首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rat pancreatic islets have been shown to possess specific binding sites for 125I-labeled insulin. Enzymatic and chemical modification of islets are used to reveal important structures and chemical groups for insulin binding. Pretreatment with trypsin, neuraminidase, 1-ethyl-3(3-dimethylamino)carbodiimide (a carboxyl reagent), tetranitromethane (a tyrosyl and thiol reagent), and 1,3-difluoro-4,6-dinitrobenze (modification of protein functional groups) decreased binding of insulin. This was due to the diminuation of the receptor number; in the case of trypsin-pretreatment also the receptor affinity was decreased. Inhibition of insulin binding was in each case associated with a decrease of the inhibitory effect of exogenous insulin on glucose-induced insulin secretion (not measured in the case of difluorodinitrobenzene and tetranitromethane). Phospholipase A2 (cleavage of phospholipids) did not affect these parameters. 5,5′-dithiobis(2-nitrobenzoic acid) (Ellman's reagent) and possibly p-chloromercuribenzoate (both thiol reagents) increased the number of receptors and decreased receptor affinity, but did not influence the inhibitory effect of insulin on insulin release. It is concluded that protein functional groups, sialic acid, carboxyl and tyrosyl groups, but not phospholipids and probably not sylfhyryl groups are important for the interaction of insulin with insulin receptors of rat pancreatic islets.  相似文献   

2.
We have shown earlier a requirement for Ca2+ and calmodulin (CaM) in the H2O2-induced activation of extracellular signal-regulated kinases 1 and 2 (ERK1/2) and protein kinase B (PKB), key mediators of growth-promoting, proliferative, and hypertrophic responses in vascular smooth muscle cells (VSMC). Because the effect of CaM is mediated through CaM-dependent protein kinase II (CaMKII), we have investigated here the potential role of CaMKII in H2O2-induced ERK1/2 and PKB phosphorylation by using pharmacological inhibitors of CaM and CaMKII, a CaMKII inhibitor peptide, and siRNA knockdown strategies for CaMKIIα. Calmidazolium and W-7, antagonists of CaM, as well as KN-93, a specific inhibitor of CaMKII, attenuated H2O2-induced responses of ERK1/2 and PKB phosphorylation in a dose-dependent fashion. Similar to H2O2, calmidazolium and KN-93 also exhibited an inhibitory effect on glucose/glucose oxidase-induced phosphorylation of ERK1/2 and PKB in these cells. Transfection of VSMC with CaMKII autoinhibitory peptide corresponding to the autoinhibitory domain (aa 281–309) of CaMKII and with siRNA of CaMKIIα attenuated the H2O2-induced phosphorylation of ERK1/2 and PKB. In addition, calmidazolium and KN-93 blocked H2O2-induced Pyk2 and insulin-like growth factor-1 receptor (IGF-1R) phosphorylation. Moreover, treatment of VSMC with CaMKIIα siRNA abolished the H2O2-induced IGF-1R phosphorylation. H2O2 treatment also induced Thr286 phosphorylation of CaMKII, which was inhibited by both calmidazolium and KN-93. These results demonstrate that CaMKII plays a critical upstream role in mediating the effects of H2O2 on ERK1/2, PKB, and IGF-1R phosphorylation.  相似文献   

3.
To ascertain whether prostaglandins (PG) may play a role in the secretion of glucagon and in an attempt to elucidate the conflicting observations on the effects of PG on insulin release, the isolated intact rat pancreas was perfused with solutions containing 1.1 × 10−9 to 1.8 × 10−5M PGE2. In the presence of 5.6 mM glucose significant increments in portal venous effluent levels of glucagon and insulin were observed in response to minimal concentrations of 2.8 × 10−8 and 1.4 × 10−7M PGE2, respectively; a dose-response relationship was evident for both hormones at higher concentrations of PGE2. When administered over 60 seconds, 1.4 × 10−6M PGE2 resulted in a significant increase in glucagon levels within 24 seconds and in insulin within 48 seconds. Ten-minute perfusions of 1.4 × 10−6M PGE2 elicited biphasic release of both islet hormones; Phase I glucagon release preceded that of insulin. Both phases of the biphasic glucagon and insulin release which occurred in response to 15-minute perfusions of 10 mM arginine were augmented by PGE2. These observations indicate that PGE2 can evoke glucagon and insulin release at concentrations close to those observed by others in the extracts of rat pancreas. We conclude that PG may be involved in the regulation of secretion of glucagon and insulin and may mediate and/or modify the pancreatic islet hormone response to other secretagogues.  相似文献   

