首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Accurately measuring biodiversity is essential for successful conservation planning. Due to biodiversity’s complexity, specific taxa are often chosen as indicators of patterns of diversity as a whole. Such taxa can include vegetation which can inform conservation decisions by demarcating land units for management strategies. For land units to be useful, they must be accurate spatial representations of the species assemblages present on the landscape. In this study, we determined whether land units classified by vegetative communities predicted the community structure of a diverse group of invertebrates—the ground beetles (Coleoptera: Carabidae). Specifically, that (1) land units of the same classification contained similar carabid species assemblages and that (2) differences in species structure were correlated with variation in land unit characteristics, including canopy and ground cover, vegetation structure, tree density, leaf litter depth, and soil moisture. The study site, the Braidwood Dunes and Savanna Nature Preserve in Will County, Illinois is a mosaic of differing land units. Carabid beetles were sampled continuously with pitfall trapping for 1 year (excluding winter) from September 2011 to November 2011 and from March 2012 to September 2012. Land unit characteristics were measured in July 2012. Nonmetric multidimensional scaling (NMDS) ordinated the land units by their carabid species assemblages into five ecologically meaningful clusters: disturbed, marsh, prairie, restoration, and savanna. The subset of land unit characteristics with the highest rank correlation with the NMDS ordination included soil moisture, leaf litter depth, percentage of canopy cover, and percentage of grass ground cover. Land units classified by vegetative communities effectively represented carabid species assemblages.  相似文献   

2.
HUW LLOYD 《Ibis》2008,150(4):735-745
Habitat restoration strategies for fragmented high Andean forest landscapes must consider the influence of within‐patch habitat quality on bird abundance. I examined vegetation and bird abundance at three locations within a highly fragmented Polylepis forest landscape in the Cordillera Vilcanota, southern Peru. Across the landscape, there was significant variation in the vegetation structure of Polylepis forest patches of different size categories, especially in terms of tree girth, tree height, tree density, and canopy vegetation structure. Principal Component Analysis extracted five factors of habitat quality, which together accounted for 74.2% of the variability within 15 habitat variables. Polylepis bird species differed in their responses to habitat quality but, overall, variation in Polylepis bird abundance was not fully captured by the range of habitat quality variables. Tall, dense vegetation cover was clearly important for 11 conservation‐important species, a high density of large trees was important for 10 species and primary forest ground cover was important for eight species. Habitat quality exhibited no significant influence on the abundance of only one species –Asthenes urubambensis. The abundance of seven species was associated with lower elevation forest, but only one species was associated with higher elevation forest. Management of habitat quality in large and medium remnant forest patches throughout the Cordillera Vilcanota, particularly in the 3800–4200 m elevation range, will be a cornerstone in ensuring the persistence of the majority of conservation‐important bird species populations.  相似文献   

3.
Plantation forests are of increasing importance worldwide for wood and fibre production, and in some areas they are the only forest cover. Here we investigate the potential role of exotic plantations in supporting native forest-dwelling carabid beetles in regions that have experienced extensive deforestation. On the Canterbury Plains of New Zealand, more than 99% of the previous native forest cover has been lost, and today exotic pine (Pinus radiata) plantations are the only forest habitat of substantial area. Carabids were caught with pitfall traps in native kanuka (Kunzea ericoides) forest remnants and in a neighbouring pine plantation, grassland and gorse (Ulex europaeus) shrubland. A total of 2,700 individuals were caught, with significantly greater abundance in traps in young pine, grassland and gorse habitats than in kanuka and older pine. Rarefied species richness was greatest in kanuka, a habitat that supported two forest specialist species not present in other habitat types. A critically endangered species was found only in the exotic plantation forest, which also acts as a surrogate habitat for most carabids associated with kanuka forest. The few remaining native forest patches are of critical importance to conservation on the Canterbury Plains, but in the absence of larger native forest areas plantation forests are more valuable for carabid conservation than the exotic grassland that dominates the region.  相似文献   

