首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of 0.05 M and 1.5 M NaCl treatments on CHO cells during and after irradiation has been examined. Treatment with either hypotonic or hypertonic salt solutions during and after irradiation resulted in the fixation of radiation damage which would otherwise not be expressed. The half time for fixation was 4 to 5 min, and the increased expression of the potentially lethal damage by anisotonic solutions was mainly characterized by large decreases in the shoulder of the survival curve, as well as by decreases in DO. Fixation of radiation damage at 37 degrees C occurred to a much greater extent for the hypertonic treatment than for the hypotonic treatment and was greater at 37 degrees C than at 20 degrees C. Although both the hypotonic and hypertonic treatments during and after irradiation reduced or eliminated the repair of sublethal and potentially lethal damage, treatment during irradiation only, radiosensitized the cells when the treatment was hypotonic, and radioprotected the cells when the treatment was hypertonic. These observations are discussed in relation to salt treatments and different temperatures altering competition between repair and fixation of potentially lethal lesions, the number of which depends on the particular salt treatment at the time of irradiation.  相似文献   

2.
Incubation of animal cells with hypertonic sucrose and polyethylene glycol (PEG) 1,000 renders endosomes sensitive in situ to hypotonic shock (Okada and Rechsteiner, 1982). We found that: 1) in vitro endosomes were osmotically insensitive; and 2) hypertonic sucrose inhibited transport from very early endosomes to lysosomes. Endocytic vesicles were labeled by incubating Chinese hamster ovary (CHO) cells for 1-10 min at 37 degrees C with horseradish peroxidase (HRP) and/or fluorescein isothiocyanate-conjugated dextran (FITC-dextran). Cell fractions prepared in 0.25 M sucrose were hypotonically shocked by dilution with 5 mM Na phosphate buffer, pH 6.7, to a final sucrose concentration of 0.05 M. After hypotonic shock, endocytized HRP and FITC-dextran pelleted with membrane while lysosomal hydrolases did not. The HRP activity in the pellet was latent, suggesting that endosomes were resistant to osmotic shock. Uptake in the presence of hypertonic sucrose had little effect on the subsequent osmotic sensitivity of the endosomes. Uptake in the presence of hypertonic sucrose and PEG 1,000 rendered endosomes fragile to cell homogenization. Unexpectedly, the inclusion of hypertonic sucrose in the uptake and chase media inhibited the appearance of HRP in lysosomes. HRP internalized during a 10-min uptake appeared as if it were present in two physically distinct compartments, one accessible to transport inhibition by exogenous sucrose ("very early" endosomes) and the other not ("early" endosomes). After a brief uptake (1-3 min), postincubation of CHO cells in 0.25 M sucrose-containing media completely blocked transport of internalized HRP to lysosomes. This blockage could be partially relieved by cointernalization of invertase with HRP. These results suggest that transport between multiple early endosome populations is sensitive to intraorganellar osmotic conditions.  相似文献   

3.
The effects of hypotonic (180 mOsm) and hypertonic (580 mOsm) medium loading on chondrocyte aggrecan gene expression in 2D monolayer and 3D hydrogel culture (agarose or alginate) were studied. Aggrecan promoter activity was monitored using a luciferase reporter gene assay and transient transfection. Osmotic loading was observed to differentially affect promoter activity, with hypotonic loading generally producing at least a 40% elevation in promoter activity, except for the case of alginate where a 50% suppression was observed. Hypertonic loading produced at least a 35% decrease in activity for all cultures. Similar osmolality-induced changes to aggrecan mRNA levels were observed in monolayer cells using qPCR. Deletion of exon 1 blocked the sensitivity of monolayer cells to hypertonic but not hypotonic medium changes. Confocal microscopy measurements suggested that the degree of hypotonic swelling in cells encapsulated in 3D matrix was restricted compared to monolayer cells whereas the degree of hypertonic shrinking was similar under both culture conditions.  相似文献   