4.
Our previous studies showed that the prothoracicotropic hormone (PTTH) stimulated extracellular signal-regulated kinase (ERK) phosphorylation in prothoracic glands of Bombyx mori both in vitro and in vivo. In the present study, the signaling pathway by which PTTH activates ERK phosphorylation was further investigated using PTTH, second messenger analogs, and various inhibitors. ERK phosphorylation induced by PTTH was partially reduced in Ca2+-free medium. The calmodulin antagonist, calmidazolium, partially inhibited both PTTH-stimulated ERK phosphorylation and ecdysteroidogenesis, indicating the involvement of calmodulin. When the prothoracic glands were treated with agents that directly elevate the intracellular Ca2+ concentration [either A23187, thapsigargin, or the protein kinase C (PKC) activator, phorbol 12-myristate acetate (PMA)], a great increase in ERK phosphorylation was observed. In addition, it was found that PTTH-stimulated ecdysteroidogenesis was greatly attenuated by treatment with PKC inhibitors (either calphostin C or chelerythrine C). However, PTTH-stimulated ERK phosphorylation was not attenuated by the above PKC inhibitors, indicating that PKC is not involved in PTTH-stimulated ERK phosphorylation. A potent and specific inhibitor of insulin receptor tyrosine kinase, HNMPA-(AM)3, greatly inhibited the ability of PTTH to activate ERK phosphorylation and stimulate ecdysteroidogenesis. However, genistein, another tyrosine kinase inhibitor, did not inhibit PTTH-stimulated ERK phosphorylation, although it did markedly attenuate the ability of A23187 to activate ERK phosphorylation. From these results, it is suggested that PTTH-stimulated ERK phosphorylation is only partially Ca2+- and calmodulin-dependent and that HNMPA-(AM)3-sensitive receptor tyrosine kinase is involved in activation of ERK phosphorylation by PTTH.  相似文献   

5.
The present study was conducted to characterize insulin receptors and to determine the effects of insulin in synaptosomes prepared from adult rat brains. Binding of125I-insulin to synaptosome insulin receptors was highly specific and time dependent: equilibrium binding was obtained within 60 minutes, and a t1/2 of dissociation of 26 minutes. Cross-linking of125I-insulin to its receptor followed by SDS-PAGE demonstrated that the apparent molecular weight of the alpha subunit of the receptor was 122,000 compared with 134,000 for the liver insulin receptor. In addition, insulin stimulated the dose-dependent phosphorylation of exogenous tyrosine containing substrate and a 95,000 MW plasma membrane associated protein, in a lectin-purified insulin receptor preparation. The membrane associated protein was determined to be the subunit of the insulin receptor. Incubation of synaptosomes with insulin caused a dose-dependent inhibition of specific sodium-sensitive [3H]norepinephrine uptake. Insulin inhibition of [3H]norepinephrine uptake was mediated by a decrease in active uptake sites without any effects in theK m, and was specific for insulin since related and unrelated peptides influenced the uptake in proportion to their structural similarity with insulin. These observations indicate that synaptosomes prepared from the adult rat brain possess specific insulin receptors and insulin has inhibitory effects on norepinephrine uptake in the preparation.  相似文献   

