首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Reactive oxygen species (ROS) play critical roles in cell death, diseases, and normal cellular processes. TRPM2 is a member of transient receptor potential (TRP) protein superfamily and forms a Ca2+-permeable nonselective cation channel activated by ROS, specifically by hydrogen peroxide (H2O2), and at least in part via second-messenger mechanisms. Accumulating evidence has indicated that TRPM2 mediates multiple cellular responses, after our finding that Ca2+ influx via TRPM2 regulates H2O2-induced cell death. Recently, we have demonstrated that Ca2+ influx through TRPM2 induces chemokine production in monocytes and macrophages, which aggravates inflammatory neutrophil infiltration in mice. However, understanding is still limited for in vivo physiological or pathophysiological significance of ROS-induced TRPM2 activation. In this review, we summarize mechanisms underlying activation of TRPM2 channels by oxidative stress and downstream biological responses, and discuss the biological importance of oxidative stress-activated TRP channels.  相似文献   

2.
Transient receptor potential melastatin 7 (TRPM7) is a Ca2+- and Mg2+-permeable nonselective cation channel that contains a unique carboxyl-terminal serine/threonine protein kinase domain. It has been reported that reactive oxygen species associated with hypoxia or ischemia activate TRPM7 current and then induce Ca2+ overload resulting in neuronal cell death in the brain. In this study, we aimed to investigate the molecular mechanisms of TRPM7 regulation by hydrogen peroxide (H2O2) using murine TRPM7 expressed in HEK293 cells. Using the whole-cell patch-clamp technique, it was revealed that the TRPM7 current was inhibited, not activated, by the application of H2O2 to the extracellular solution. This inhibition was not reversed after washout or treatment with dithiothreitol, suggesting irreversible oxidation of TRPM7 or its regulatory factors by H2O2 under whole-cell recording. Application of an electrophile, N-methylmaleimide (NMM), which covalently modifies cysteine residues in proteins, also inhibited TRPM7 current irreversibly. The effects of H2O2 and NMM were dependent on free [Mg2+]i; the inhibition was stronger when cells were perfused with higher free [Mg2+]i solutions via pipette. In addition, TRPM7 current was not inhibited by H2O2 when millimolar ATP was included in the intracellular solution, even in the presence of substantial free [Mg2+]i, which is sufficient for TRPM7 inhibition by H2O2 in the absence of ATP. Moreover, a kinase-deficient mutant of TRPM7 (K1645R) was similarly inhibited by H2O2 just like the wild-type TRPM7 in a [Mg2+]i- and [ATP]i-dependent manner, indicating no involvement of the kinase activity of TRPM7. Thus, these data suggest that oxidative stress inhibits TRPM7 current under pathological conditions that accompany intracellular ATP depletion and free [Mg2+]i elevation.  相似文献   

3.
Transient receptor potential melastatin 2 (TRPM2) is an oxidative stress-sensitive Ca2+-permeable channel. In monocytes/macrophages, H2O2-induced TRPM2 activation causes cell death and/or production of chemokines that aggravate inflammatory diseases. However, relatively high concentrations of H2O2 are required for activation of TRPM2 channels in vitro. Thus, in the present study, factors that sensitize TRPM2 channels to H2O2 were identified and subsequent physiological responses were examined in U937 human monocytes. Temperature increase from 30 °C to 37 °C enhanced H2O2-induced TRPM2-mediated increase in intracellular free Ca2+ ([Ca2+]i) in TRPM2-expressing HEK 293 cells (TRPM2/HEK cells). The H2O2-induced TRPM2 activation enhanced by the higher temperature was dramatically sensitized by intracellular Fe2+-accumulation following pretreatment with FeSO4. Thus intracellular Fe2+-accumulation sensitizes H2O2-induced TRPM2 activation at around body temperature. Moreover, intracellular Fe2+-accumulation increased poly(ADP-ribose) levels in nuclei by H2O2 treatment, and the sensitization of H2O2-induced TRPM2 activation were almost completely blocked by poly(ADP-ribose) polymerase inhibitors, suggesting that intracellular Fe2+-accumulation enhances H2O2-induced TRPM2 activation by increase of ADP-ribose production through poly(ADP-ribose) polymerase pathway. Similarly, pretreatment with FeSO4 stimulated H2O2-induced TRPM2 activation at 37 °C in U937 cells and enhanced H2O2-induced ERK phosphorylation and interleukin-8 (CXCL8) production. Although the addition of H2O2 to cells under conditions of intracellular Fe2+-accumulation caused cell death, concentration of H2O2 required for CXCL8 production was lower than that resulting in cell death. These results indicate that intracellular Fe2+-accumulation sensitizes TRPM2 channels to H2O2 and subsequently produces CXCL8 at around body temperature. It is possible that sensitization of H2O2-induced TRPM2 channels by Fe2+ may implicated in hemorrhagic brain injury via aggravation of inflammation, since Fe2+ is released by heme degradation under intracerebral hemorrhage.  相似文献   