4.
《Process Biochemistry》2010,45(2):196-202
The osmotic shock process for the release of periplasmic recombinant human interferon-α2b from Escherichia coli was optimized using response surface method (RSM). The process parameters such as pH, buffer concentration and sucrose concentration in hypertonic solution, cell concentration to hypertonic solution, contact time of cells with hypertonic solution, temperature of hypertonic solution, cell concentration to hypotonic solution, contact time of cells with hypotonic solution and temperature of hypotonic solution were initially screened using Plackett Burman design. Further optimization was carried out using central composite design (one of the design in RSM) for sucrose concentration in hypertonic solution as well as cell concentration to hypertonic and hypotonic solutions. The optimal cell concentration was 0.05 g/mL in hypertonic solution and 0.2 g/mL in hypotonic solution. The use of hypertonic solution containing 18% sucrose with a combination of 100 mM Tris and 2.5 mM EDTA buffer (pH 8.0 and 25 °C) and cold water (4 °C) as a hypotonic solution gave the optimum release of interferon-α2b. Increased product concentration in the final solution resulted from the optimized process would reduce the downstream steps during purification. The concept of reuse of hypertonic solution was also demonstrated.  相似文献   

5.
The dependence of electrogenic sodium pump activity on changes in the cell volume of Helix pomatia neurons with different levels of intracellular sodium ion concentration was studied. Hypertonic solutions caused hyperpolarization of the membrane and increased membrane resistance in cells with a low sodium content (low-sodium cells; LSC). The activity of the electrogenic sodium pump in hypertonic solutions was increased compared to the activity in hypotonic solutions in LSC and decreased in cells with a high sodium content (high-sodium cells; HSC). The concentration of ouabain which led to maximal inhibition of active 22Na efflux from the neurons was 10(-4) M. Lower concentrations of ouabain (10(-8) M and lower) did not inhibit the sodium pump but stimulated it. The swelling of neurons in hypotonic solutions was accompanied by an increase in the number of binding sites for ouabain, while shrinking in hypertonic solutions led to the opposite effect--a decrease in binding sites. An increase in the number of binding sites also took place in normal isotonic potassium-free solutions compared with normal Ringer's solution. Two saturable components of ouabain binding were detectable in all solutions examined. gamma-Aminobutyric acid (GABA) and acetylcholine (ACh) increased the number of ouabain binding sites on the membrane. The results suggest that there are two opposite mechanisms by which cell volume changes can modulate the pump activity. One of them depends on the intracellular sodium ion concentration and causes pump activation in hypertonic solutions in LSC and saturation in HSC, while a second mechanism mediates the activating effect of cell swelling on the sodium pump in HSC. In addition, there may be a negative feedback between the pump activity and the number of functioning pump units in the membrane.  相似文献   

6.
The time course of turgor regulation of the euryhaline giant-celled alga, Chara buckellii, is presented. Isolated intermodal cells were challenged by increasing or decreasing the external osmotic pressure by 150 milliosmoles per kilogram with all ions in the media or by dilution, respectively. Regulation following hypotonic stress was complete within 48 hours whereas regulation following hypertonic stress required between 96 and 144 hours. The change in internal osmotic pressure could be entirely accounted for by changes in vacuolar KCl in response to hypotonic stress, but this ion pair only accounted for 45% of the change in response to hypertonic stress. The membrane potential of C. buckellii is normally hyperpolarized with respect to the equilibrium potential for K+ (EK). The membrane depolarized to a level close to EK in response to hypotonic treatment and this was accompanied by a transient increase in membrane conductance. In response to hypertonic stress, the membrane hyperpolarized transiently, then repolarized to a level close to the control. This was accompanied by a temporary decrease in membrane conductance. The data are discussed with respect to the ecological significance of the time course and ion transport mechanisms during turgor regulation.  相似文献   