6.
To ascertain whether prostaglandins (PG) may play a role in the secretion of glucagon and in an attempt to elucidate the conflicting observations on the effects of PG on insulin release, the isolated intact rat pancreas was perfused with solutions containing 1.1 × 10−9 to 1.8 × 10−5M PGE2. In the presence of 5.6 mM glucose significant increments in portal venous effluent levels of glucagon and insulin were observed in response to minimal concentrations of 2.8 × 10−8 and 1.4 × 10−7M PGE2, respectively; a dose-response relationship was evident for both hormones at higher concentrations of PGE2. When administered over 60 seconds, 1.4−10−6M PGE2 resulted in a significant increase in glucagon levels within 24 seconds and in insulin within 48 seconds. Ten-minute perfusions of 1.4 × 10−6M PGE2 elicited biphasic release of both islet hormones; Phase I glucagon release preceded that of insulin. Both phases of the biphasic glucagon and insulin release which occurred in response to 15-minute perfusions of 10 mM arginine were augmented by PGE2. These observations indicate that PGE2 can evoke glucagon and insulin release at concentrations close to those observed by others in the extracts of rat pancreas. We conclude that PG may be involved in the regulation of secretion of glucagon and insulin and may mediate and/or modify the pancreatic islet hormone response to other secretagogues.  相似文献   

7.
In this study, we present data that support the presence of two distinct calmodulin binding sites within the angiotensin II receptor (AT1A), at juxtamembrane regions of the N-terminus of the third intracellular loop (i3, amino acids 214–231) and carboxyl tail of the receptor (ct, 302–317). We used bioluminescence resonance energy transfer assays to document interactions of calmodulin with the AT1A holo-receptor and GST-fusion protein pull-downs to demonstrate that i3 and ct interact with calmodulin in a Ca2+-dependent fashion. The former is a 1–12 motif and the latter belongs to 1-5-10 calmodulin binding motif. The apparent Kd of calmodulin for i3 is 177.0±9.1 nM, and for ct is 79.4±7.9 nM as assessed by dansyl-calmodulin fluorescence. Replacement of the tryptophan (W219) for alanine in i3, and phenylalanine (F309 or F313) for alanine in ct reduced their binding affinities for calmodulin, as predicted by computer docking simulations. Exogenously applied calmodulin attenuated interactions between G protein βγ subunits and i3 and ct, somewhat more so for ct than i3. Mutations W219A, F309A, and F313A did not alter Gβγ binding, but reduced the ability of calmodulin to compete with Gβγ, suggesting that calmodulin and Gβγ have overlapping, but not identical, binding requirements for i3 and ct. Calmodulin interference with the Gβγ binding to i3 and ct regions of the AT1A receptor strongly suggests that calmodulin plays critical roles in regulating Gβγ-dependent signaling of the receptor.  相似文献   

8.
Summary I have investigated the effect of lead on the erythrocyte ghosts (Ca2+,Mg2+)-ATPase, with special attention to the role of calmodulin in this phenomena. Under regular incubation conditions, lead inhibits the enzyme with an IC50 of 6.0 µM. The presence of exogenously added calmodulin apparently does not change this inhibitory value. DTT added during the incubation period does not affect the inhibitory action of lead. However, when the membranes are preincubated with DTT, an important IC50 displacement is observed, either with or without added calmodulin. Since [125I]calmodulin binding to the membranes is enhanced when lead is used, the possibility of a lead/calmodulin complex that optimally stimulates the enzyme using lead concentrations between 1.0 and 10.0 µM, is suggested. Based on the experimental data, I propose two well defined actions of lead; first, an inhibitory action upon the ATPase above 1.0 µM lead, most probably related to essential sullphydryl groups in the enzyme; and second, a direct action of lead upon calmodulin at lead concentrations below 1.0 µM.A preliminary report has been presented at the 5th European Bioenergetics Conference. Aberystwyth, Wales. 20–26 July 1988. EBEC Reports. vol 5; p294 (1988).  相似文献   

