首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aim We examined the biogeography of three freshwater isopod species (Austridotea annectens, A. lacustris, A. benhami), and tested the hypotheses that genetic differences would: (1) exist between geographic locations; and (2) correspond to known geological events (e.g. appearance of islands leading to the availability of habitat). Location Southern New Zealand, including South Island, Stewart Island, Campbell Island and Chatham Islands. Methods We examined specimens throughout the known species range from 12 populations of A. lacustris, five populations of A. annectens, and three populations of A. benhami, using mitochondrial DNA (cytochrome c oxidase I) sequence analyses. Results We resolved three main clades corresponding to the three species, with 16% sequence divergence between A. annectens and A. benhami, and 31% divergence between these species and A. lacustris. Divergence within A. benhami was < 2.0%. However, divergence within A. lacustris reached up to 10% with four main groupings: (1) Chatham Islands; (2) Campbell Island; (3) Fiordland; and (4) east coast South Island and Stewart Island. Divergence within A. annectens reached up to 4.4%, with two main groupings: (1) Chatham Islands and (2) east coast South Island and Stewart Island. Patterns of genetic divergence were most likely the result of geographical isolation among A. lacustris and A. annectens populations. In particular, the divergence of A. lacustris and A. annectens on Chatham Islands may correspond to the availability of this habitat c. 4 Ma, whereas the divergence of A. lacustris on the much older Campbell Island and in Fiordland may indicate either a rare founder event or a change in ocean circulation that resulted in their isolation from a once more widespread gene pool. Main conclusions The three New Zealand species of Austridotea are genetically distinct, with up to 31% divergence between species. Genetic variability was highest between populations of the two most widely distributed species, and divergence was greatest on islands distant from mainland New Zealand and in the discrete Fiordland region. The magnitude of genetic divergence of isopods on the Auckland and Chatham Islands is consistent with these populations having been founded in the Pliocene via oceanic dispersal from mainland New Zealand.  相似文献   

2.
The Holantarctic Sphagnum ×falcatulum s.l. is a cryptic species complex comprised of the allo-allo-triploid S. ×falcatulum s.s. and its immediate progenitors: the haploid (S. cuspidatum) and an unnamed allo-diploid species. The Holantarctic distributions of the members of this complex are presently unclear. Prior genetic study has shown that (1) amphi-Pacific S. ×falcatulum s.s. is the most widespread Sphagna in the Holantarctic, (2) S. cuspidatum is present in Queensland, Australia, and (3) the allo-diploid plants occur on South Island, New Zealand. Using genetic and morphological analyses, we document the occurrence of S. ×falcatulum s.s. on mainland Australia and on North Island, New Zealand as well as the occurrence of the allo-diploid plants on Chatham Island, New Zealand. The allo-diploid plants on South Island and those on Chatham Island are found to be closely related and the Chatham Island population appears to have been established by long distance dispersal. It is concluded that the type of S. irritans, which was collected on Chatham Island, and the three Chatham Island allo-diploid specimens are the same taxon. Thus the allo-diploid plants are assigned to S. ×irritans. Having a history of inter-subgeneric hybridisation, there is notable morphological variation associated with S. ×irritans. Although several morphotypes occur in the South Island population, just one morphotype was detected among the Chatham Island specimens examined. Further study is required to determine both the genetic divergence between these two island populations as well as the taxonomic status of the various morphotypes associated with S. ×irritans.  相似文献   

3.
Aim Increasing our understanding of the effects of the Last Glacial Maximum (LGM) and determining the location of refugia requires studies on widely distributed species with dense sampling of populations. We have reconstructed the biogeographic history of Clitarchus hookeri (White), a widespread species of New Zealand stick insect that exhibits geographic parthenogenesis, using phylogeographic analysis and ecological niche modelling. Location New Zealand. Methods We used DNA sequence data from the mitochondrial cytochrome c oxidase subunit I gene to reconstruct phylogenetic relationships among haplotypes from C. hookeri and two undescribed Clitarchus species. We also used distribution data from our own field surveys and museum records to reconstruct the geographic distribution of C. hookeri during the present and the LGM, using ecological niche modelling. Results The ecological niche models showed that the geographic distribution of C. hookeri has expanded dramatically since the LGM. Our model predicted large areas of suitable LGM habitat in upper North Island, and small patches along the east coast of South Island. The phylogeographic analysis shows that populations in the northern half of North Island contain much higher levels of genetic variation than those from southern North Island and South Island, and is congruent with the ecological niche model. The distribution of bisexual populations is also non-random, with males completely absent from South Island and very rare in southern North Island. Main conclusions During the LGM C. hookeri was most likely restricted to several refugia in upper North Island and one or more smaller refugia along the east coast of South Island. The unisexual populations predominate in post-glacial landscapes and are clearly favoured in the recolonization of such areas. Our study exemplifies the utility of integrating ecological niche modelling and phylogeographic analysis.  相似文献   