7.
The hypothesis of a correlation between the effects of temperature on red blood cells hypotonic hemolysis and hypertonic cryohemolysis and two thermotropic structural transitions evidenced by EPR studies has been tested. Hypertonic cryohemolysis of red blood cells shows critical temperatures at 7 degrees C and 19 degrees C. In hypotonic solution, the osmotic resistance increases near 10 degrees C and levels off above 20 degrees C. EPR studies of red blood cell membrane of a 16-dinyloxyl stearic acid spin label show, in the 0-50 degrees C range, the presence of three thermotropic transitions at 8, 20, and 40 degrees C. Treatments of red blood cells with acidic or alkaline pH, glutaraldehyde, and chlorpromazine abolish hypertonic cryohemolysis and reduce the effect of temperature on hypotonic hemolysis. 16-Dinyloxyl stearic acid spectra of red blood cells treated with glutaraldehyde and chlorpromazine show the disappearance of the 8 degrees C transition. Both the 8 degrees C and the 20 degrees C transitions were abolished by acidic pH treatment. The correlation between the temperature dependence of red blood cell lysis and thermotropic breaks might be indicative of the presence of structural transitions producing areas of mismatching between differently ordered membrane components where the osmotic resistance is decreased.  相似文献   

8.
The sorption of vital phthalocyanine dye--Heliogen Blue (HB)--by red cells and their ghosts after trypsin treatment has been studied. The structural alteration in the outer and inner surface of the membrane was detected using the monomer-dimer ratio (M/D) deduced from the absorption spectra of the sorbed dye. The trypsin treatment causes the increase in the M/D ratio. It is greater (44%) when both the membrane surfaces are exposed to trypsin (unsealed ghosts), and is only 19% when the whole erythrocytes are treated. The similar alteration (M/D increased by 18%) is obtained for red blood cells stained after incubation in the isotonic buffer solution at 37 degrees C. Recent findings show a good agreement with our previous data on the influence of changes in the membrane surface on the value of the M/D ratio. A possibility of using HB in determination of structural changes of a native membrane is discussed.  相似文献   

9.
We investigated the mechanism underlying the perception of extracellular changes in osmotic pressure in Vallisneria gigantea Graebner and transgenic Arabidopsis thaliana (L.) Heynh. expressing cytoplasmic aequorin. Hypertonic and hypotonic treatments of A. thaliana leaves each rapidly induced a Ca2+ transient. Both responses were essentially dependent on the presence of extracellular Ca2+ and were sensitive to Gd3+ a potential blocker of stretch-activated Ca2+ channels. Immediately after plasmolysis caused by hypertonic treatment and subsequent deplasmolysis caused by hypotonic treatment, the cells did not respond to a second hypertonic treatment and exhibited an impaired adhesion of the plasma membrane (PM) to the cell wall (CW). Recovery of the responsiveness required about 6 h. By contrast, no refractory phenomenon was observed in response to hypotonic treatment. Pretreatment with cellulase completely inhibited the Ca2+ transient induced by hypertonic treatment, but it did not affect the response to hypotonic treatment. V. gigantea mesophyll cells pretreated with cellulase exhibited an impaired adhesion of the PM to the CW. The leaf cells of multicellular plants can respond to both hypertonic and hypotonic treatments through the stretch-activated Ca2+ channels, whereas cellulase-sensitive adhesion of the PM to the CW is involved only in the response to hypertonic treatment.  相似文献   

10.
目的:研究非等渗压浓度对血管内皮细胞NO合成酶活性的影响,并探索其发生机制。方法:使血管内皮细胞暴露于低渗(205mOsm)或高渗透压(410mOsm)培养液,用Griess法测定NO合成酶(NOS)活性,以Northern blot ting观测细胞iNOS和eNOS基因表达的变化。结果: 非等渗压浓度可使血管内皮细胞中NOS活性显著升高。细胞NOS活性变化具有明显的时间效应规律,低渗透压浓度效应产生的效应早于高渗透压浓度,且低渗透压浓度的影响较高渗透压浓度更为明显。Dexamethasone对这种非等渗透压诱导的NOS活性没有明显作用,给予cycloheximide,不影响非等渗压诱导的这种差异。Nothern blot分析表明:非等渗压浓度不诱导iNOS基因表达,而使eNOSmRNA表达增加。结论:非等渗透压浓度诱导血管内皮细胞NOS活性升高,eNOS基因表达增强是其主要机制之一。  相似文献   