9.
Ten distinct protein kinases have been tested for their ability to phosphorylate calmodulin. Only casein kinase-2 and a spleen tyrosine protein kinase (TPK-III) proved effective, their phosphorylation efficiency being dramatically enhanced by histones and other polybasic peptides while being depressed by 50 microM Ca2+. Phosphorylation by CK-2 takes place with a Km of 12 microM calmodulin, leading to the incorporation of more than 1.5 mol P/mol substrate. Ser81 and Thr79 are among the residues affected. On the other hand, the two tyrosyl residues of calmodulin are both phosphorylated by TPK-III, Tyr99 being preferred over Tyr138.  相似文献   

10.
Despite intensive research efforts, the functional role and regulation of the insulin receptor kinase remain enigmatic. In this investigation, we demonstrate that calmodulin enhances insulin-stimulated phosphorylation of the beta subunit of the insulin receptor and histone H2b and that insulin also stimulates phosphorylation of calmodulin. Using wheat germ lectin-enriched insulin receptor preparations obtained from rat adipocyte plasma membranes, calmodulin stimulated the rate and increased the amount of 32P incorporated predominantly into tyrosine residues of the beta subunit of the receptor when assayed in the presence of insulin. The stimulatory effect of calmodulin was both dose-dependent and saturable with half-maximal and maximal phosphorylation of the beta subunit occurring at 0.4 and 2.0 microM calmodulin, respectively. Ca2+ enhanced the ability of calmodulin to stimulate insulin-mediated phosphorylation of the beta subunit with an apparent K0.5 of approximately 0.6 microM. Calmodulin also induced an approximately 2-fold increase in both the rate and amount of insulin-mediated incorporation of 32P into histone H2b. The stimulatory effect of calmodulin was only observed in the presence of insulin and was concentration-dependent (K0.5 approximately 3.0 microM calmodulin), saturable (at 5 microM calmodulin), and Ca2+-dependent (K0.5 = 0.2 microM free Ca2+). Insulin also induced phosphorylation of a 17-kDa protein. On the basis of its molecular weight and purification via immunoadsorption with protein A-Sepharose-bound anti-calmodulin IgG, this phosphoprotein was identified as a phosphorylated form of calmodulin. Phosphorylation of calmodulin was only observed in the presence of insulin and was both Ca2+- and insulin concentration-dependent with half-maximal effects observed at 0.1 microM free Ca2+ and 350 microunits/ml insulin. Collectively, these results support the hypothesis that Ca2+ and calmodulin participate in the molecular mechanism whereby binding of insulin to its receptor is coupled to changes in cellular metabolism.  相似文献   

11.
The insulin receptor (IR) tyrosine kinase can apparently directly phosphorylate and activate one or more serine kinases. The identities of such serine kinases and their modes of activation are still unclear. We have described a serine kinase (here designated insulin receptor serine (IRS) kinase) from rat liver membranes that co-purifies with IR on wheat germ agglutinin-agarose. The kinase was activated after phosphorylation of the membrane glycoproteins by casein kinase-1, casein kinase-2, or casein kinase-3 (Biochem Biophys Res Commun 171:75–83, 1990). In this study, IRS kinase was further characterized. The presence of vanadate or phosphotyrosine in reaction mixtures was required for activation to be observed. Phosphoserine and phosphothreonine are only about 25% as effective as phosphotyrosine, whereas sodium fluoride and molybdate were ineffective in supporting activation. Vanadate and phosphotyrosine support IRS kinase activation by apparently inhibiting phosphotyrosine protein phosphatases present among the membrane glycoproteins. IR -subunit, myelin basic protein, and microtubule-associated protein-2 are good substrates for IRS kinase. The kinase prefers Mn2+ (Ka=1.3 mM) as a metal cofactor. Mg2+ (Ka=3.3 mM) is only 30% as effective as Mn2+. The kinase activity is stimulated by basic polypeptides, with greater than 30-fold activation achieved with polylysine and protamine. Our results suggest that both serine/threonine and tyrosine phosphorylation are required for activation of IRS kinase. Serine phosphorylation is catalyzed by one of the casein kinases, whereas tyrosine phosphorylation is catalyzed by a membrane tyrosine kinase, possibly IR tyrosine kinase. (Mol Cell Biochem121: 167–174, 1993)  相似文献   