4.
The Na+ and Ca2+-permeable melastatin related transient receptor potential 2 (TRPM2) channels can be gated either by ADP-ribose (ADPR) in concert with Ca2+ or by hydrogen peroxide (H2O2), an experimental model for oxidative stress, binding to the channel’s enzymatic Nudix domain. Since the mechanisms that lead to TRPM2 gating in response to ADPR and H2O2 are not understood in neuronal cells, I summarized previous findings and important recent advances in the understanding of Ca2+ influx via TRPM2 channels in different neuronal cell types and disease processes. Considering that TRPM2 is activated by oxidative stress, mediated cell death and inflammation, and is highly expressed in brain, the channel has been investigated in the context of central nervous system. TRPM2 plays a role in H2O2 and amyloid β-peptide induced striatal cell death. Genetic variants of the TRPM2 gene confer a risk of developing Western Pacific amyotropic lateral sclerosis and parkinsonism-dementia complex and bipolar disorders. TRPM2 also contributes to traumatic brain injury processes such as oxidative stress, inflammation and neuronal death. There are a limited number of TRPM2 channel blockers and they seem to be cell specific. For example, ADPR-induced Ca2+ influx in rat hippocampal cells was not blocked by N-(p-amylcinnomoyl)anthralic acid (ACA), the IP3 receptor inhibitor 2-aminoethoxydiphenyl borate or PLC inhibitor flufenamic acid (FFA). However, the Ca2+ entry in rat primary striatal cells was blocked by ACA and FFA. In conclusion TRPM2 channels in neuronal cells can be gated by either ADPR or H2O2. It seems to that the exact relationship between TRPM2 channels activation and neuronal cell death still remains to be determined.  相似文献   

5.
It is well established that intracellular calcium ([Ca2+]i) controls the inotropic state of the myocardium, and evidence mounts that a “Ca2+ clock” controls the chronotropic state of the heart. Recent findings describe a calcium-activated nonselective cation channel (NSCCa) in various cardiac preparations sharing hallmark characteristics of the transient receptor potential melastatin 4 (TRPM4). TRPM4 is functionally expressed throughout the heart and has been implicated as a NSCCa that mediates membrane depolarization. However, the functional significance of TRPM4 in regards to Ca2+ signaling and its effects on cellular excitability and pacemaker function remains inconclusive. Here, we show by Fura2 Ca-imaging that pharmacological inhibition of TRPM4 in HL-1 mouse cardiac myocytes by 9-phenanthrol (10 μM) and flufenamic acid (10 and 100 μM) decreases Ca2+ oscillations followed by an overall increase in [Ca2+]i. The latter occurs also in HL-1 cells in Ca2+-free solution and after depletion of sarcoplasmic reticulum Ca2+ with thapsigargin (10 μM). These pharmacologic agents also depolarize HL-1 cell mitochondrial membrane potential. Furthermore, by on-cell voltage clamp we show that 9-phenanthrol reversibly inhibits membrane current; by fluorescence immunohistochemistry we demonstrate that HL-1 cells display punctate surface labeling with TRPM4 antibody; and by immunoblotting using this antibody we show these cells express a 130–150 kDa protein, as expected for TRPM4. We conclude that 9-phenanthrol inhibits TRPM4 ion channels in HL-1 cells, which in turn decreases Ca2+ oscillations followed by a compensatory increase in [Ca2+]i from an intracellular store other than the sarcoplasmic reticulum. We speculate that the most likely source is the mitochondrion.  相似文献   

