chemical cues in facilitating predator recognition, hypothesizing that native brown trout (Salmo trutta) would exhibit antipredator behaviours to faeces scents from the introduced American mink (Neovision vison) fed conspecifics, but not to non‐trout diets. In treatments‐control and replicate stream tank experiments, brown trout showed significant antipredator responses to faeces scent from mink fed conspecifics, but not to faeces scent from mink fed a non‐trout diet (chicken), or the non‐predator food control, Eurasian beaver (Castor fiber). We conclude that native and naïve brown trout show relevant antipredator behaviours to an introduced mammalian predator, presumably based on diet‐released conspecific alarm cues and thereby estimate the predation risk.  相似文献   

14.

Millerichthys robustus is the only annual killifish distributed in America with phenotypic color variations, not yet described. Accordingly, we first describe the color pattern in both sexes to define its phenotypical variations. We then analyze the frequency of these phenotypes on a geographical scale, in four localities that represent opposite points of Millerichthys’s distribution in the Mexican southeast. Color analysis based on the RGB system allowed us to define five-color phenotypes in males continuously distributed in various perceptual units between two extreme colors (yellow-red): yellow, moderate orange, dark orange, strong orange and red. These color patterns found in M. robustus could be attributed to melanin, carotenoid, and pteridine pigments. The orange phenotypes was present in all localities studied. The yellow phenotype was present only in northeastern and northwestern locations, and the red phenotype was present only in northern populations. Female color variations were observed in the number of ocelli (from 1 to 15) at the base of the caudal peduncle and dorsal region. Ocelli have been associated with anti-predator functions because they resemble the eyes of vertebrates, thus shifting the target of predator attacks to less vital body parts. Females with 3 ocelli were the most frequent phenotype, and females with 13–15 ocelli occurred only in the northern populations. We concluded that male and female of M. robustus are not randomly distributed along their distribution range, which suggest that color phenotypes may react differently to biotic and abiotic factors that probably determine their distribution and frequency within the studied population.

  相似文献   

15.
Spatial variation in the strength of herbivore top-down control represents an important source of variation in plant fitness measures and community structure and function. By measuring seed predator (larvae of a Noctuid moth) and parasitoid impacts on Ruellia nudiflora across a broad spatial scale in Yucatan (Mexico), this study addressed the following: (1) to what extent does seed predator and parasitoid attack intensity associated with R. nudiflora vary spatially? (2) Does parasitoid attack result in a positive indirect effect on the plant, and does the intensity of this effect vary spatially? During the peak of fruit production (late June–early July) of 2005, we collected fruits from 21 R. nudiflora populations and grouped them into four regions: center, east, north and south. For each fruit we recorded: observed seed number, number of seeds eaten, seed predator presence, parasitoid presence and number of seeds ‘saved’ by parasitoids. Seed predators attacked ca 30 percent of fruits/plant on average, while parasitoids were found in 24 percent of seed predator-attacked fruits. Results indicated spatial variation in seed predator and parasitoid attack levels; interestingly, a contrasting spatial gradient of attack intensity was observed: populations/regions with greatest parasitoid attack levels usually had the lowest seed predator attack levels and vice versa, suggesting top-down control of parasitoids on seed predators. We observed a weak overall indirect impact of parasitoids on R. nudiflora (4% seeds ‘saved’ on average), which nonetheless varied strongly across populations (e.g., close to 14% seeds saved at one population). Findings indicate a geographical structuring of interaction strengths across populations, as well as spatial variation in the strength of parasitoid cascading effects on plant reproduction.  相似文献   

16.
方青慧  杨晶  张彩军  张倩  苏军虎 《生态学报》2022,42(4):1619-1628
为明晰放牧对高原鼢鼠(Eospalax baileyi)造丘活动的影响,于2019年5月、8月和10月分别对禁牧(No grazing,NG)、生长季休牧(Rest grazing in growing season,RG)、传统放牧(Traditional grazing,TG)和连续放牧(Continuous grazing,CG)4种放牧管理模式样地下高原鼢鼠的新鼠丘(2个月内形成)半径、高度、表面积和体积等进行测定,并分析其表面积、体积与土壤和植被生物量间的关系。结果发现:放牧管理模式显著影响了高原鼢鼠鼠丘形态特征,且具有季节性差异。NG下鼠丘的半径、表面积和体积最大,而CG下鼠丘的体积和表面积显著变小(P<0.05),在8月和10月,鼠丘半径在CG样地显著小于其他3种放牧模式样地(P<0.05);8月TG下鼠丘高度最高,而5月和10月NG下鼠丘高度最高,鼠丘高度在CG样地显著小于NG样地(P<0.05)。冗余分析2个排序轴几乎全部解释了土壤因子及地下生物量与鼠丘特征之间的关系,但各放牧管理模式下影响因子不同,NG样地的土壤容重(P<0.05)、土壤紧实度(P<0.01)和莎草科植物的地上生物量(P<0.01),RG样地的地下生物量(P<0.01)、土壤紧实度(P<0.01)和豆科植物的地上生物量(P<0.01),TG样地的禾本科和豆科植物的地上生物量(P<0.01),CG样地的土壤水分、地下生生物量、土壤紧实度(P<0.05)和莎草科植物的地上生物量(P<0.01)均显著影响了鼠丘的形态特征。可见,放牧会影响高原鼢鼠的鼠丘形态特征,进而对草地的演替产生不同的影响。  相似文献   