11.
1. Addition of 1-chloro-2,4-dinitrobenzene to isolated perfused rat liver results in the rapid formation of its glutathione-S-conjugate [S-(2,4-dinitrophenyl)glutathione], which is released into both, bile and effluent perfusate. Anisotonic perfusion did not affect total S-conjugate formation, but release of the S-conjugate into the perfusate was increased (decreased) following hypertonic (hypotonic) exposure at the expense of excretion into bile. Stimulation of S-conjugate release into the perfusate following hypertonic exposure paralleled the time course of volume-regulatory net K+ uptake. 2. Basal steady-state release of oxidized glutathione (GSSG) into bile was 1.30 +/- 0.12 nmol.g-1.min-1 (n = 18) during normotonic (305 mOsmol/l) perfusion and was 3.8 +/- 0.3 nmol.g-1.min-1 in the presence of t-butylhydroperoxide (50 mumol/l). Hypotonic exposure (225 mOsmol/1) lowered both, basal and t-butylhydroperoxide (50 mumol/l)-stimulated GSSG release into bile by 35% and 20%, respectively, whereas hypertonic exposure (385 mOsmol/l) increased. Anisotonic exposure was without effect on t-butylhydroperoxide removal by the liver. GSSG release into bile also decreased by 33% upon liver-cell swelling due to addition of glutamine plus glycine (2 mmol/l, each). 3. Hypotonic exposure led to a persistent stimulation 14CO2 production from [1-14C]glucose by about 80%, whereas 14CO2 production from [6-14C]glucose increased by only 10%. Conversely, hypertonic exposure inhibited 14CO2 production from [1-14C]glucose by about 40%, whereas 14CO2 production from [6-14C]glucose was unaffected. The effect of anisotonicity on 14CO2 production from [1-14C]glucose was also observed in presence of t-butylhydroperoxide (50 mumol/l), which increased 14CO2 production from [1-14C]glucose by about 40%. 4. t-Butylhydroperoxide (50 mumol/l) was without significant effect on volume-regulatory K+ fluxes following exposure to hypotonic (225 mOsmol/l) or hypertonic (385 mOsmol/l) perfusate. Lactate dehydrogenase release from perfused rat liver under the influence of t-butylhydroperoxide was increased by hypertonic exposure compared to hypotonic perfusions. 5. The data suggest that hypotonic cell swelling stimulates flux through the pentose-phosphate pathway and diminishes loss of GSSG under conditions of mild oxidative stress. Hypotonically swollen cells are less prone to hydroperoxide-induced lactate dehydrogenase release than hypertonically shrunken cells. Hypertonic cell shrinkage stimulates the excretion of glutathione-S-conjugates into the sinusoidal circulation at the expense of biliary secretion.  相似文献   

12.
The object of this work was to study the effect of a short incubation in 0.01 M tris buffer, pH 7.0, with a different NaCl content (0-10%) on the viability, optic density and permeability of intact and heated at 52 degrees C Escherichia coli B/r cells. In contrast to the intact cells, the viability of the heated cells depended on osmotic pressure in the medium into which they were transferred after heating. The survival rate was highest when the cells were transferred into an isotonic buffer. In the case of hypotonic and hypertonic media, the survival rate of the cells decreased owing to the death of cells which were responsible for the formation of small colonies under the isotonic conditions. This was accompanied with a more intensive drop in the optic density of bacterial suspensions while their permeability increased (when the cells were transferred into the hypotonic conditions). The role of membranes in the processes of bacterial heat inactivation is discussed on the basis of the results obtained.  相似文献   