6.
The Na+ and Ca2+-permeable melastatin related transient receptor potential (TRPM2) cation channels can be gated either by ADP-ribose (ADPR) in concert with Ca2+ or by hydrogen peroxide (H2O2), an experimental model for oxidative stress, and binding to the channel’s enzymatic Nudix domain. Since the mechanisms that lead to TRPM2 inhibiting in response to ADPR and H2O2 are not understood, I reviewed the effects of various inhibitors such as flufenamic acid and PARP inhibitors on ADPR, NAD+ and H2O2-induced TRPM2 currents. In our experimental study, TRPM2 cation channels in chinese hamster ovary transected cells were gated both by ADPR and NAD+. In addition, H2O2 seems to activate TRPM2 by changing to the hydroxyl radical in the intracellular space after passing the plasma membrane. Experimental studies with respect to patch-clamp and Ca2+ imaging, inhibitor roles of antioxidants are also summarized in the review.  相似文献   

7.
Oxidative stress is associated with many cardiovascular diseases, such as hypertension and arteriosclerosis. Oxidative stress reportedly activates the L-type voltage-gated calcium channel (VDCCL) and elevates [Ca2+]i in many cells. However, how oxidative stress activates VDCCL under clinical setting and the consequence for arteries are unclear. Here, we examined the hypothesis that hydrogen peroxide (H2O2) regulates membrane potential (Em) by altering Na+ influx through cation channels, which consequently activates VDCCL to induce vasoconstriction in rat mesenteric arteries. To measure the tone of the endothelium-denuded arteries, a conventional isometric organ chamber was used. Membrane currents and Em were recorded by the patch-clamp technique. [Ca2+]i and [Na+]i were measured with microfluorometry using Fura2-AM and SBFI-AM, respectively. We found that H2O2 (10 and 100 µM) increased arterial contraction, and nifedipine blocked the effects of H2O2 on isometric contraction. H2O2 increased [Ca2+]i as well as [Na+]i, and depolarised Em. Gd3+ (1 µM) blocked all these H2O2-induced effects including Em depolarisation and increases in [Ca2+]i and [Na+]i. Although both nifedipine (30?nM) and low Na+ bath solution completely prevented the H2O2-induced increase in [Na+], they only partly inhibited the H2O2-induced effects on [Ca2+]i and Em. Taken together, the results suggested that H2O2 constricts rat arteries by causing Em depolarisation and VDCCL activation through activating Gd3+-and nifedipine-sensitive, Na+-permeable channels as well as Gd3+-sensitive Ca2+-permeable cation channels. We suggest that unidentified Na+-permeable cation channels as well as Ca2+-permeable cation channels may function as important mediators for oxidative stress-induced vascular dysfunction.  相似文献   

8.
We identified human TRPC3 protein by yeast two-hybrid screening of a human brain cDNA library with human TRPM4b as a bait. Immunoprecipitation and confocal microscopic analyses confirmed the protein-protein interaction between TRPM4b and TRPC3, and these two TRPs were found to be highly colocalized at the plasma membrane of HEK293T cells. Overexpression of TRPM4b suppressed TRPC3-mediated whole cell currents by more than 90% compared to those in TRPC3-expressed HEK293T cells. Furthermore, HEK293T cells stably overexpressing red fluorescent protein (RFP)-TRPM4b exhibited an almost complete abolition of UTP-induced store-operated Ca2+ entry, which is known to take place via endogenous TRPC channels in HEK293T cells. This study is believed to provide the first clear evidence that TRPM4b interacts physically with TRPC3, a member of a different TRP subfamily, and regulates negatively the channel activity, in turn suppressing store-operated Ca2+ entry through the TRPC3 channel.  相似文献   

9.
10.
Reactive oxygen species (ROS) have been commonly accepted as inducers of autophagy, and autophagy in turn is activated to relieve oxidative stress. Yet, whether and how oxidative stress, generated in various human pathologies, regulates autophagy remains unknown. Here, we mechanistically studied the role of TRPM2 (transient receptor potential cation channel subfamily M member 2)-mediated Ca2+ influx in oxidative stress-mediated autophagy regulation. On the one hand, we demonstrated that oxidative stress triggered TRPM2-dependent Ca2+ influx to inhibit the induction of early autophagy, which renders cells more susceptible to death. On the other hand, oxidative stress induced autophagy (and not cell death) in the absence of the TRPM2-mediated Ca2+ influx. Moreover, in response to oxidative stress, TRPM2-mediated Ca2+ influx activated CAMK2 (calcium/calmodulin dependent protein kinase II) at levels of both phosphorylation and oxidation, and the activated CAMK2 subsequently phosphorylated BECN1/Beclin 1 on Ser295. Ser295 phosphorylation of BECN1 in turn decreased the association between BECN1 and PIK3C3/VPS34, but induced binding between BECN1 and BCL2. Clinically, acetaminophen (APAP) overdose is the most common cause of acute liver failure worldwide. We demonstrated that APAP overdose also activated ROS-TRPM2-CAMK2-BECN1 signaling to suppress autophagy, thereby causing primary hepatocytes to be more vulnerable to death. Inhibiting the TRPM2-Ca2+-CAMK2 cascade significantly mitigated APAP-induced liver injury. In summary, our data clearly demonstrate that oxidative stress activates the TRPM2-Ca2+-CAMK2 cascade to phosphorylate BECN1 resulting in autophagy inhibition.  相似文献   