4.
Managing for forest wildlife requires attention not only to quantity but quality of forests within the landscape. We examined the extent to which local structural attributes and landscape context of forest stands explained variation in density and reproductive success of mature forest birds across 12 sites in southeast Ohio, USA, 2004–2006. Results suggest that several structural characteristics influenced bird–habitat relationships in our study. Densities of 3 songbird species (i.e., ovenbird [Seiurus aurocapilla], cerulean warbler [Setophaga cerulea], and scarlet tanager [Piranga olivacea]) were positively related to canopy openness, which is usually a function of canopy gaps. Habitat attributes described by ground litter, understory density, and canopy height were positively associated with densities of ground (i.e., worm-eating warbler [Helmitheros vermivorum]), or shrub nesting species (i.e., Kentucky and hooded warblers [Geothlypis formosa and Setophaga citrina], respectively). Furthermore, the number of small trees likely drove the positive relationship between density of wood thrush (Hylocichla mustelina), a subcanopy nester. After accounting for temporal variability in daily nest survival rates, the odds of nest survival for all species increased 10.5% for every 1% increase in canopy openness and decreased 1.4% for each 5% increase in understory vegetation density. Habitat–nest survival relationships were not apparent at the level of the individual species. Our results suggest that structural attributes produced by increasing habitat heterogeneity may be necessary for conservation of forest bird communities. © 2012 The Wildlife Society.  相似文献   

5.
Abstract: As part of a habitat management planning process for commercially managed forests, we developed and evaluated habitat occupancy models for the orange-crowned warbler (Vermivora celata), a conservation priority species in Oregon and Washington, USA. We used repeated surveys to classify a random sample of managed conifer stands at the McKenzie, PeEll, and Tolt study sites in western Oregon and Washington as either occupied or unoccupied during 1994–1995. We modeled occupancy and detection probabilities as a function of stand-level habitat characteristics subject to manipulation by management activities. The best-fitting model indicated that orange-crowned warblers were 2 times (95% CI: 0.99-5.1) and 3.8 times (95% CI: 1.5–6.1) as likely to occupy a stand for every 5% increase in evergreen shrub cover and 5-m decrease in canopy lift (ht to lowest live branch), respectively. Management actions that maintain evergreen shrub cover >10% and permit development of low canopy lifts (4–10 m) should promote habitat occupancy by the orange-crowned warbler in commercial forests in western Oregon and Washington.  相似文献   

6.
Habitat modeling across a landscape that has gradients of habitat conditions requires potential predictor data that can be quantified at biologically relevant scales. We used remotely sensed data to develop a multi-scale density model in 2018 for the golden-cheeked warbler (Setophaga chrysoparia; warbler), a species that breeds in Ashe juniper (Juniperus ashei)-oak (Quercus spp.) woodlands in central Texas, USA. We first classified Ashe juniper and broadleaf tree cover at a 1-m resolution and used this to map potential habitat across the warbler's >67,000-km2 breeding range. We then designed a survey for estimating warbler density based on hierarchical distance sampling. We used stratified random sampling to survey for male warblers at 1,804 points across the continuum of tree canopy cover and composition and detected 810 warblers during our surveys. We developed a suite of potential predictor variables for modeling warbler density that reflected vegetation, topography, climate, and anthropogenic land use conditions across the breeding range and developed these at 3 scales representing the territory, site, and landscape. We modeled warbler density and used the best fit model to produce a spatially explicit estimate. Predicted warbler density was influenced by tree canopy cover and canopy height at the territory scale (100-m radius); tree canopy cover, percent of the canopy comprised of juniper, and an interaction between canopy cover and compound topographic index at the site scale (1-km radius); and annual temperature range at the landscape scale (5-km radius). We estimated a population size of 217,444 male warblers (95% CI = 153,917–311,965) and >3,000 males in each recovery unit. After controlling for the duration of point count surveys, our estimate of population size was similar to that reported from the only previous breeding range survey conducted in 2008–2009. Our model results indicated that management activities to increase warbler density should promote woodlands with high tree canopy cover, approximately 60–80% Ashe juniper composition, and tree heights >3 m. In contrast to a patch-based approach, our treatment of habitat variables as continuous helped to credibly map the warbler distribution across areas with broad transitions from woodlands to shrublands. By measuring these predictor variables at biologically relevant scales, we allowed the warbler survey data to define habitat relationships instead of using anthropogenically defined habitat patches. Outcomes from our study show the benefits of developing spatial products tailored to individual species of interest for conservation and management decisions.  相似文献   

