首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Cellular DNA-repair pathways involve proteins that have roles in other DNA-metabolic processes, as well as those that are dedicated to damage removal. Several proteins, which have diverse functions and are not known to have roles in DNA repair, also associate with damaged DNA. These newly discovered interactions could either facilitate or hinder the recognition of DNA damage, and so they could have important effects on DNA repair and genetic integrity. The outcome for the cell, and ultimately for the organism, might depend on which proteins arrive first at sites of DNA damage.  相似文献   

2.
In recent years there has been intense investigation and rapid progress in our understanding of the cellular responses to various types of endogenous and exogenous DNA damage that ensure genetic stability. These studies have identified numerous roles for ubiquitylation, the post-translational modification of proteins with single ubiquitin or poly-ubiquitin chains. Initially discovered for its role in targeting proteins for degradation in the proteasome, ubiquitylation functions in a variety of regulatory roles to co-ordinate the recruitment and activity of a large number of protein complexes required for recovery from DNA damage. This includes the identification of essential DNA damage response genes that encode proteins directly involved in the ubiquitylation process itself, proteins that are targets for ubiquitylation, proteins that contain ubiquitin binding domains, as well as proteins involved in the de-ubiquitylation process. This review will focus on the regulatory functions of ubiquitylation in three distinct DNA damage responses that involve ubiquitin modification of proliferating cell nuclear antigen (PCNA) in DNA damage tolerance, the core histone H2A and its variant H2AX in double strand break repair (DSBR) and the Fanconi anaemia (FA) proteins FANCD2 and FANCI in cross link repair.  相似文献   

3.
The proteins encoded by the breast-cancer-susceptibility genes, BRCA1 and BRCA2, have recently been implicated in DNA-repair processes, thereby improving our understanding of how the loss of these genes contributes to cancer initiation and progression. It appears that the role of BRCA1 in DNA repair, which could involve the integration of several pathways, is broader than that of BRCA2. BRCA1 functions in the signalling of DNA damage and its repair by homologous recombination, nucleotide-excision repair and possibly non-homologous end-joining. BRCA2 has a more specific role in DNA repair, regulating the activity of RAD51, which is required for homologous recombination. An improved understanding of the interactions of BRCA1 and BRCA2 with other proteins in large macromolecular complexes is helping to reveal their exact role in DNA repair.  相似文献   

4.
Chimeric RNA/DNA and modified DNA oligonucleotides have been shown to direct gene-conversion events in vitro through a process involving proteins from several DNA-repair pathways. Recent experiments have extended the utility of these molecules to plants, and we previously demonstrated that plant cell-free extracts are competent to support oligonucleotide-directed genetic repair. Using this system, we are studying Arabidopsis DNA-repair mutants and the role of plant proteins in the DNA-repair process. Here we describe a method for investigating mechanisms of plastid DNA-repair pathways. Using a genetic readout system in bacteria and chimeric or modified DNA oligonucleotides designed to direct the conversion of mutations in antibiotic resistance genes, we have developed an assay for genetic repair of mutations in a spinach chloroplast lysate system. We report genetic repair of point and frameshift mutations directed by both types of modified oligonucleotides. This system enables the mechanistic study of plastid gene repair and facilitates the direct comparison between plant nuclear and organelle DNA-repair pathways.  相似文献   

5.
6.
Post-translational modifications are used by cells to link additional information to proteins. Most modifications are subtle and concern small moieties such as a phosphate group or a lipid. In contrast, protein ubiquitylation entails the covalent attachment of a full-length protein such as ubiquitin. The protein ubiquitylation machinery is remarkably complex, comprising more than 15 Ubls (ubiquitin-like proteins) and several hundreds of ubiquitin-conjugating enzymes. Ubiquitin is best known for its role as a tag that induces protein destruction either by the proteasome or through targeting to lysosomes. However, addition of one or more Ubls also affects vesicular traffic, protein-protein interactions and signal transduction. It is by now well established that ubiquitylation is a component of most, if not all, cellular signalling pathways. Owing to its abundance in controlling cellular functions, ubiquitylation is also of key relevance to human pathologies, including cancer and inflammation. In the present review, we focus on its role in the control of cell adhesion, polarity and directional migration. It will become clear that protein modification by Ubls occurs at every level from the receptors at the plasma membrane down to cytoskeletal components such as actin, with differential consequences for the pathway's final output. Since ubiquitylation is fast as well as reversible, it represents a bona fide signalling event, which is used to fine-tune a cell's responses to receptor agonists.  相似文献   