11.
Microglia are immune cells that release factors, including proinflammatory cytokines, nitric oxide (NO), and neurotrophins, following activation after disturbance in the brain. Elevation of intracellular Ca2+ concentration ([Ca2+]i) is important for microglial functions such as the release of cytokines and NO from activated microglia. There is increasing evidence suggesting that pathophysiology of neuropsychiatric disorders is related to the inflammatory responses mediated by microglia. Brain-derived neurotrophic factor (BDNF) is a neurotrophin well known for its roles in the activation of microglia as well as in pathophysiology and/or treatment of neuropsychiatric disorders. In this study, we sought to examine the underlying mechanism of BDNF-induced sustained increase in [Ca2+]i in rodent microglial cells. We observed that canonical transient receptor potential 3 (TRPC3) channels contribute to the maintenance of BDNF-induced sustained intracellular Ca2+ elevation. Immunocytochemical technique and flow cytometry also revealed that BDNF rapidly up-regulated the surface expression of TRPC3 channels in rodent microglial cells. In addition, pretreatment with BDNF suppressed the production of NO induced by tumor necrosis factor α (TNFα), which was prevented by co-adiministration of a selective TRPC3 inhibitor. These suggest that BDNF induces sustained intracellular Ca2+ elevation through the up-regulation of surface TRPC3 channels and TRPC3 channels could be important for the BDNF-induced suppression of the NO production in activated microglia. We show that TRPC3 channels could also play important roles in microglial functions, which might be important for the regulation of inflammatory responses and may also be involved in the pathophysiology and/or the treatment of neuropsychiatric disorders.  相似文献   

12.
TRPM2 is a Ca2+-permeable channel activated by oxidative stress or TNF-, and TRPM2 activation confers susceptibility to cell death. The mechanisms were examined here in human monocytic U937-ecoR cells. This cell line expresses full-length TRPM2 (TRPM2-L) and several isoforms including a short splice variant lacking the Ca2+-permeable pore region (TRPM2-S), which functions as a dominant negative. Treatment with H2O2, a model of oxidative stress, or TNF- results in reduced cell viability. Expression of TRPM2-L and TRPM2-S was modulated by retroviral infection. U937-ecoR cells expressing increased levels of TRPM2-L were treated with H2O2 or TNF-, and these cells exhibited significantly increased intracellular calcium concentration ([Ca2+]i), decreased viability, and increased apoptosis. A dramatic increase in cleavage of caspases-8, -9, -3, and -7 and poly(ADP-ribose)polymerase (PARP) was observed, demonstrating a downstream mechanism through which cell death is mediated. Bcl-2 levels were unchanged. Inhibition of the [Ca2+]i rise with the intracellular Ca2+ chelator BAPTA blocked caspase/PARP cleavage and cell death induced after activation of TRPM2-L, demonstrating the critical role of [Ca2+]i in mediating these effects. Downregulation of endogenous TRPM2 by RNA interference or increased expression of TRPM2-S inhibited the rise in [Ca2+]i, enhanced cell viability, and reduced numbers of apoptotic cells after exposure to oxidative stress or TNF-, demonstrating the physiological importance of TRPM2. Our data show that one mechanism through which oxidative stress or TNF- mediates cell death is activation of TRPM2, resulting in increased [Ca2+]i, followed by caspase activation and PARP cleavage. Inhibition of TRPM2-L function by reduction in TRPM2 levels, interaction with TRPM2-S, or Ca2+ chelation antagonizes this important cell death pathway. oxidative stress; tumor necrosis factor-; apoptosis  相似文献   