7.
Li H  Yue B  Lian Z  Zhao H  Zhao D  Xiao X 《Zoological science》2012,29(9):593-598
A detailed understanding of the habitat needs of brown eared pheasants (Crossoptilon mantchuricum) is essential for conserving the species. We carried out field surveys in the Huanglong Mountains of Shaanxi Province, China, from March to June in 2007 and 2008. We arrayed a total of 206 grid plots (200 × 200 m) along transects in 2007 and 2008 and quantified a suite of environmental variables for each one. In the optimal logistic regression model, the most important variables for brown eared pheasants were slope degree, tree cover, distance to nearest water, cover and depth of fallen leaves. Hosmer and Leweshow goodness-of-fit tests explained that logistic models for the species were good fits. The model suggested that spring habitat selection of the brown eared pheasant was negatively related to distance to nearest water and slope degree, and positively to cover of trees and cover and depth of fallen leaves. In addition, the observed detected and undetected grids in 2007 did not show significant differences with predictions based on the model. These results showed that the model could well predict the habitat selection of brown eared pheasants. Based on these predictive models, we suggest that habitat management plans incorporating this new information can now focus more effectively on restrictions on the number of tourists entering the nature reserve, prohibition of firewood collection, livestock grazing, and medicinal plant harvesting by local residents in the core areas, protection of mixed forest and sources of the permanent water in the reserve, and use of alternatives to firewood.  相似文献   

8.
The distribution of carabid and cicindelid (Coleoptera: Carabidae) beetles in five distinct habitats (riparian, mature orchard, pine windbreak, young orchard, natural veld), within Tambuti Citrus Estate (Swaziland) was examined by pitfall trapping over 18 months. Habitats with high vegetation and litter cover had the highest species diversity and larger specimens, e.g. riparian border and pine windbreak, while the lowest diversity was observed in intensively managed mature citrus orchards. While species such as Tefflus delagorguei Guérin occurred in all the habitats sampled, certain species illustrated habitat specificity; e.g. Dromica ambitiosa Péringuey was observed only in the pine windbreaks while Haplotrachelus sp. Chaudoir occurred mainly in the vegetated riparian and natural veld habitats. Four unidentified carabid beetles were exclusive to the riparian border habitat. This habitat was the only one with a distinct assemblage of species in the agricultural mosaic studied. Multivariate analyses were used to assess the role of soil and environmental variables in relation to the ground beetle diversity within the agricultural mosaic studied.  相似文献   

9.
We compared the distribution and frequency of American marten (Martes americana) detections during historic surveys and a recent survey on the Sagehen Experimental Forest (SEF) in the Sierra Nevada Mountains, California. This area has been the location of 9 previous marten surveys during 1980–1993, each involving a systematic detection/non-detection survey on the same grid. These data are a time series of information on the occupancy of martens that can be related to habitat change in the study area. Our objectives were to 1) resurvey martens in SEF using methodology similar to previous studies to assess current marten occupancy; 2) evaluate changes in marten occupancy during the period 1980–2008; and 3) examine associations between marten occurence and changes in habitat and landscape metrics. Current marten occupancy was estimated using surveys conducted in summer 2007, winter 2007–2008, and summer 2008. From 1978 to 2007 there was a decrease in predicted habitat patch size, core area, and total amount of marten habitat in the study area, as well as an increase in distance between patches. Marten detections in 2007–2008 were approximately 60% lower than in surveys in the 1980s. We detected no martens in the summers of 2007 and 2008, and 10 detections in winter 2007–2008 were limited to higher elevations in the southwestern portion of SEF. No martens were detected in the lower elevations where most of the recent forest management activity occurred. We suggest that the marten population at SEF has been negatively affected by the loss and fragmentation of habitat. We recommend that future management of forests in the Sagehen basin focus on restoring and connecting residual marten habitat to improve habitat quality for martens. © 2011 The Wildlife Society.  相似文献   

