首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Mixed-halide perovskites have emerged as outstanding light absorbers that enable the fabrication of efficient solar cells; however, their instability hinders the commercialization of such systems. Grain-boundary (GB) defects and lattice tensile strain are critical intrinsic-instability factors in polycrystalline perovskite films. In this study, the light-induced cross-linking of acrylamide (Am) monomers with non-crystalline perovskite films is used to fabricate highly efficient and stable perovskite solar cells (PSCs). The Am monomers induce the preferred crystal orientation in the polycrystalline perovskite films, enlarge the perovskite grain size, and cross-link the perovskite grains. Additionally, the liquid properties of Am effectively releases lattice strain during perovskite-film crystallization. The cross-linked interfacial layer functions as an airtight wall that protects the perovskite film from water corrosion. Devices fabricated using the proposed strategy show an excellent power conversion efficiency (PCE) of 24.45% with an open-circuit voltage (VOC) of 1.199 V, which, to date, is the highest VOC reported for hybrid PSCs with electron transport layers (ETLs) comprised of TiO2. Large-area PSC modules fabricated using the proposed strategy show a power conversion efficiency of 20.31% (with a high fill factor of 77.1%) over an active area of 33 cm2, with excellent storage stability.  相似文献   

2.
Lithium–sulfur (Li–S) batteries have the potential to be as efficient and as widespread as lithium‐ion (Li‐ion) batteries, since sulfur electrode has high theoretical capacity (1672 mA h gsul?1) and this element is affordable. However, unlike their ubiquitous lithium ion (Li‐ion) counterparts, it is difficult to realize the commercialization of Li‐S battery. Because the shuttle effect of polysulfide inevitably results in the serious capacity degradation. Tremendous progress is devoted to approach this problem from the aspect of physical confinement and chemisorption of polysulfide. Owing to weak intermolecular interactions, physical confinement strategy, however is not effective when the battery is cycled long‐term. Chemisorption of polysulfide that derived from polar–polar interaction, Lewis acid–base interaction, and sulfur‐chain catenation, are proven to significantly suppress the shuttle effect of polysulfide. It is also discovered that the metal compounds have strong chemical interactions with polysulfide. Therefore, this review focuses on latest metal–organic frameworks metal sulfides, metal hydroxides, metal nitrides, metal carbides, and discusses how the chemical interactions couple with the unique properties of these metal compounds to tackle the problem of polysulfide shuttle effect.  相似文献   

3.
4.
Atomically dispersed transition metals confined with nitrogen on a carbon support has demonstrated great electrocatalytic performance, but an extremely low concentration of metal atoms (usually below 1.5%) is necessary to avoid aggregation through sintering which limits mass activity. Here, a salt‐template method to fabricate densely populated, monodispersed cobalt atoms on a nitrogen‐doped graphene‐like carbon support is reported, and achieving a dramatically higher site fraction of Co atoms (≈15.3%) in the catalyst and demonstrating excellent electrocatalytic activity for both the oxygen reduction reaction and oxygen evolution reaction. The atomic dispersion and high site fraction of Co provide a large electrochemically active surface area of ≈105.6 m2 g?1, leading to very high mass activity for ORR (≈12.164 A mgCo?1 at 0.8 V vs reversible hydrogen electrode), almost 10.5 times higher than that of the state‐of‐the‐art benchmark Pt/C catalyst (1.156 A mgPt?1 under similar conditions). It also demonstrates an outstanding mass activity for OER (0.278 A mgCo?1). The Zn‐air battery based on this bifunctional catalyst exhibits high energy density of 945 Wh kgZn?1 as well as remarkable stability. In addition, both density functional theory based simulations and experimental measurements suggest that the Co? N4 sites on the carbon matrix are the most active sites for the bifunctional oxygen electrocatalytic activity.  相似文献   