17.
The invasive erect prickly pear cactus (Opuntia stricta) has reduced rangeland quality and altered plant communities throughout much of the globe. In central Kenya's Laikipia County, olive baboons (Papio anubis) frequently consume O. stricta fruits and subsequently disperse the seeds via defecation. Animal‐mediated seed dispersal can increase germination and subsequent survival of plants. However, consumption of seeds (seed predation) by rodents may offset the potential benefits of seed dispersal for cactus establishment by reducing the number of viable seeds. We investigated foraging preferences of a common and widely distributed small mammal—the fringe‐tailed gerbil (Gerbilliscus robustus), between O. stricta seeds deposited in baboon faeces versus control O. stricta seeds. In addition to providing evidence of seed predation on O. stricta by G. robustus, our data show that seed removal was higher (shorter time to use) for seeds within faeces than for control seeds. G. robustus clearly prefers seeds within faeces compared to control seeds. These results suggest that high abundances of rodents may limit successful establishment of O. stricta seeds, possibly disrupting seed dispersal via endozoochory by baboons.  相似文献   

18.
In species with restricted dispersal, traits may become genetically fixed leading to local adaptations. Therefore, predator avoidance in a prey species may differ between populations experiencing different predator regimes, but also between sexes within a population due to different vulnerability to predators. In this study we used male and female Gammarus pulex from two different predator regimes: fishless ponds, where invertebrates are the dominant predators and ponds with predatory fish. In the laboratory we examined refuge use, mortality, leaf decomposition rate and pair-formation in G. pulex when exposed to predator cues from either invertebrate predators or fish. Individuals from fish ponds spent more time in refuge and had a higher mortality than those from fishless ponds independent of predator cues. There was no effect of pond predator regime or predator cues on leaf decomposition rates. Further, fewer individuals formed pairs in G. pulex from fish ponds than from fishless ponds. Male G. pulex had a higher mortality and a higher decomposition rate than females independent of predator cues. However, there was no difference in refuge use between sexes. Our study shows that there are general differences in behaviour traits, both between predator regimes and sexes in G. pulex.  相似文献   

19.
1. Zooplankton may react differently to chemical signals produced by macrophytes in shallow systems. They may be attracted by macrophytes, as the plants may be used as a refuge against predators, or the plants may have a repellent effect (e.g. when the plants are a habitat for numerous invertebrate predators or fish). In fishless Patagonian ponds, the structural complexity provided by macrophytes modulates the rate of predation on zooplankton by the invertebrate predator Mesostoma ehrenbergii (Turbellaria). 2. We performed a field study to analyse the coexistence of M. ehrenbergii and three of its prey (two copepods, the calanoid Boeckella gracilis and the cyclopoid Acanthocyclops robustus, and the cladoceran Ceriodaphnia dubia) in four ponds. In two of the ponds, we carried out day and night sampling to evaluate the influence of macrophytes on the distribution of these zooplankters. 3. In laboratory experiments, we analysed the response of the zooplankters to the chemical signals produced by macrophytes (the emergent Juncus pallescens and the submerged Myriophyllum quitense), the predator M. ehrenbergii and the ‘alarm signal’ provided by a homogenate of conspecifics. 4. Our field studies demonstrated the coexistence of M. ehrenbergii and the selected prey in different seasons and that A. robustus and C. dubia choose the vegetated area (a mixed bed of J. pallescens and M. quitense) over the non‐vegetated area. The habitat choice experiments indicated that the presence of M. ehrenbergii may directly affect the habitat selection of B. gracilis, because this zooplankter swam away from the predator. In addition, Mesostoma may indirectly affect the habitat selection of the cyclopoid copepod A. robustus and the cladoceran C. dubia as both zooplankters exhibited a negative response to the alarm signal produced by crushed conspecifics. 5. The presence of the submerged M. quitense did not affect the horizontal movements of any of the zooplankters studied. In contrast, the emergent macrophyte J. pallescens elicited a positive response of B. gracilis, suggesting that this aquatic plant may act as a predation refuge. 6. Our results suggest that predator avoidance behaviour can occur in fishless environments in response to a tactile invertebrate predator like Mesostoma. In addition, the refuge effect of emergent macrophytes, enhancing the survival of pelagic zooplankters, may act as a key factor in stabilizing predator–prey interactions in fishless Patagonian ponds, as has been widely recorded in northern temperate lakes with fish.  相似文献   

20.
Z. M. Gliwiz 《Oecologia》1994,97(4):458-461
Various instars of four different cladoceran species representing a wide spectrum of body size were grown at high food availability in the presence and in the absence of natural densities of an invertebrate predator, a cyclopoid copepod Acanthocyclops robustus (G.O. Sars). Daily weight increments calculated from individual weights at the end and at the beginning of each 1, 2 or 4 day experiment, showed that individual growth was more or less drastically retarded in the presence of the predator as well as when exposed to water in which the predator had been feeding. The data also showed that the effect of this invertebrate predator was more pronounced in small prey instars and small prey species that were more vulnerable to predation than large prey.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号