13.
Regulation of critical cellular functions, including Ca2+-dependent gene expression, is determined by the temporal and spatial aspects of agonist-induced Ca2+ signals. Stimulation of cells with physiological concentrations of agonists trigger increases [Ca2+]i due to intracellular Ca2+ release and Ca2+ influx. While Orai1-STIM1 channels account for agonist-stimulated [Ca2+]i increase as well as activation of NFAT in cells such as lymphocytes, RBL and mast cells, both Orai1-STIM1 and TRPC1-STIM1 channels contribute to [Ca2+]i increases in human submandibular gland (HSG) cells. However, only Orai1-mediated Ca2+ entry regulates the activation of NFAT in HSG cells. Since both TRPC1 and Orai1 are activated following internal Ca2+ store depletion in these cells, it is not clear how the cells decode individual Ca2+ signals generated by the two channels for the regulation of specific cellular functions. Here we have examined the contributions of Orai1 and TRPC1 to carbachol (CCh)-induced [Ca2+]i signals and activation of NFAT in single cells. We report that Orai1-mediated Ca2+ entry generates [Ca2+]i oscillations at different [CCh], ranging from very low to high. In contrast, TRPC1-mediated Ca2+ entry generates sustained [Ca2+]i elevation at high [CCh] and contributes to frequency of [Ca2+]i oscillations at lower [agonist]. More importantly, the two channels are coupled to activation of distinct Ca2+ dependent gene expression pathways, consistent with the different patterns of [Ca2+]i signals mediated by them. Nuclear translocation of NFAT and NFAT-dependent gene expression display “all-or-none” activation that is exclusively driven by local [Ca2+]i generated by Orai1, independent of global [Ca2+]i changes or TRPC1-mediated Ca2+ entry. In contrast, Ca2+ entry via TRPC1 primarily regulates NFκB-mediated gene expression. Together, these findings reveal that Orai1 and TRPC1 mediate distinct local and global Ca2+ signals following agonist stimulation of cells, which determine the functional specificity of the channels in activating different Ca2+-dependent gene expression pathways.  相似文献   

14.
Effect of the carcinogen thapsigargin on human prostate cancer cells is unclear. This study examined if thapsigargin altered basal [Ca2+]i levels in suspended PC3 human prostate cancer cells by using fura-2 as a Ca2+-sensitive fluorescent probe. Thapsigargin at concentrations between 10?nM and 10 µM increased [Ca2+]i in a concentration-dependent fashion. The Ca2+ signal was reduced partly by removing extracellular Ca2+ indicating that Ca2+ entry and release both contributed to the [Ca2+]i rise. This Ca2+ influx was inhibited by suppression of phospholipase A2, but not by inhibition of store-operated Ca2+ channels or by modulation of protein kinase C activity. In Ca2+-free medium, pretreatment with the endoplasmic reticulum Ca2+ pump inhibitor 2,5-di-(t-butyl)-1,4-hydroquinone (BHQ) nearly abolished thapsigargin-induced Ca2+ release. Conversely, pretreatment with thapsigargin greatly reduced BHQ-induced [Ca2+]i rise, suggesting that thapsigargin released Ca2+ from the endoplasmic reticulum. Inhibition of phospholipase C did not change thapsigargin-induced [Ca2+]i rise. At concentrations of 1-10 µM, thapsigargin induced cell death that was partly reversed by chelation of Ca2+ with BAPTA/AM. Annexin V/propidium iodide staining data suggest that apoptosis was partly responsible for thapsigargin-induced cell death. Together, in PC3 human prostate cancer cells, thapsigargin induced [Ca2+]i rises by causing phospholipase C-independent Ca2+ release from the endoplasmic reticulum and Ca2+ influx via phospholipase A2-sensitive Ca2+ channels. Thapsigargin also induced cell death via Ca2+-dependent pathways and Ca2+-independent apoptotic pathways.  相似文献   