5.
Five ruthenium(II) complexes, i.e., [Ru(bpy)2(TIP)]2+ (bpy=2,2′‐bipyridine; TIP=2‐thiophenimidazo[4,5‐f] [1,10]phenanthroline; 1 ), [Ru(bpy)2(5‐NTIP)]2+ (5‐NTIP=2‐(5‐nitrothiophen)imidazo[4,5‐f] [1,10]phenanthroline; 2 ), [Ru(bpy)2(5‐MOTIP)]2+ (5‐MOTIP=2‐(5‐methoxythiophen)imidazo[4,5‐f] [1,10]phenanthroline; 3 ), [Ru(bpy)2(5‐BTIP)]2+ (5‐BTIP=2‐(5‐bromothiophen)imidazo[4,5‐f] [1,10]phenanthroline; 4 ), and [Ru(bpy)2(4‐BTIP)]2+ (4‐BTIP=2‐(4‐bromothiophen)imidazo[4,5‐f] [1,10]phenanthroline; 5 ), were synthesized and characterized by elemental analysis and UV/VIS, IR, and 1H‐NMR spectroscopic methods. The photophysical and DNA‐binding properties were investigated by means of UV and fluorescence spectroscopic methods and viscosity measurements, respectively. The results suggest that all five complexes can bind to CT‐DNA with various binding strength. Complexes 2 and 3 showed the strongest and the weakest binding affinity, respectively, among these five complexes. Due to the substituent position of the Br‐atom in the ligand, complex 5 interacted stronger with CT‐DNA than complex 4 . The binding affinities of the complexes decreased in the order 2, 5, 4, 1 , and 3 .  相似文献   

6.
Nonprecious metal catalysts (NPMCs) Fe? N? C are promising alternatives to noble metal Pt as the oxygen reduction reaction (ORR) catalysts for proton‐exchange‐membrane fuel cells. Herein, a new modulation strategy is reported to the active moiety Fe? N4 via a precise “single‐atom to single‐atom” grafting of a Pt atom onto the Fe center through a bridging oxygen molecule, creating a new active moiety of Pt1? O2? Fe1? N4. The modulated Fe? N? C exhibits remarkably improved ORR stabilities in acidic media. Moreover, it shows unexpectedly high catalytic activities toward oxygen evolution reaction (OER) and hydrogen evolution reaction (HER), with overpotentials of 310 mV for OER in alkaline solution and 60 mV for HER in acidic media at a current density of 10 mA cm?2, outperforming the benchmark RuO2 and comparable with Pt/C(20%), respectively. The enhanced multifunctional electrocatalytic properties are associated with the newly constructed active moiety Pt1? O2? Fe1? N4, which protects Fe sites from harmful species. Density functional theory calculations reveal the synergy in the new active moiety, which promotes the proton adsorption and reduction kinetics. In addition, the grafted Pt1? O2? dangling bonds may boost the OER activity. This study paves a new way to improve and extend NPMCs electrocatalytic properties through a precisely single‐atom to single‐atom grafting strategy.  相似文献   

7.
The capacity of the ternary complex copper(II)? 1,10‐phenanthroline? L ‐serine ([Cu? Phen? Ser]) to induce double‐strand scission of DNA was explored by agarose‐gel electrophoresis. It was found that the complex exhibited remarkable activity to damage DNA in the presence of rutin. Analysis of the UV and fluorescence spectra clearly demonstrated that the complex was bound to DNA by intercalation. Further, the occurrence of 8‐hydroxydeoxyguanosine (8‐OHdG), a biomarker of oxidative DNA damage, after the treatment of DNA by the complex in presence of rutin was evidenced by an electrochemical method. Finally, the mechanism of oxidative damage to double‐stranded DNA by the [Cu? Phen? Ser] complex in the presence of rutin was discussed.  相似文献   

8.
Hybrid Perovskite (HP) semiconductors have been skyrocketing the field of new generation photovoltaics and expanding into advanced optoelectronics. Perovskite photovoltaics (PV) can give a tremendous push to the green energy transition, which calls for efficient, low cost, but also environmentally friendly solutions. Halide perovskites present a serious drawback related to the presence of toxic materials, i.e., lead, with its associated health and environment concerns. These concerns severely hamper their commercialization. So far, only a few viable alternatives to Pb have been found, which lag behind in terms of power conversion efficiency. Here, a forward‐looking perspective is developed presenting different potential strategies to overcome the environmental and health issues related to the use and release of lead for operative HP solar cells. The possible lead‐leakage paths and related “remediation” tools are reviewed, and possible strategies are collated with a view to beginning a new era of lead containing HP devices. Finally, through a comparison with existing lead‐based technology, a comparative study is presented to provide the tools that are essential for a real evaluation of the impact of lead content on HP commercialization.  相似文献   