10.
The long‐term impacts of wildfires on animal populations are largely unknown. We used time‐series data based on a tracking index, from coastal NSW spanning 28 years after a wildfire, to investigate the relative influence of habitat structure, species interactions and climate on post‐fire animal population dynamics. The fire had an immediate impact on habitat structure, reducing and simplifying vegetation cover, which then underwent post‐fire successional change including an increase and plateau in tree canopy cover; an increase, stabilization and then decline in shrub cover; and an increase in ground litter cover. Population changes of different animal species were influenced by different components of successional change, but there was also evidence that species interactions were important. For example, bandicoots (Isoodon obesulus and Perameles nasuta combined) increased concurrent with an increase in shrub cover then declined at a faster rate than a direct association with senescing shrub cover would suggest, while the feral cat (Felis catus) population changed with the bandicoot population, suggesting a link between these species. Potoroos (Potorous tridactylus) increased 10 years after the fire concurrent with the closing tree canopy, but there was also evidence of a negative association with feral foxes (Vulpes vulpes). Variation in rainfall did not have significant effects on the population dynamics of any species. Our results suggest that changes in habitat structure play a key role in the post‐fire dynamics of many ground‐dwelling animals and hence different fire regimes are likely to influence animal dynamics through their effects on habitat structure. However, the role of predator–prey interactions, particularly with feral predators, is less clear and further study will require manipulative experiments of predators in conjunction with fire treatments to determine whether feral predator control should be integrated with fire management to improve outcomes for some native species.  相似文献   

11.
Ecological studies need accurate environmental data such as vegetation characterization, landscape structure and organization, to predict and explain the spatial distribution of biodiversity. Few ecological studies use remote sensing data to assess the biophysical or structural properties of vegetation to understand species distribution. To date, synthetic aperture radar (SAR) data have seldom been used for ecological applications. However, these sensors provide data allowing access to the inner structure of vegetation which is a key information in ecology. The objective of this article is to compare the predictive power of ecological habitat structure variables derived from a TerraSAR-X image, an aerial photograph and a SPOT-5 image for species distribution. The test was run with a hedgerow network in Brittany and assessed the spatial distribution of the forest ground carabid beetles which inhabit these hedgerows. The results confirmed that radar and optical images can be indifferently used to extract hedgerow network and derived landscape metrics (hedgerow density, network grain) useful to explain the spatial distribution of forest carabid beetles. In comparison with passive optical remotely sensed data, VHSR SAR images provide new data to characterize vegetation structure and more particularly hedgerow canopy cover, a variable known to explain the spatial distribution of carabid beetles in an agricultural landscape, but not yet quantified at a fine scale. The hedgerow canopy cover derived from the SAR image is a strong predictor of the abundance of forest carabid beetles at two scales i.e., a local scale and a landscape scale.  相似文献   

12.
We studied carabid beetle assemblage structure and species diversity in an intermediate successional stage (seral) forest established in areas affected by the 1888 eruption of Mt. Bandai and a climax forest that had not been affected by the eruption at the Urabandai area, Fukushima Prefecture, Japan. In total, 2,131 carabid beetles representing 31 species were collected using pitfall traps without bait. A comparison of carabid beetle assemblages between the two forest types revealed that the number of species observed was comparable, but their abundance was greater in the seral forest. The assemblage structure clearly differed between the two forest types. In the seral forest, forest generalists, such as Synuchus arcuaticollis and Pterostichus prolongatus, along with forest specialists including Carabus vanvolxemi and Pterostichus asymmetricus, were collected. In the climax forest, forest generalists, such as Synuchus cycloderus and Carabus albrechti tsukubanus, were more abundant than forest specialists. This suggests that the current seral forest in the Urabandai area possesses environmental variables that enable the coexistence of both forest specialist and generalist beetle species. A redundancy analysis showed that six species from the genera Synuchus and Pterostichus were associated with high canopy openness and high understory vegetation cover, whereas species recorded only in the climax forest were associated with deep litter. Therefore, it seems likely that carabid beetles in the Urabandai area were affected by these three environmental variables.  相似文献   

13.
This paper studied the occurrence of carabid beetles (Coleoptera: Carabidae) in the forest edge, the adjacent forest interior, and the surrounding grassland in southwestern China. Beetles were collected with pitfall traps along five replicated transects. Forest species rarely penetrated into the grassland from the forest interior, and the grassland specialists were not found in the forest interior. The forest edge hosted additional species from the adjacent grassland that increased its overall species richness. Nearly all forest species (23 of 24 species) and grassland species (13 of 15 species) can be found in the forest edge. Carabids of the forest edge were more similar to those of the forest interior than to those of the grassland by ordination and cluster analysis. Based on the specificity and fidelity, carabids can be distinguished into five species groups: habitat generalists, grassland-associated species, forest generalists, forest specialists, and edge-associated species. Multiple linear regression analysis showed that canopy cover and/or shrub cover were the most important factors in determining the richness, abundance, and diversity of carabids. The forest edge may serve as a transition zone for dispersal and re-colonization of carabid beetles from adjacent habitats and therefore is important for natural conservation.  相似文献   