15.
Lead toxicity is long-recognised but continues to be a major public health problem. Its effects are wide-ranging and include induction of hyper-anxiety states. In general it is thought to act by interfering with Ca2+ signalling but specific targets are not clearly identified. Transient receptor potential canonical 5 (TRPC5) is a Ca2+-permeable ion channel that is linked positively to innate fear responses and unusual amongst ion channels in being stimulated by trivalent lanthanides, which include gadolinium. Here we show investigation of the effect of lead, which is a divalent ion (Pb2+). Intracellular Ca2+ and whole-cell patch-clamp recordings were performed on HEK 293 cells conditionally over-expressing TRPC5 or other TRP channels. Extracellular application of Pb2+ stimulated TRPC5 at concentrations greater than 1 μM. Control cells without TRPC5 showed little or no response to Pb2+ and expression of other TRP channels (TRPM2 or TRPM3) revealed partial inhibition by 10 μM Pb2+. The stimulatory effect on TRPC5 depended on an extracellular residue (E543) near the ion pore: similar to gadolinium action, E543Q TRPC5 was resistant to Pb2+ but showed normal stimulation by the receptor agonist sphingosine-1-phosphate. The study shows that Pb2+ is a relatively potent stimulator of the TRPC5 channel, generating the hypothesis that a function of the channel is to sense metal ion poisoning.  相似文献   

16.
The effect of carvedilol on cytosolic free Ca2+ concentrations ([Ca2+]i) in OC2 human oral cancer cells is unknown. This study examined if carvedilol altered basal [Ca2+]i levels in suspended OC2 cells by using fura-2 as a Ca2+-sensitive fluorescent probe. Carvedilol at concentrations between 10 and 40 µM increased [Ca2+]i in a concentration-dependent fashion. The Ca2+ signal was decreased by 50% by removing extracellular Ca2+. Carvedilol-induced Ca2+ entry was not affected by the store-operated Ca2+ channel blockers nifedipine, econazole, and SK&F96365, but was enhanced by activation or inhibition of protein kinase C. In Ca2+-free medium, incubation with the endoplasmic reticulum Ca2+ pump inhibitor thapsigargin did not change carvedilol-induced [Ca2+]i rise; conversely, incubation with carvedilol did not reduce thapsigargin-induced Ca2+ release. Pretreatment with the mitochondrial uncoupler carbonylcyanide m-chlorophenylhydrazone (CCCP) inhibited carvedilol-induced [Ca2+]i release. Inhibition of phospholipase C with U73122 did not alter carvedilol-induced [Ca2+]i rise. Carvedilol at 5–50 µM induced cell death in a concentration-dependent manner. The death was not reversed when cytosolic Ca2+ was chelated with 1,2-bis(2-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid acetoxymethyl ester (BAPTA/AM). Annexin V/propidium iodide staining assay suggests that apoptosis played a role in the death. Collectively, in OC2 cells, carvedilol induced [Ca2+]i rise by causing phospholipase C-independent Ca2+ release from mitochondria and non-endoplasmic reticulum stores, and Ca2+ influx via protein kinase C-regulated channels. Carvedilol (up to 50 μM) induced cell death in a Ca2+-independent manner that involved apoptosis.  相似文献   

17.
Regulation of TRP channel TRPM2 by the tyrosine phosphatase PTPL1   总被引:1,自引:0,他引:1  
TRPM2, a member of the transient receptor potential (TRP) superfamily, is a Ca2+-permeable channel, which mediates susceptibility to cell death following activation by oxidative stress, TNF, or -amyloid peptide. We determined that TRPM2 is rapidly tyrosine phosphorylated after stimulation with H2O2 or TNF. Inhibition of tyrosine phosphorylation with the tyrosine kinase inhibitors genistein or PP2 significantly reduced the increase in [Ca2+]i observed after H2O2 or TNF treatment in TRPM2-expressing cells, suggesting that phosphorylation is important in TRPM2 activation. Utilizing a TransSignal PDZ domain array blot to identify proteins which interact with TRPM2, we identified PTPL1 as a potential binding protein. PTPL1 is a widely expressed tyrosine phosphatase, which has a role in cell survival and tumorigenesis. Immunoprecipitation and glutathione-S-transferase pull-down assays confirmed that TRPM2 and PTPL1 interact. To examine the ability of PTPL1 to modulate phosphorylation or activation of TRPM2, PTPL1 was coexpressed with TRPM2 in human embryonic kidney-293T cells. This resulted in significantly reduced TRPM2 tyrosine phosphorylation, and inhibited the rise in [Ca2+]i and the loss of cell viability, which follow H2O2 or TNF treatment. Consistent with these findings, reduction in endogenous PTPL1 expression with small interfering RNA resulted in increased TRPM2 tyrosine phosphorylation, a significantly greater rise in [Ca2+]i following H2O2 treatment, and enhanced susceptibility to H2O2-induced cell death. Endogenous TRPM2 and PTPL1 was associated in U937-ecoR cells, confirming the physiological relevance of this interaction. These data demonstrate that tyrosine phosphorylation of TRPM2 is important in its activation and function and that inhibition of TRPM2 tyrosine phosphorylation reduces Ca2+ influx and protects cell viability. They also suggest that modulation of TRPM2 tyrosine phosphorylation is a mechanism through which PTPL1 may mediate resistance to cell death. transient receptor potential channels; oxidative stress  相似文献   