9.
We extend recent modeling studies of proton hopping, used to describe the functioning of membrane channels and axon nerve conduction, to offer an explanation of the initiation of the nerve impulse at an effector? ligand encounter. This encounter is proposed to create a hydronium ion in the vicinity of the effector and ligand, which leads to a continuous flow of protons, called proton hopping, through water adjacent to this encounter. This proton hopping is proposed to be the message carried from the encounter to the axon of a particular nerve system associated with that particular effector? ligand system.  相似文献   

10.
A series of analogs of the natural antifungal compound crassinervic acid, a constituent of Piper crassinervium, were synthesized to gain insight into the most relevant structural features affecting the activity of the parent molecule. Most compounds were prepared by aldol reaction of methyl 3‐acetyl‐4‐hydroxybenzoate with a series of ketones, followed by reduction, hydrolysis, and oxidation. The antifungal activities of crassinervic acid and its analogs was assessed against Cladosporium cladosporioides by using the method of bioautography. The bioassay results allowed us to depict structure? activity relationships for this class of compounds.  相似文献   

11.
12.
The X-ray structure analysis of a crystalline sample of 2-azabicyclo-[2,2,2]-octanone-3 or 3-isoquinuclidone shows that the molecules of this compound are associated in centrosymmetrical dimers stabilized by two N? H? O?C hydrogen bonds in which the N,H,O atoms are nearly collinear. As a consequence of this interaction, the H atom is shifted from its usual position and the Cα? N? H angle is increased to 125°. Using infrared spectroscopy (νN–H frequency range), it is possible to demonstrate that 3-isoquinuclidone is mainly in a dimeric form when dissolved in an inert solvent such as CCl4 and to observe the dimer-monomer equilibrium on dilution from saturation to a low concentration (0.005 mole/l.). On the contrary, dimers are broken off when operating in a polar medium (acetonitrile, deuterochloroform). In the same experimental conditions, measurements of the J vicinal coupling constant, by nuclear magnetic resonance spectroscopy, afford a concentration-dependent result in the case of CCl4 solutions (increasing from 5.4 to 5.7 Hz when diluting from 0.5 to 0.005 mole/l.) and a constant one (5.8 Hz) in the case of CH3CN or CDCl3 solutions. Then the 0.4-Hz difference can be attributed to geometrical changes in the Hα? Cα? N? H system when dimers are broken off and the valence angle Cα? N? H consequently decreases from 125° to its standard value (about 115°). This experimental observation is consistent with the result of a theoretical analysis performed by the INDO method. Then it seems that the use of the formulas proposed by Karplus to account for the valence angle distorsions in ethane-like systems, in the case of the Hα? Cα? N? H sequence, could yield overstimated corrections.  相似文献   

13.
Satureja hortensis L. is an aromatic plant with antibacterial and antibiofilm activities against periodontopathogens. Here, we attempted to find out whether the antioxidant properties of S. hortensis L. essential oil (EO) could be used to inhibit matrix metalloproteinase (MMP) activities and prevent the induction of cell death by a pro‐oxidant insult. First, a landscape analysis of MMP and REDOX/nitric oxide (NO)‐related genes was performed (MRN model), and array data from periodontitis patients were plotted over the newly developed model. Thereafter, the antigelatinolytic activity of S. hortensis L. EO and its preventive effect against hydrogen peroxide (H2O2)‐induced cell death were tested in vitro (HaCaT cells). Up‐regulation of MMP genes in the MRN network (except for MMP‐10, ‐15, ‐16, ‐20, ‐25, and ‐26) and differential expression of genes coding for antioxidant enzymes were found among others in periodontitis samples. MMP2 and MMP9 were central genes in the MRN network model. Moreover, treatments with 1 and 5 μl/ml of S. hortensis L. EO inhibited both MMP‐2 and MMP‐9 activities, and H2O2‐induced cell death in vitro. We concluded that S. hortensis L. EO could be a promising host‐modulating agent, since oxidative stress and excessive MMP expression/activity are typical hallmarks of periodontal pathogenesis.  相似文献   