4.
1. We evaluated the population genetic structure of the common New Zealand amphipod Paracalliope fluviatilis using eight allozyme loci, and the mitochondrial cytochrome oxidase c subunit I (COI) gene locus. Morphological analyses were also conducted to evaluate any phenotypic differences. Individuals belonging to P. fluviatilis were collected from a total of 14 freshwater fluvial habitats on the North and South Islands, New Zealand. 2. We found evidence for strong genetic differentiation among locations (Wright's FST > 0.25), and fixed differences (non‐shared alleles) at two of the eight allozyme loci indicating the possibility of previously unknown species. Analysis of a 545‐bp fragment of the COI locus was mostly congruent with the allozyme data and revealed the same deeply divergent lineages (sequence divergences up to 26%). 3. Clear genetic breaks were identified between North Island and South Island populations. North Island populations separated by <100 km also showed genetic differences between east and west draining watersheds (sequence divergence >12%). Accordingly, present‐day dispersal among hydrologically isolated habitats appears minimal for this taxon. 4. Although population differences were clearly shown by allozyme and mtDNA analyses, individuals were morphologically indistinguishable. This suggests that, as in North American and European taxa (e.g. Hyalella and Gammarus), morphological conservatism may be prevalent among New Zealand's freshwater amphipods. We conclude that molecular techniques, particularly the COI gene locus, may be powerful tools for resolving species that show no distinctive morphological differences.  相似文献   

5.
Molecular studies have reported the coexistence of two species of Agarophyton in New Zealand: the newly described A.transtasmanicum with an apparently restricted distribution to some sites in the North Island, and the more widespread A.chilense. Here, we compared the distribution, genetic diversity, and structure of both Agarophyton species throughout the archipelago using sequences of the nuclear Internal Transcribed Spacer 2 (ITS2) marker. Agarophyton chilense’s distribution was continuous and extensive along the North and South Islands, Stewart Island, and Chatham Island, and the genetic clusters were mostly concordant with boundaries between biogeographic regions. In contrast, specimens of A.transtasmanicum were collected in four sites broadly distributed in both the North and South Islands, with no clear spatial structure of the genetic diversity. Populations, where the species co-occurred, tended to display similar levels in genetic diversity for the two species. Demographic inferences supported a postglacial demographic expansion for two A.chilense genetic clusters, one present in the South Island and the eastern coast of the North Island, and the other present in northern South Island. A third genetic cluster located on the western coast of the North Island had a signature of long-term demographic stability. For A.transtasmanicum, the skyline plot also suggested a postglacial demographic expansion. Last, we developed a new molecular tool to quickly and easily distinguish between the two Agarophyton species, which could be used to ease future fine-scale population studies, especially in areas where the two species coexist.  相似文献   

6.
Translocation of individuals among extant populations is an important tool in species conservation that allows managers to supplement dwindling populations and potentially alleviate the deleterious effects of inbreeding. Ideal translocation strategy should consider historical relationships among existing populations to avoid potential disruption of population subdivision and local adaptation. Here, we examine mitochondrial sequence variation in the endangered blue duck Hymenolaimus malacorhynchos, a New Zealand endemic riverine specialist, to facilitate informed decision making in future translocations. Behavioural observations suggest that blue duck dispersal is limited and may result in genetic structure within and between regional populations. We analysed 894 base pairs of mitochondrial control region in 78 adult blue ducks sampled from 11 river catchments across the species’ range (representing four regions in the North Island and three regions in the South Island) and found strong and significant genetic structure both within and among islands. These results, combined with a 2.0% sequence divergence between islands, indicates that North Island and South Island blue ducks should be treated as separate management units. The relationship between genetic differentiation and geographic distance for blue ducks on the South Island conformed to an “isolation by distance” pattern. Overall, we recommend that translocations of blue ducks should not be made between the North and the South Islands and those within each island should be restricted to neighbouring catchments.  相似文献   