18.
The ubiquitous transient receptor potential canonical (TRPC) channels function as non-selective, Ca2+-permeable channels. TRPC channels are activated by stimulation of Gαq-PLC-coupled receptors. Here, we report that TRPC4/TRPC5 can be activated by Gαi. We studied the essential role of Gαi subunits in TRPC4 activation and investigated changes in ion selectivity and pore dilation of the TRPC4 channel elicited by the Gαi2 subunit. Activation of TRPC4 by Gαi2 increased Ca2+ permeability and Ca2+ influx through TRPC4 channels. Co-expression of the muscarinic receptor (M2) and TRPC4 in HEK293 cells induced TRPC4-mediated Ca2+ influx. Moreover, both TRPC4β and the TRPC4β-Gαi2 signaling complex induced inhibition of neurite growth and arborization in cultured hippocampal neurons. Cells treated with KN-93, a CaMKII inhibitor, prevented TRPC4- and TRPC4-Gαi2Q205L-mediated inhibition of neurite branching and growth. These findings indicate an essential role of Gαi proteins in TRPC4 activation and extend our knowledge of the functional role of TRPC4 in hippocampal neurons.  相似文献   

19.
This study explored the role of transient receptor potential melastatin 8 ion channels (TRPM8) in mechanisms of human glioblastoma (DBTRG) cell migration. Menthol stimulated influx of Ca2+, membrane current, and migration of DBTRG cells. Effects on Ca2+ and migration were enhanced by pre-treatment with hepatocyte growth factor/scatter factor (HGF/SF). Effects on Ca2+ also were greater in migrating cells compared with non-migrating cells. 2-Aminoethoxydiphenyl borate (2-APB) inhibited all menthol stimulations. RT-PCR and immunoblot analysis showed that DBTRG cells expressed both mRNA and protein for TRPM8 ion channels. Two proteins were evident: one (130-140 kDa) in a plasma membrane-enriched fraction, and a variant (95-100 kDa) in microsome- and plasma membrane-enriched fractions. Thus, TRPM8 plays a role in mechanisms that increase [Ca2+]i needed for DBTRG cell migration.  相似文献   

20.
We recently reported key physiologic roles for Ca2+-activated transient receptor potential melastatin 4 (TRPM4) channels in detrusor smooth muscle (DSM). However, the Ca2+-signaling mechanisms governing TRPM4 channel activity in human DSM cells are unexplored. As the TRPM4 channels are activated by Ca2+, inositol 1,4,5-trisphosphate receptor (IP3R)-mediated Ca2+ release from the sarcoplasmic reticulum represents a potential Ca2+ source for TRPM4 channel activation. We used clinically-characterized human DSM tissues to investigate the molecular and functional interactions of the IP3Rs and TRPM4 channels. With in situ proximity ligation assay (PLA) and perforated patch-clamp electrophysiology, we tested the hypothesis that TRPM4 channels are tightly associated with the IP3Rs and are activated by IP3R-mediated Ca2+ release in human DSM. With in situ PLA, we demonstrated co-localization of the TRPM4 channels and IP3Rs in human DSM cells. As the TRPM4 channels and IP3Rs must be located within close apposition to functionally interact, these findings support the concept of a potential Ca2+-mediated TRPM4-IP3R regulatory mechanism. To investigate IP3R regulation of TRPM4 channel activity, we sought to determine the consequences of IP3R pharmacological inhibition on TRPM4 channel-mediated transient inward cation currents (TICCs). In freshly-isolated human DSM cells, blocking the IP3Rs with the selective IP3R inhibitor xestospongin-C significantly decreased TICCs. The data suggest that IP3Rs have a key role in mediating the Ca2+-dependent activation of TRPM4 channels in human DSM. The study provides novel insight into the molecular and cellular mechanisms regulating TRPM4 channels by revealing that TRPM4 channels and IP3Rs are spatially and functionally coupled in human DSM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号