7.
Endocytosis is involved in a wide variety of cellular processes, and the internalization step of endocytosis has been extensively studied in both lower and higher eukaryotic cells. Studies in mammalian cells have described several endocytic pathways, with the main emphasis on clathrin-dependent endocytosis. Genetic studies in yeast have underlined the critical role of actin and actin-binding proteins, lipid modification, and the ubiquitin conjugation system. The combined results of studies of endocytosis in higher and lower eukaryotic cells reveal an interesting interplay in the two systems, including a crucial role for ubiquitin-associated events. The ubiquitylation of yeast cell-surface proteins clearly acts as a signal triggering their internalization. Mammalian cells display variations on the common theme of ubiquitin-linked endocytosis, according to the cell-surface protein considered. Many plasma membrane channels, transporters and receptors undergo cell-surface ubiquitylation, required for the internalization or later endocytic steps of some cell-surface proteins, whereas for others, internalization involves interaction with the ubiquitin conjugation system or with ancillary proteins, which are themselves ubiquitylated. Epsins and Eps15 (or Eps15 homologs), are commonly involved in the process of endocytosis in all eukaryotes, their critical role in this process stemming from their capacity to bind ubiquitin, and to undergo ubiquitylation.  相似文献   

8.
Ubiquitin conjugation (ubiquitylation) plays important roles not only in protein degradation but also in many other cellular functions. However, the sites of proteins that are targeted for such modification have remained poorly characterized at the proteomic level. We have now developed a method for the efficient identification of ubiquitylation sites in target proteins with the use of an engineered form of ubiquitin (K0-Ub), in which all seven lysine residues are replaced with arginine. K0-Ub is covalently attached to lysine residues of target proteins via an isopeptide bond, but further formation of a polyubiquitin chain does not occur on K0-Ub. We identified a total of 1392 ubiquitylation sites of 794 proteins from HEK293T cells. Profiling of ubiquitylation sites indicated that the sequences surrounding lysine residues targeted for ubiquitin conjugation do not share a common motif or structural feature. Furthermore, we identified a critical ubiquitylation site of the cyclin-dependent kinase inhibitor p27(Kip1). Mutation of this site thus inhibited ubiquitylation of and stabilized p27(Kip1), suggesting that this lysine residue is the target site of p27(Kip1) for ubiquitin conjugation in vivo. In conclusion, our method based on K0-Ub is a powerful tool for proteome-wide identification of ubiquitylation sites of target proteins.  相似文献   

9.
Ligand-induced desensitization of the epidermal growth factor receptor (EGFR) is controlled by c-Cbl, a ubiquitin ligase that binds multiple signaling proteins, including the Grb2 adaptor. Consistent with a negative role for c-Cbl, here we report that defective Tyr1045 of EGFR, an inducible c-Cbl docking site, enhances the mitogenic response to EGF. Signaling potentiation is due to accelerated recycling of the mutant receptor and a concomitant defect in ligand-induced ubiquitylation and endocytosis of EGFR. Kinetic as well as morphological analyses of the internalization-defective mutant receptor imply that c-Cbl-mediated ubiquitylation sorts EGFR to endocytosis and to subsequent degradation in lysosomes. Unexpectedly, however, the mutant receptor displayed significant residual ligand-induced ubiquitylation, especially in the presence of an overexpressed c-Cbl. The underlying mechanism seems to involve recruitment of a Grb2 c-Cbl complex to Grb2-specific docking sites of EGFR, and concurrent acceleration of receptor ubiquitylation and desensitization. Thus, in addition to its well-characterized role in mediating positive signals, Grb2 can terminate signal transduction by accelerating c-Cbl-dependent sorting of active tyrosine kinases to destruction.  相似文献   