7.
Abstract The amphibian fauna of New Zealand consists of three native species (Leiopelma spp.), and three Litoria species introduced from Australia in the last 140 years. We conducted a molecular phylogeographical study that aimed to identify the Australian origins of two species, Litoria aurea and Litoria raniformis. We used partial sequences of the mitochondrial cytochrome oxidase I (cox1) gene from 59 specimens sampled from across the range of both species to identify the probable source populations for the New Zealand introductions, and to describe the current genetic diversity among New Zealand Litoria populations. Our genetic data suggest that L. aurea was introduced into the North Island of New Zealand from two regions in Australia, once from the northern part of coastal New South Wales and once from the southern part of coastal New South Wales. Our data indicate that L. raniformis introductions originated from the Melbourne region of southern Victoria and once established in the South Island of New Zealand, the species subsequently spread throughout both islands. In addition, we found a distinct haplotype in L. raniformis from Tasmania that strongly suggests, contrary to earlier reports, that this species was not introduced into New Zealand from Tasmania. Finally, we identified two very distinctive mitochondrial lineages of L. raniformis within the mainland Australia distribution, which may be previously unrecognized species.  相似文献   

8.
1. The freshwater crayfish Cherax dispar (Decapoda: Parastacidae) inhabits coastal regions and islands of South East Queensland, Australia. We hypothesised that populations of C. dispar on different islands would be more genetically divergent from each other than populations from different drainages within the same island or on the mainland. 2. Phylogenetic and phylogeographic analyses were conducted on two mitochondrial genes (cytochrome oxidase subunit I & 16S ribosomal DNA) and one nuclear gene (Internal Transcribed Spacer region 2). Phylogeographic patterns were compared with those for other freshwater organisms in the area. 3. Deep genetic divergences were found within C. dispar, including four highly divergent (up to 20%) clades. The geographic distribution of each of the clades revealed strong latitudinal structuring along the coast rather than structuring among the islands. The high genetic divergence observed among the C. dispar clades was estimated to have pre‐dated island formation and may represent ancient river drainage patterns. 4. A restricted distribution was observed for the most divergent clade, which was discovered only on two of the sand islands (North Stradbroke Island and Moreton Island). Furthermore, strong phylogeographic structuring was observed within this clade on North Stradbroke Island, where no haplotypes were shared between samples from opposite sides of the island. This low connectivity within the island supports the idea that C. dispar rarely disperse terrestrially (i.e. across watersheds).  相似文献   

9.
Understanding the biological significance of Pleistocene glaciations requires knowledge of the nature and extent of habitat refugia during glacial maxima. An opportunity to examine evidence of glacial forest refugia in a maritime, Southern Hemisphere setting is found in New Zealand, where the extent of Pleistocene forests remains controversial. We used the mitochondrial phylogeography of a forest-edge cicada ( Kikihia subalpina ) to test the hypothesis that populations of this species survived throughout South Island during the Last Glacial Maximum. We also compared mitochondrial DNA phylogeographic patterns with male song patterns that suggest allopatric divergence across Cook Strait. Cytochrome oxidase I and II sequences were analyzed using network analysis, maximum-likelihood phylogenetic estimation, Bayesian dating and Bayesian skyline plots. K. subalpina haplotypes from North Island and South Island form monophyletic clades that are concordant with song patterns. Song divergence corresponds to approximately 2% genetic divergence, and Bayesian dating suggests that the North Island and South Island population-lineages became isolated around 761 000 years bp . Almost all South Island genetic variation is found in the north of the island, consistent with refugia in Marlborough Sounds, central Nelson and northwest Nelson. All central and southern South Island and Stewart Island haplotypes are extremely similar to northern South Island haplotypes, a 'northern richness/southern purity' pattern that mirrors genetic patterns observed in many Northern Hemisphere taxa. Proposed southern South Island forest habitat fragments may have been too small to sustain populations of K. subalpina , and/or they may have harboured ecological communities with no modern-day analogues.  相似文献   