12.
Pyk2 was identified as a Ca2+-dependent kinase, however, the regulation of Pyk2 by Ca2+ in T cells remains controversial. We found that Ca2+ mobilization preferentially induced Pyk2 phosphorylation in cytotoxic T lymphocytes (CTL). Furthermore, Pyk2 phosphorylation in CTL was not absolutely Ca2+ dependent but relied on the strength of T cell receptor stimulation. Ionomycin-stimulated Pyk2 phosphorylation did not require calmodulin activity, because phosphorylation was not inhibited by the calmodulin inhibitor W7, and we detected no Ca2+-regulated association between Pyk2 and calmodulin. Ca2+-stimulated Pyk2 phosphorylation was dependent on Src-family kinase activity, even at the Pyk2 autophosphorylation site. We sought to identify a Ca2+-regulated pathway that could trigger Pyk2 phosphorylation in T cells and found that ionomycin stimulated the production of reactive oxygen species and an H2O2 scavenger inhibited ionomycin-induced Pyk2 phosphorylation. Additionally, H2O2 induced strong Erk activation and ionomycin-stimulated Pyk2 phosphorylation was Erk dependent. These data support the conclusion that Ca2+ mobilization induces the production of reactive oxygen species, which in turn activate the Erk pathway, leading to Src-family kinase-dependent Pyk2 phosphorylation. Our data demonstrate that Pyk2 is not a Ca2+-dependent kinase in T cells but instead, increased intracellular Ca2+ induces Pyk2 phosphorylation through production of reactive oxygen species. These findings are consistent with the possibility that Pyk2 acts as an early sensor of numerous extracellular signals that trigger a Ca2+ flux and/or reactive oxygen species to amplify tyrosine phosphorylation signaling events.  相似文献   

13.
Endogenous phosphorylation of proteins from rat brain synaptosomal plasma membranes was studied in vitro. Cyclic AMP (cAMP) markedly stimulated32P incorporation in three protein bands with molecular weights of 75,000, 57,000, and 54,000, respectively. The effect of the behaviorally active peptide ACTH1–24 on this endogenous phosphorylation in vitro was studied using peptide concentrations from 10–10 to 10–4 M. In a number of protein bands, a biphasic effect of ACTH1–24 was observed: in concentrations of 10–4–10–5 M, a reduced amount of32P was found; in concentrations of 10–6–10–7 M, hardly any effect could be detected, whereas consistently at concentrations around 10–8 M, a significant decrease was again observed. The phosphoprotein bands affected by in vitro addition of ACTH1–24 were of a smaller molecular weight than those affected by in vitro addition of cAMP.  相似文献   

14.
We examined crosstalk between the insulin receptor and G protein-coupled receptor (GPCR) signaling pathways in individual human pancreatic cancer PANC-1 cells. Treatment of cells with insulin (10 ng/ml) for 5 min markedly enhanced the proportion of cells that display an increase in intracellular [Ca2+] induced by picomolar concentrations of the GPCR agonist neurotensin. Interestingly, insulin increased the proportion of a subpopulation of cells that exhibit intracellular [Ca2+] oscillations in response to neurotensin at concentrations as low as 50-200 pM. Insulin enhanced GPCR-induced Ca2+ signaling in a time- and dose-dependent manner; a marked potentiation was obtained after an exposure to a concentration of 10 ng/ml for 5 min. Treatment with the mTORC1 inhibitor rapamycin abrogated the increase in GPCR-induced [Ca2+]i oscillations produced by insulin. Our results identify a novel aspect in the crosstalk between insulin receptor and GPCR signaling systems in pancreatic cancer cells, namely that insulin increases the number of [Ca2+]i oscillating cells induced by physiological concentrations of GPCR agonists through an mTORC1-dependent pathway.  相似文献   