14.
M. T. Cung  M. Marraud 《Biopolymers》1982,21(5):953-967
We use the nmr data concerning the CαH? CβH fragment in eight peptides with rigid side chains to parametrize a Karplus correlation between the vicinal proton Jαβ coupling constant and the dihedral angle θ. When considering molecules containing the fragment CαHα? CβHβHβ′, the three-dimensional structure of the model peptides does not need to be known with accurate precision, since each set of Jαβ and Jαβ′ coupling constants is then related to the coefficients of the Karplus equation. A good correlation is observed with the Karplus equation, which is in substantial agreement with the Jαβ coupling constants reported for rigid as well as rotating Cα? Cβ bonds in peptides.  相似文献   

15.
P14C/N39C is the disulfide variant of the ovomucoid third domain from silver pheasant (OMSVP3) introducing an engineered Cys14? Cys39 bond near the reactive site on the basis of the sequence homology between OMSVP3 and ascidian trypsin inhibitor. This variant exhibits a narrower inhibitory specificity. We have examined the effects of introducing a Cys14? Cys39 bond into the flexible N‐terminal loop of OMSVP3 on the thermodynamics of the reactive site peptide bond hydrolysis, as well as the thermal stability of reactive site intact inhibitors. P14C/N39C can be selectively cleaved by Streptomyces griseus protease B at the reactive site of OMSVP3 to form a reactive site modified inhibitor. The conversion rate of intact to modified P14C/N39C is much faster than that for wild type under any pH condition. The pH‐independent hydrolysis constant (Khyd°) is estimated to be approximately 5.5 for P14C/N39C, which is higher than the value of 1.6 for natural OMSVP3. The reactive site modified form of P14C/N39C is thermodynamically more stable than the intact one. Thermal denaturation experiments using intact inhibitors show that the temperature at the midpoint of unfolding at pH 2.0 is 59 °C for P14C/N39C and 58 °C for wild type. There have been no examples, except P14C/N39C, where introducing an engineered disulfide causes a significant increase in Khyd°, but has no effect on the thermal stability. The site‐specific disulfide introduction into the flexible N‐terminal loop of natural Kazal‐type inhibitors would be useful to further characterize the thermodynamics of the reactive site peptide bond hydrolysis. Copyright © 2011 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

16.
The low capacity and unsatisfactory rate capability of hard carbon still restricts its practical application for Li/K‐ion batteries. Herein, a low‐cost and large‐scale method is developed to fabricate phosphorus‐doped hard carbon (PHC‐700) by crosslinking phosphoric acid and epoxy resin and followed by annealing at 700 °C. H3PO4 acts not only as a crosslinker to solidify epoxy resin for promoting the degree of graphitization and lowering the specific surface area, but also as phosphorus source for forming P? C and P? O bonds, thus providing more active sites for Li/K storage. As a result, the PHC‐700 electrode delivers a highly reversible capacity of 1294.8 mA h g?1 at 0.1 A g?1 and a capacity of 214 mA h g?1 after 10 000 cycles at 10 A g?1. As for potassium‐ion batteries, PHC‐700 exhibits a reversible capacity of 381.9 mA h g?1 at 0.1 A g?1 and a capacity of 260 mA h g?1 after 1000 cycles at 0.2 A g?1. In situ Raman and in situ NMR measurements reveal that the P‐containing bonds can enhance the adsorption to alkali metal ions, and the P? C bond can participate in electrochemical redox reaction by forming Lix PCy . Additionally, P‐doped hard carbon shows better structural/interfacial stability for improved long‐term cycling stability.  相似文献   