10.
The Sphaerophorus globosus complex (Lecanorales, lichenized Ascomycota) shows a large morphological variation, and three relatively distinct morphotypes can be distinguished in parts of the distribution area. Here, we utilize a multigene‐based maximum‐parsimony approach (nITS+ LSU rDNA, mtSSU rDNA, β‐tubulin, and actin) to investigate whether these morphotypes constitute distinct species. The results show that there are at least two well‐supported monophyletic groups that we interpret as phylogenetic species within the S. globosus complex. These species do not completely correspond to the predefined morphotypes. One group, an apparently undescribed species, contains noncoralloid specimens from the North American Pacific Northwest. The other group, S. globosus, consists of two well‐supported monophyletic groups: one contains coralloid epiphytic specimens from the North American Pacific Northwest that are morphologically indistinguishable from epiphytic specimens from Europe and are presently interpreted as belonging to the same species and the other is morphologically variable and contains terrestrial specimens from Europe, North America, and southernmost South America and coralloid epiphytic and epilithic specimens from Europe. The results suggest that the population in southernmost South America originated by long‐distance dispersal from arctic populations in the Northern Hemisphere.  相似文献   

11.
A new species, Altingioxylon hainanensis, is described from the Eocene Changchang Formation of the Changchang Basin on Hainan Island, South China. It is the first record of a fossil wood assigned to Altingiaceae found in China, and the most ancient evidence of wood for this family in eastern Asia. The new species is similar to A. rhodoleioides, known since the Miocene in India and Java Island, and to Altingia hisauchii from the Miocene to Pliocene of Japan. The close resemblance between these species and Liquidambar sp., known from the Middle Miocene of western North America, provides additional evidence for the migration of their ancestors from Asia to North America across the Bering land bridge during the Miocene. Distinctions in ray sizes between the eastern Asian specimens and their contemporaries from Europe to Kazakhstan is suggested as a result of the divergence between the large eastern Asian clade and the North American–west Asian clade within Altingiaceae during the Eocene–Oligocene. The presence of crystals in ray cells may be considered an ancestral condition that persists in the eastern Asian lineages up to the extant Altingia and Semiliquidambar, but which was lost in other Altingiaceae in the course of evolution.  相似文献   

12.
The spiny dogfish (Squalus acanthias) is a temperate, coastal squaloid shark with an antitropical distribution in the Atlantic and Pacific oceans. The global population structure of this species is poorly understood, although individuals are known to undergo extensive migrations within coastal waters and across ocean basins. In this study, an analysis of the global population structure of the spiny dogfish was conducted using eight polymorphic nuclear microsatellite markers and a 566‐bp fragment of the mitochondrial ND2 gene region. A low level of genetic divergence was found among collections from the Atlantic and South Pacific basins, whereas a high level of genetic divergence was found among Pacific Ocean collections. Two genetically distinct groups were recovered by both marker classes: one exclusive to North Pacific collections, and one including collections from the South Pacific and Atlantic locations. The strong genetic break across the equatorial Pacific coincides with major regional differences in the life‐history characters of spiny dogfish, suggesting that spiny dogfish in areas on either side of the Pacific equator have been evolving independently for a considerable time. Phylogeographic analyses indicate that spiny dogfish populations had a Pacific origin, and that the North Atlantic was colonized as a result of a recent range expansion from the South American coast. Finally, the available data strongly argue for the taxonomic separation of the North Pacific spiny dogfish from S. acanthias and a re‐evaluation of the specific status of S. acanthias is warranted.  相似文献   

13.
Distribution, body size and genetic structure of the poorly known New Zealand mayfly Siphlaenigma janae were investigated to improve understanding of its conservation status. It has now been recorded from 42 locations, 22 of which are reported for the first time. The distribution of S. janae extends from Northland to the central North Island, and also into the northwestern South Island. Population structure consisted of three distinct haplotype networks; two in the North Island and one in the South Island. Maximum uncorrected genetic distance was 6.1% but no strong evidence for the presence of sibling species was found. The specialist nymphs predominantly live in low-gradient first- and second-order forested streams, a habitat that is increasingly being threatened by land-use modification. We recommend S. janae remain classified as Nationally Vulnerable due to its unique taxonomic position, regionally distinct genetic structure and fragmented population that is likely experiencing ongoing decline.  相似文献   