15.
The serine proteinase α-thrombin potently stimulates reinitiation of DNA synthesis in quiescent Chinese hamster fibroblasts (CCL39 line). 125I-labeled α-thrombin binds rapidly and specifically to CCL39 cells with high affinity (Kd ≈ 4 nM). Binding at 37°C was found to remain stable for 6 h or more during which time no receptor down-regulation, ligand internalization and/or degradation could be detected. The structure of α-thrombin receptors on CCL39 cells was identified by covalently coupling 125I-α-thrombin to intact cells using a homobifunctional cross-linking agent, ethylene glycol bis(succinimidyl succinate). By resolution in sodium dodecyl sulfate polyacrylamide gel electrophoresis we observed the specific labeling of a major α-thrombin-binding site of Mr ≈ 150 000 revealed as a 125I-α-thrombin cross-linked complex of Mr ≈ 180 000. Independent of chemical cross-linking, 125I-α-thrombin also formed a covalent complex with a minor, 35 000 Mr, membrane component identified as protease nexin. Two derivatives of α-thrombin modified at the active site are 1000-fold less than α-thrombin for mitogenicity. These two non-mitogenic derivatives bound to cells with similar affinity and maximal binding capacity as native α-thrombin, and affinity-labeled the receptor subunit of Mr 150 000. When present in large excess, during incubation of cells with α-thrombin, these binding antagonists were ineffective in blocking α-thrombin-induced DNA synthesis. These data suggest that the specific 150 000 Mr binding sites that display high affinity for α-thrombin do not mediate induction of the cellular mitogenic response.  相似文献   

16.
Phosphorylation of the adipocyte lipid-binding protein (ALBP) isolated from 3T3-L1 cells has been studied in vitro utilizing the wheat germ agglutinin-purified 3T3-L1 adipocyte insulin receptor and the soluble kinase domain of the human insulin receptor. Following insulin-stimulated, ATP-dependent autophosphorylation of the wheat germ agglutinin-purified receptor beta-subunit, ALBP was phosphorylated exclusively on tyrosine 19 in the sequence Glu-Asn-Phe-Asp-Asp-Tyr19, analogous to the substrate phosphorylation consensus sequence observed for several tyrosyl kinases. The concentration of insulin necessary for half-maximal receptor autophosphorylation (KIR0.5) was identical to that necessary for half-maximal ALBP phosphorylation (KALBP0.5), 10 nM. Kinetic analysis indicated that stimulation of ALBP phosphorylation by insulin was attributable to a 5-fold increase in the Vmax (to 0.33 fmol/min/fmol insulin-binding sites) while the Km for ALBP was largely unaffected. By utilizing the soluble kinase domain of the human receptor beta-subunit, the presence of oleate bound to ALBP increased the kcat/Km greater than 3-fold. Oleate dramatically inhibited autophosphorylation of the 38-kDa fragment of the soluble receptor kinase in a concentration dependent fashion (I0.5 approximately 4 microM). The 48-kDa kinase exhibited much less sensitivity to the effects of oleate (I0.5 approximately 190 microM). The inhibition of autophosphorylation of the 48-kDa soluble kinase by oleate was reversed by adding saturating levels of ALBP. These results demonstrate that in vitro the murine adipocyte lipid-binding protein is phosphorylated on tyrosine 19 in an insulin-stimulated fashion by the insulin receptor and that the presence of a bound fatty acid on ALBP increases the affinity of insulin receptor for ALBP. Inhibition of insulin receptor kinase activity by unbound fatty acids suggests that the end products of the lipogenic pathway may feedback inhibit the tyrosyl kinase and that fatty acid-binding proteins have the potential to modulate such interaction.  相似文献   