17.
The natural product gambogic acid exhibits high potency in inhibiting cancer cell lines. Rational medicinal modifications on gambogic acid will improve its physicochemical properties and drug‐like characters. To investigate the structure? activity relationship of gambogic acid and also to find rational modification position on its chemical skeleton, we designed, synthesized, and characterized 16 derivatives of gambogic acid that were modified at C(39). The structure? activity relationships (SARs) were discussed. The anti‐proliferation data were accquired through MTT (=3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyl‐2H‐tetrazolium bromide) assays of A549, BGC823, U251, HepG2, and MDA‐MB‐231 cancer cell lines. Most of the synthesized compounds showed strong inhibitory effects. The SAR study revealed that derivatives with aliphatic amino moieties at C(39) were more potent than those with other substituents. The C(39) position can undergo different kinds of chemical modifications without leading to loss of activity. Compounds 4 and 6 can serve as potential lead compounds for further development of new anticancer drugs.  相似文献   

18.
Development of inexpensive and efficient oxygen evolution reaction (OER) catalysts in acidic environment is very challenging, but it is important for practical proton exchange membrane water electrolyzers. A molecular iron–nitrogen coordinated carbon nanofiber is developed, which is supported on an electrochemically exfoliated graphene (FeN4/NF/EG) electrocatalyst through carbonizing the precursor composed of iron ions absorbed on polyaniline‐electrodeposited EG. Benefitting from the unique 3D structure, the FeN4/NF/EG hybrid exhibits a low overpotential of ≈294 mV at 10 mA cm?2 for the OER in acidic electrolyte, which is much lower than that of commercial Ir/C catalysts (320 mV) as well as all previously reported acid transitional metal‐derived OER electrocatalysts. X‐ray absorption spectroscopy coupled with a designed poisoning experiment reveals that the molecular Fe? N4 species are identified as active centers for the OER in acid. The first‐principles‐based calculations verify that the Fe? N4–doped carbon structure is capable of reducing the potential barriers and boosting the electrocatalytic OER activity in acid.  相似文献   

19.
Bioluminescence (BL) imaging based on d-luciferin (d-luc)–luciferase reaction allows noninvasive and real-time monitoring of luciferase-expressing cells. Because BL intensity depends on photons generated through the d-luc–luciferase reaction, an approach to increase intracellular levels of d-luc could improve the detection sensitivity. In the present study, we showed that organic anion transporter 1 (OAT1) is useful, as a d-luc transporter, in boosting the BL intensity in luciferase-expressing cells. Functional screening of several transporters showed that the expression of OAT1 in HEK293?cells stably expressing Pyrearinus termitilluminans luciferase (HEK293/eLuc) markedly enhanced BL intensity in the presence of d-luc. When OAT1 was transiently expressed in HEK293?cells, intracellular accumulation of d-luc was higher than that in control cells, and the specific d-luc uptake mediated by OAT1 was saturable with a Michaelis constant (Km) of 0.23?μM. The interaction between OAT1 and d-luc was verified using 6-carboxyfluorescein, a typical substrate of OAT1, which showed that d-luc inhibited the uptake of 6-carboxyfluorescein mediated by OAT1. BL intensity was concentration-dependent at steady states in HEK293/eLuc cells stably expressing OAT1, and followed Michaelis–Menten kinetics with an apparent Km of 0.36?μM. In addition, the enhanced BL was significantly inhibited by OAT1-specific inhibitors. Thus, OAT1-mediated transport of d-luc could be a rate-limiting step in the d-luc–luciferase reaction. Furthermore, we found that expressing OAT1 in HEK293/eLuc cells implanted subcutaneously in mice also significantly increased the BL after intraperitoneal injection of d-luc. Our findings suggest that because OAT1 is capable of transporting d-luc, it can also be used to improve visualization and monitoring of luciferase-expressing cells.  相似文献   

20.
We report here a novel reductive coupling reaction of conjugated, non‐ or poorly enolizable aldehydes induced by H2S and operative in aqueous solutions under prebiotically relevant conditions. This reaction leads from retinal to β‐carotene, and from benzylic aldehydes to the corresponding diarylethylenes. This novel reaction also opens a new potentially prebiotic pathway leading from glyoxylic acid to various compounds that are involved in the reductive tricarboxylic acid cycle. This C? C bond forming reaction of prebiotic interest might have been operative, notably, in the sulfide‐rich environments of hydrothermal vents, which have been postulated as possible sites for the first steps of organic chemical evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号