14.
Spatial patterns of genetic diversity provide insight into the demography and history of species. Morphologically similar but genetically distinct “cryptic” species are increasingly being recognized in marine organisms through molecular analyses. Such species are, on closer inspection, often discovered to display contrasting life histories or occasionally minor morphological differences; molecular tools can thus be useful indicators of diversity. Bostrychia intricata, a marine red alga, is widely distributed throughout the Southern Hemisphere and comprises many cryptic species. We used mitochondrial cytochrome c oxidase I gene sequences to assess the genetic variation, population genetic structure, and demographic history of B. intricata in New Zealand. Our results supported the existence of three cryptic species of B. intricata (N2, N4, and N5) in New Zealand. Cryptic species N4, which was found throughout New Zealand, showed a higher genetic diversity and wider distribution than the other two species, which were only found in the North Island and northern South Island. Our analyses showed low to moderate genetic differentiation among eastern North Island populations for cryptic species N2, but high differentiation among North and South Island populations for N4, suggesting different population structure between these cryptic species. Data also indicated that N2 has recently undergone population expansion, probably since the Last Glacial Maximum (LGM), while the higher genetic diversity in N4 populations suggests persistence in situ through the LGM. The contrasting population structures and inferred demographic histories of these species highlight that life history can vary greatly even among morphologically indistinguishable taxa.  相似文献   

15.
Genetic divergence, body size and variations in external genitalia of the stonefly Stenoperla prasina (Newman, 1845) (Plecoptera: Eustheniidae) were investigated using specimens from 46 locations throughout New Zealand. Sequencing of a 658-bp fragment of the mtCOI gene from 77 individuals collected at 26 locations identified 10 haplotypes, and three geographic haplotype networks. Maximum uncorrected genetic divergence found was 4.3%. Past isolation of populations in northern and southwestern New Zealand was suggested by variations in genitalia. No relationship was found between body size and latitude over the length of New Zealand. However, male or female size was correlated with either latitude or altitude in the North or South Islands, and with altitude on a North Island mountain. The relatively small number of haplotypes found could indicate that they are survivors of an event that caused a bottleneck.  相似文献   

16.
Aim To examine the hypothesis raised by Graham S. Hardy that Pleistocene glacial cycles suffice to explain divergence among lineages within the endemic New Zealand speckled skink, Oligosoma infrapunctatum Boulenger. Location Populations were sampled from across the entire range of the species, on the North and South Islands of New Zealand. Methods We sequenced the mitochondrial genes ND2 (550 bp), ND4 + tRNAs (773 bp) and cytochrome b (610 bp) of 45 individuals from 21 locations. Maximum likelihood, maximum parsimony and Bayesian methods were used for phylogenetic reconstruction. The Shimodaira–Hasegawa test was used to examine hypotheses about the taxonomic status of morphologically distinctive populations. Results Our analysis revealed four strongly supported clades within O. infrapunctatum. Clades were largely allopatric, except on the west coast of the South Island, where representatives from all four clades were found. Divergences among lineages within the species were extremely deep, reaching over 5%. Two contrasting phylogeographical patterns are evident within O. infrapunctatum. Main conclusions The deep genetic divisions we found suggest that O. infrapunctatum is a complex of cryptic species which diverged in the Pliocene, contrary to the existing Pleistocene‐based hypothesis. Although Pleistocene glacial cycles do not underlie major divergences within this species, they may be responsible for the shallower phylogeographical patterns that are found within O. infrapunctatum, which include a radiation of haplotypes in the Nelson and Westland regions.  相似文献   

17.
The monoicous peatmoss Sphagnum subnitens has a tripartite distribution that includes disjunct population systems in Europe (including the Azores), northwestern North America and New Zealand. Regional genetic diversity was highest in European S. subnitens but in northwestern North America, a single microsatellite‐based multilocus haploid genotype was detected across 16 sites ranging from Coos County, Oregon, to Kavalga Island in the Western Aleutians (a distance of some 4115 km). Two multilocus haploid genotypes were detected across 14 sites on South Island, New Zealand. The microsatellite‐based regional genetic diversity detected in New Zealand and North American S. subnitens is the lowest reported for any Sphagnum. The low genetic diversity detected in both of these regions most likely resulted from a founder event associated with vegetative propagation and complete selfing, with one founding haploid plant in northwest North America and two in New Zealand. Thus, one plant appears to have contributed 100% of the gene pool for the population systems of S. subnitens occurring in northwest North America, and this is arguably the most genetically uniform group of plants having a widespread distribution yet detected. Although having a distribution spanning 12.5° of latitude and 56° of longitude, there was no evidence of any genetic diversification in S. subnitens in northwest North America. No genetic structure was detected among the three regions, and it appears that European plants of S. subnitens provided the source for New Zealand and northwest North American populations.  相似文献   