14.
Lizard assemblages were surveyed in eight selected habitats in the Vizcaino Biosphere Reserve in Baja California Sur, Mexico. We compared the species composition and relative abundance among habitats, considering habitat characteristics, such as vegetation type, vegetation ground coverage, and soil types. Thirteen lizard species were recorded. The most abundant species in almost all habitats was Uta stansburiana, accounting for 59% of all observations. Cnemidophorus tigris was the second most abundant species, accounting for 12% of all observations. The richest habitat was the rocky lower elevations of the Sierra de San Francisco (nine species). However, the habitat with the highest diversity value was Scammon's dunes. Implications of our findings for lizard conservation in this biosphere reserve are discussed.  相似文献   

15.
Riparian habitats in the western United States are imperiled, yet they support the highest bird diversity in arid regions, making them a conservation priority. Riparian restoration efforts can be enhanced by information on species response to variation in habitat features. We examined the habitat selection of four riparian birds known as management indicators at restoration and reference sites along the Trinity River, California. We compared vegetation structure and composition at nest sites, territories, and random points to quantify used versus available habitat from 2012 to 2015. Vegetation in focal species' territories differed between site types, and from available habitat, indicating nonrandom site choice. Birds selected aspects of more structurally complex habitats, such as greater canopy cover, canopy height, and tree species richness. Yellow‐breasted Chats preferred greater shrub cover, and Yellow Warblers preferred greater cover by non‐native Himalayan blackberry. Territory preferences on restoration sites were often a subset of those on reference sites. One exception was canopy height, which was taller on restoration site territories than random points for all species, suggesting that birds preferentially used patches of remnant habitat. Few variables were significant in nest site selection. Restoration plantings along the Trinity River were only 3–10 years old during this study, and have not developed many of the characteristics of mature riparian habitat preferred by birds, but may improve in habitat value over time. Understanding habitat selection is especially important in recently human‐modified environments, where indirect cues used to assess habitat quality may become disassociated from actual habitat quality, potentially creating ecological traps.  相似文献   

16.
17.
The New England cottontail (Sylvilagus transitionalis) is a high conservation priority in the Northeastern United States and has been listed as a candidate species under the Endangered Species Act. Loss of early successional habitat is the most common explanation for the decline of the species, which is considered to require habitat with dense low vegetation and limited overstory tree canopy. Federal and state wildlife agencies actively encourage landowners to create this habitat type by clearcutting blocks of forest. However, there are recent indications that the species also occupies sites with moderate overstory tree canopy cover. This is important because many landowners have negative views about clearcutting and are more willing to adopt silvicultural approaches that retain some overstory trees. Furthermore, it is possible that clearcuts with no overstory canopy cover may attract the eastern cottontail (S. floridanus), an introduced species with an expanding range. The objective of our study was to provide guidance for future efforts to create habitat that would be more favorable for New England cottontail than eastern cottontail in areas where the two species are sympatric. We analyzed canopy cover at 336 cottontail locations in five states using maximum entropy modelling and other statistical methods. We found that New England cottontail occupied sites with a mean overstory tree canopy cover of 58% (SE±1.36), and was less likely than eastern cottontail to occupy sites with lower overstory canopy cover and more likely to occupy sites with higher overstory canopy cover. Our findings suggest that silvicultural approaches that retain some overstory canopy cover may be appropriate for creating habitat for New England cottontail. We believe that our results will help inform critical management decisions for the conservation of New England cottontail, and that our methodology can be applied to analyses of habitat use of other critical wildlife species.  相似文献   