13.
The regulatory decrease in the volume of principal cells of collecting ducts to hypoosmotic shock has been investigated experimentally and using the mathematical modeling. A mathematical model of the response of collecting duct principal cells to hypotonic shock has been constructed on the basis of the experimental time course of changes in cell volume measured by the fluorescent dye Calcein. It was shown that the regulatory decrease in volume under hypotonic conditions occurs via a marked release of osmolytes and is accompanied by a decrease in water permeability of the cell membrane. The mathematical modeling of transmembrane transport processes allowed us to quantitatively estimate the changes in membrane water permeability, which decreased tenfold, from 2 x 10(-1) cm/s to 2 x 10(-2) cm/s. It was also shown that the effective regulatory decrease in the volume of collecting duct principal cells in hypotonic medium results from a significant increase in membrane permeability for K+, Cl-, and organic anions.  相似文献   

14.
Incorporation of (35)S-sulfate into the polar molecular species of sulfoglycolipids (SM4s) in Madin-Darby canine kidney cells increased in a hypertonic medium (500 mOsm/L) supplemented with sodium chloride. The unknown sulfoglycolipid (SX) was identified as GlcCer sulfate based on the results of TLC, GLC, and mass spectra. The synthesis of SX increased in the hypotonic medium unlike that of SM4s and SM3. TLC showed that hypertonic stress induced the accumulation of GalCer as a precursor of SM4s, whereas hypotonic stress increased GlcCer as a precursor of GlcCer sulfate. The level of ceramide as a precursor of both GalCer and GlcCer increased under hypertonic stress and decreased under hypotonic stress. Cerebroside sulfotransferase mRNA was shown to be elevated in the hyperosmotic condition but not in the hypotonic condition. The increase in SM4s under hypertonic stress was induced by the activation of both the ceramide galactosyltransferase and the cerebroside sulfotransferase genes, whereas the increase in GlcCer sulfate under hypotonic stress was caused by the accumulation of GlcCer as the result of activation of ceramide glucosyltransferase.  相似文献   

15.
《Biophysical journal》2022,121(9):1593-1609
The lipid bilayer of eukaryotic cells’ plasma membrane is almost impermeable to small ions and large polar molecules, but its miniscule basal permeability in intact cells is poorly characterized. This report describes the intrinsic membrane permeability of A549 cells toward the charged molecules propidium (Pr2+) and ATP4?. Under isotonic conditions, we detected with quantitative fluorescence microscopy, a continuous low-rate uptake of Pr (~150 × 10?21 moles (zmol)/h/cell, [Pr]o = 150 μM, 32°C). It was stimulated transiently but strongly by 66% hypotonic cell swelling reaching an influx amplitude of ~1500 (zmol/h)/cell. The progressive Pr uptake with increasing [Pr]o (30, 150, and 750 μM) suggested a permeation mechanism by simple diffusion. We quantified separately ATP release with custom wide-field-of-view chemiluminescence imaging. The strong proportionality between ATP efflux and Pr2+ influx during hypotonic challenge, and the absence of stimulation of transmembrane transport following 300% hypertonic shock, indicated that ATP and Pr travel the same conductive pathway. The fluorescence images revealed a homogeneously distributed intracellular uptake of Pr not consistent with high-conductance channels expressed at low density on the plasma membrane. We hypothesized that the pathway consists of transiently formed water pores evenly spread across the plasma membrane. The abolition of cell swelling-induced Pr uptake with 500 μM gadolinium, a known modulator of membrane fluidity, supported the involvement of water pores whose formation depends on the membrane fluidity. Our study suggests an alternative model of a direct permeation of ATP (and other molecules) through the phospholipid bilayer, which may have important physiological implications.  相似文献   

16.
Hyper- and hypotonic stresses elicit apparently symmetrical responses in the alga Ventricaria. With hypertonic stress, membrane potential difference (PD) between the vacuole and the external medium becomes more positive, conductance at positive PDs (Gmpos) increases and KCl is actively taken up to increase turgor. With hypotonic stress, the membrane PD becomes more negative, conductance at negative PDs (Gmneg) increases and KCl is lost to decrease turgor. We used inhibitors that affect active transport to determine whether agents that inhibit the K(+) pump and hypertonic regulation also inhibit hypotonic regulatory responses. Cells whose turgor pressure was held low by the pressure probe (turgor-clamped) exhibited the same response as cells challenged by hyperosmotic medium, although the response was maintained longer than in osmotically challenged cells, which regulate turgor. The role of active K(+) transport was confirmed by the effects of decreased light, dichlorophenyldimethyl urea and diethylstilbestrol, which induced a uniformly low conductance (quiet state). Cells clamped to high turgor exhibited the same response as cells challenged by hypo-osmotic medium, but the response was similarly transient, making effects of inhibitors hard to determine. Unlike clamped cells, cells challenged by hypo-osmotic medium responded to inhibitors with rapid, transient, negative-going PDs, with decreased Gmneg and increased Gmpos (linearized I-V), achieving the quiet state as PD recovered. These changes are different from those exerted on the pump state, indicating that different transport systems are responsible for turgor regulation in the two cases.  相似文献   