18.
The plant‐parasitic nematode Nacobbus aberrans sensu lato is an agricultural pest of quarantine importance. Due to the morphometric, physiological and genetic variability observed within the species, there is no agreement on the taxonomy of this nematode. The objective of this study was to analyse the ITS rDNA region and the D2–D3 expansion segments of 28S rDNA in 10 Argentine populations and one from Ecuador and to establish their phylogenetic relationship with other known sequences from South and North America. Phylogenetic trees of the ITS gene showed seven statistically well‐supported clades; the high and significant Fst values obtained among these groups confirmed this partitioning. The Argentine populations here considered were separated into three clades: one comprising a population from the Andean region and two grouping nematodes from lower altitudes. Three other clades were distinguished for South American populations, which included known sequences of individuals from Peru, Bolivia and north of Argentina. The other clade included sequences from Mexico, Ecuador and two Argentine populations of unknown origin. The important degree of genetic divergence observed among Andean populations suggests that the Andes may have played a crucial role in speciation of Nacobbus, which would have originated in this region. Although D2–D3 segments exhibited lower variation, they were useful for establishing phylogenetic relationships among the Argentine populations considered in this work. As there are no other GenBank sequences available for these segments, it was not possible to make comparisons with other populations from South and North America. The considerable genetic differentiation observed in ITS rDNA region among Nacobbus populations showed evidence of cryptic species within the N. aberrans s.l. complex. Integration of morphological and morphometric studies and molecular analyses considering other genes may aid in the identification of species and their phylogenetic relationships within this genus.  相似文献   

19.
Plant disjunctions have provided some of the most intriguing distribution patterns historically addressed by biogeographers. We evaluated the three hypotheses that have been postulated to explain these patterns [vicariance, stepping‐stone dispersal and long‐distance dispersal (LDD)] using Munroa, an American genus of grasses with six species and a disjunct distribution between the desert regions of North and South America. The ages of clades, cytology, ancestral characters and areas of distribution were investigated in order to establish relationships among species, to determine the time of divergence of the genus and its main lineages, and to understand further the biogeographical and evolutionary history of this genus. Bayesian inference recovered the North American M. pulchella as sister species to the rest. Molecular dating and ancestral area analyses suggest that Munroa originated in North America in the late Miocene–Pliocene (7.2 Mya; 8.2–6.5 Mya). Based on these results, we postulate that two dispersal events modelled the current distribution patterns of Munroa: the first from North to South America (7.2 Mya; 8.2–6.5 Mya) and the second (1.8 Mya; 2–0.8 Mya) from South to North America. Arid conditions of the late Miocene–Pliocene in the Neogene and Quaternary climatic oscillations in North America and South America were probably advantageous for the establishment of populations of Munroa. We did not find any relationship between ploidy and dispersal events, and our ancestral character analyses suggest that shifts associated with dispersal and seedling establishment, such as habit, reproductive system, disarticulation of rachilla, and shape and texture of the glume, have been important in these species reaching new areas. © 2015 The Linnean Society of London, Botanical Journal of the Linnean Society, 2015, 179 , 110–125.  相似文献   

20.
Baek HJ  Lee MY  Lee H  Min MS 《Molecules and cells》2011,31(2):105-112
Korean salamanders of the genus Hynobius are currently classified into 3 species, H. leechii, H. quelpaertensis, and H. yangi. To investigate the phylogenetic relationship of these species, we analyzed the partial sequence of mitochondrial cytochrome b gene (907 bp) of 197 specimens from 43 regions in South Korea. Of these specimens, 93 were additionally examined with 12S rRNA (799 bp). Based on the partial sequence of the mitochondrial cytochrome b gene and 12S rRNA, 89 and 36 haplotypes were defined, respectively, consisting of six subclades (H. leechii, H. quelpaertensis, H. yangi, HC1, HC2, and HC3). Among these subclades, the three subclades (HC1, HC2, and HC3) were clearly separated from the 3 previously reported species in the genus Hynobius. Pairwise sequence divergence between the six subclades ranged from 6.3 to 11.2% in cytochrome b gene and 2.0 to 4.3% in 12S rRNA. These results indicate there may be more divergent populations than the three currently described. Moreover, the estimation of divergence time revealed that the Hynobius species in South Korea diverged during the Miocene epoch, approximately 9 — 5 MYA. In addition, we confirmed the distribution of the three known species (H. leechii, H. quelpaertensis, and H. yangi) and determined the distributions of new, distinct groups (or subclades; HC1, HC1, and HC3). To more accurately establish the taxonomic status and population structure, further genetic, morphological, and ecological studies will be needed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号