18.
Effects of habitat diversification through ground cover management on green apple aphids (Aphis spp.) (Hemiptera: Aphididae), woolly apple aphid (Eriosoma lanigerum [Haussmann]) (Hemiptera: Aphididae), their insect natural enemies and the most abundant canopy insects (in the Neuroptera, Fulgoromorpha, Cicadomorpha, Heteroptera, Coleoptera and Formicidae) were studied in an apple orchard over 6 years. The composition and diversity of the main functional groups of canopy insects was also compared. Habitat diversification was achieved by changing ground cover conditions within the orchard. In the treatment termed FLOWER, annual and/or perennial flowering plants were sown in the alleys of an apple orchard. Other ground cover treatments were weed-free bare ground (termed BAREgr) and orchard plots with alleys of mowed grass (termed GRASS), which served as control treatments. We found no evidence that habitat diversification enhanced the biological control of green apple aphids compared to the control treatments. However, the greater plant cover in FLOWER resulted in increased woolly apple aphid infestations compared to BAREgr or GRASS. The abundance of various beneficial or neutral canopy insects – Chrysoperla carnea sensu lato (Neuroptera, Chrysopidae) adults, leafhoppers and treehoppers, planthoppers, herbivorous (non-apple feeding) beetles, dipterans and parasitoid wasps – also increased in FLOWER as compared to BAREgr, with GRASS being intermediate between the other treatments. Significantly greater species richness and diversity was found in FLOWER than in BAREgr for most of the functional groups sampled, although the number of predacious insect species was similar among treatments. The composition of the studied functional groups showed high similarity in FLOWER and GRASS, but these treatments were different from BAREgr. Effects of groundcover management on the dominant insect species are discussed.  相似文献   

19.
In some regions, extensive habitat clearance and fragmentation have largely restricted remnant vegetation to linear strips, often bordering roads and railway lines. Such areas may be important for the persistence of native wildlife but there is a paucity of research on their biodiversity value. This study in south-eastern South Australia compared the diversity and abundance of small, terrestrial animals in remnant vegetation, roadsides and farmland. Pitfall and Elliott trapping at 30 sites resulted in a total of 1,024 captures of 28 amphibian, reptile and mammal species, with 819 captures of six mammal species. Overall species diversity was highest in remnant sites and lowest in farm sites. Although low capture rates for reptiles and amphibians precluded statistical testing of individual species, many were caught in both remnant and roadside sites, but rarely at farm sites. Mammal captures consisted of four native (Cercartetus concinnus and C. lepidus, Pseudomys apodemoides and Rattus fuscipes) and two introduced (Mus musculus and Rattus rattus) species. Mus musculus was the most commonly caught species and was significantly more abundant in roadside than remnant vegetation. Abundance was negatively correlated with habitat quality and, at a finer scale, positively associated with percentage cover of exotic grasses. C. concinnus was also commonly captured; however, the absence of a difference in capture rates between remnant and roadside sites suggests that roadside vegetation provides important habitat. The abundance of C. concinnus was positively associated with percentage canopy cover. The current results highlight the conservation value of roadside vegetation and suggest that such areas should be both retained and appropriately managed.  相似文献   

20.
Although Carabidae is among the best-studied families of beetles in Europe from the faunistic point of view, there is still a lack of available information on the ecological requirements of the particular carabid species. The habitat preferences that determine the distribution of species are largely influenced by habitat structure and microclimate. In addition to other factors, these habitat parameters are influenced by the nature of the vegetation. Therefore, our study investigated the influence of tree species on carabid beetle communities. We conducted the research at 9 stands in the Borová Hora Arboretum (Zvolen, Central Slovakia). Each studied site represents a monoculture of one of nine tree species. At each site, some soil and leaf litter attributes (pH, conductivity, and content of H, C, N and P) were evaluated. Ground beetles were collected by pitfall trapping during the vegetation periods in 2008–2011. In total, 3012 individuals of 29 species were obtained. Significant differences in the total dynamic activity and species richness of the carabid beetle communities among the compared forest stands were revealed. The results of the research confirmed statistically significant relationships among 1) the soil conductivity and both the richness and Shannon diversity of the ground beetle communities, 2) the litter and soil N content and richness, the Shannon diversity and the species composition of the ground beetle communities. The Shannon diversity and richness were negatively related to the soil conductivity and positively related with the N content. Our research showed that dominant tree species indirectly influence diversity and composition of carabid communities via the soil properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号