17.
J Sadoshima  Z Qiu  J P Morgan    S Izumo 《The EMBO journal》1996,15(20):5535-5546
Hypotonic stress causes rapid cell swelling and initiates various cellular adaptive processes. However, it is unknown how cells initially sense low osmolarity and convert it into intracellular signals. We investigated the signal transduction mechanism initiated by hypotonic cell swelling in cardiac myocytes using c-fos expression as a nuclear marker. Treatment of myocytes with hypotonic culture media rapidly induced c-fos expression, whereas hypertonic stress had no effect. Transfection of c-fos reporter gene constructs suggested that the hypotonic stress response element maps to the serum response element of the c-fos promoter. Hypotonic stress immediately (within 5 s) activated tyrosine kinase activity, while activation of ERK1/2 peaked at 5 min. Stress-activated kinase (JNK1) was modestly activated at 15 min, whereas HOG1 like kinase (p38) was not activated by hypotonic stress. Extensive pharmacological studies indicated that only tyrosine kinase inhibitors suppressed the hypotonic swelling-induced c-fos expression. The effect of hypotonic stress was mimicked by chlorpromazine, which is known to cause membrane deformation. These results suggest that the signaling mechanism of hypotonic stress is distinct from that of hyperosmolar stress in mammalian cells. Tyrosine kinase activation is the earliest detectable cell response and plays an essential role in hypotonic swelling-induced ERK1/2 activation and c-fos expression.  相似文献   

18.
Root tips of Zea mays L. previously subjected to osmotic shockwere studied as to uptake and efflux of glucose and uptake ofphosphate, as well as release of protein and other Lowry-positivesubstances. The osmotic shock procedure applied was similarto that frequently used in order to release periplasmic proteinsfrom bacteria. After treatment with hypertonic solutions of sorbitol (>0?3M) the uptake of phosphate and glucose is reduced and proteinis released into the medium. All osmotic treatments leadingto a significant reduction of either glucose or phosphate uptakeare accompanied by a strongly increased release of glucose andLowry-positive substances. Damage of plasma membrane barrierfunction can be directly observed by the uptake of Evans Blue(Gaff and Okong'o-Ogola, 1971) into the cells involving mainlyolder vacuolated rhizodermal cells. The occurrence and extent of the alterations of membrane semipermeabilityare strongly dependent on the duration of exposure to and theconcentration of the sorbitol solution used. The velocity ofthe osmotic transitions (from hypotonic to hypertonic and viceversa) is of minor importance. Sensibility of cells to osmotic stress increases with differentiationand vacuolation. Conditions for a selective reduction of phosphateuptake seem to occur when only meristem and near tip regionssubjected to a mild osmotic shock are used.  相似文献   

19.
C3H 10T 1/2 cells were exposed to a wide range of anisotonic NaCl solutions and were irradiated during the last few minutes of the salt treatment. Radiosensitization in terms of cell killing and transformation was observed for hypotonic NaCl treatment. Hypertonic treatment with 0.5 mol/liter NaCl also caused radiosensitization for cell killing and transformation, while extreme hypertonic treatment (1.5 mol/liter) resulted in radioprotection for both end points. Radiosensitization for both end points declined as the hypotonic treatment (0.05 mol/liter) was prolonged. To a lesser extent, a decline in radioprotection by 1.5 mol/liter treatment occurred as exposure time increased.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号