17.
We have tested the hypothesis that activation of the insulin receptor tyrosine kinase is due to autophosphorylation of tyrosines 1146, 1150 and 1151 within a putative autoinhibitory domain. A synthetic peptide corresponding to residues 1134–1162, with tyrosines substituted by alanine or phenylalanine, of the insulin receptor subunit was tested for its inhibitory potency and specificity towards the tyrosine kinase activity. This synthetic peptide gave inhibition of the insulin receptor tyrosine kinase autophosphorylation and phosphorylation of the exogenous substrate poly(Glu, Tyr) with an approximate IC50 of 100 M. Inhibition appeared to be independent of the concentrations of insulin or the substrate poly(Glu, Tyr) but was decreased by increasing concentrations of ATP. This same peptide also inhibited the EGF receptor tyrosine kinase but not a serine/threonine protein kinase. These results are consistent with the hypothesis that this autophosphorylation domain contains an autoinhibitory sequence. (Mol Cell Biochem120: 103–110, 1993)Abbreviations IR Insulin Receptor - SDS/PAGE Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis - CaM Calmodulin - HEPES 4-(2-Hydroxyethyl)-Piperazineethane-Sulfonic Acid - DMEM Dulbecco's Modified Eagle' Medium - PMSF Phenylmethyl-Sulfonyl Fluoride - HPLC High Performance Liquid Chromatography - PKC Protein Kinase C - PKI Inhibitory Peptide for cAMP-Kinase - CaMK II Ca2+/Calmodulin-Dependent Protein Kinase II - CaN A A Subunit of Calcineurin  相似文献   

18.
A proteinaceous receptor associated with the melanosome fraction of Pleurodeles waltlii oocytes binds progesterone with high affinity and limited capacity (KD ≈ 5 · 10−8 M).  相似文献   

19.
Calcium-, calmodulin-dependent phosphorylation of cardiac sarcoplasmic reticulum increases the rate of calcium transport. The complex dependence of calmodulin-dependent phosphoester formation on free calcium and total calmodulin concentrations can be satisfactorily explained by assuming that CaM · (Ca2+)4 is the sole calmodulin-calcium species which activates the calcium-, calmodulin-dependent, membrane-bound protein kinase. The apparent dissociation constant of the E · CaM · (Ca2+)4 complex determined from the calcium dependence of calmodulin-dependent phosphoester formation over a 100-fold range of total calmodulin concentrations (0.01–1 μ M) was 0.9 nM; the respective apparent dissoclation constant at 0.8 mM free calcium, 1 mM free magnesium with low calmodulin concentrations (0.1–50 nM) was 2.60 nM. These results are in good agreement with the apparent dissociation constant of 2.54 nM of high affinity calmodulin binding determined by 125I-labelled calmodulin binding to sarcoplasmic reticulum fractions at 1 mM free calcium, 1 mM free magnesium and total calmodulin concentration ranging from 0.1 to 150 nM, i.e. conditions where approximately 98% of the total calmodulin is present as CaM · (Ca2+)4. The apparent dissociation constant of the calcium-free calmodulin-enzyme complex (E · CaM) is at least 100-fold greater than the apparent dissociation constant of the E · CaM · (Ca2+)4 complex, as judged from non-saturation 125I-labelled calmodulin binding at total calmodulin concentrations of up to 150 nM, in the absence of calcium.  相似文献   

20.
The regulation of the phosphorylation of the acetylcholine receptor in electroplax membranes from Torpedo californica and of purified acetylcholine receptor was investigated. The phosphorylation of the membrane-bound acetylcholine receptor was not stimulated by Ca2+/calmodulin, nor was it inhibited by EGTA, but it was stimulated by the catalytic subunit of cAMP-dependent protein kinase, and was blocked by the protein inhibitor of cAMP-dependent protein kinase. Purified acetylcholine receptor was not phosphorylated by Ca2+/calmodulin-dependent protein kinase activity in electroplax membranes, nor by partially purified Ca2+/calmodulin-dependent protein kinases from soluble or particulate fractions from the electroplax. Of the four acetylcholine receptor subunits, termed α, β, γ and δ, only the γ- and δ-subunits were phosphorylated by the cAMP-dependent protein kinase (+cAMP), or by its purified catalytic subunits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号