10.
泛素化介导的非蛋白质降解功能   总被引:2,自引:0,他引:2  
泛素因标记被26 S蛋白酶体降解的蛋白质而著名.然而近几年发现,泛素作用远不止此,不仅具有参与蛋白质降解这一重要“传统作用”,还起着比先前想象更多变的、更精美的细胞调控作用,是非常重要的细胞过程的多层面调节因子,具有许多重要的非蛋白质降解功能,包括DNA损伤修复、DNA复制、信号传导、转录调节、膜运输、胞吞、蛋白激酶活化、染色质重塑和病毒芽殖.这些功能涉及多聚泛素化和单泛素化及多泛素化.因此,泛素化异常可能涉及疾病的发生和发展.对这些功能的了解可以拓展人们对泛素的认识,有助于对多种细胞过程的深入理解,也有助于相关新药的研发.  相似文献   

11.
蛋白质泛素化系统   总被引:4,自引:0,他引:4  
杨义力 《生命科学》2002,14(5):279-282
泛素化是单个或多个泛素在泛素激活酶,泛素结合酶及泛素蛋白质连接酶的作用下共价修饰底物蛋白质的过程,近年来的研究发现,许多含环指的蛋白质本身是蛋白质泛素连接酶,或是多亚基连接酶中的重要成分。由于细胞内可表达200以上的环指蛋白,并且多亚基连接酶可利用同一环指蛋白但不同的底物识别蛋白。这些研究极大地丰富了对泛素化系统酶的认识,也使进一步调节和干预连接酶与底物的相互作用成为可能,新近的研究还发现,泛素化不仅可导致蛋白质的降解,还可直接影响蛋白质的活性和细胞内定位,是调节细胞内蛋白质功能和水平的主要机制之一。  相似文献   

12.
Nedd4 is a HECT domain-containing ubiquitin ligase that mediates ubiquitylation and proteasome degradation of target proteins. The molecular basis for the interaction of Nedd4 with substrates lies in its WW domains, which can bind proline-rich (PY) domains in target proteins. Nedd4 is a developmentally expressed protein and may have a fundamental role to play in embryonic processes. However, whether Nedd4 has such a function is currently unknown, in part because few developmentally regulated ubiquitylation substrates have been identified or characterized. We have carried out a yeast two-hybrid screen and identified four proteins expressed in the mid-gestation embryo that are able to interact with Nedd4. Characterization of their functional interaction with Nedd4 in vitro and in vivo demonstrated that three of the four are bona fide Nedd4 binding partners, and two have the capacity to be ubiquitylation substrates. One of these is the first identified nonviral substrate for Nedd4-mediated monoubiquitylation. Interestingly, neither of these two ubiquitylated proteins interacts with Nedd4 through PY-mediated mechanisms. For one of the three Nedd4 binding partners, there was no discernable evidence of ubiquitylation. However, this protein clearly associates with Nedd4 through its PY domains and can alter the location of Nedd4 in cells, suggesting a role other than as a ubiquitylation substrate.  相似文献   

13.
Role of Bmi-1 and Ring1A in H2A ubiquitylation and Hox gene silencing   总被引:10,自引:0,他引:10  
Cao R  Tsukada Y  Zhang Y 《Molecular cell》2005,20(6):845-854
Polycomb group (PcG) proteins exist in at least two biochemically distinct protein complexes, the EED-EZH2 complex and the PRC1 complex, that respectively possess H3-K27 methyltransferase and H2A-K119 ubiquitin E3 ligase activities. How the enzymatic activities are regulated and what their role is in Hox gene silencing are not clear. Here, we demonstrate that Bmi-1 and Ring1A, two components of the PRC1 complex, play important roles in H2A ubiquitylation and Hox gene silencing. We show that both proteins positively regulate H2A ubiquitylation. Chromatin immunoprecipitation (ChIP) assays demonstrate that Bmi-1 and other components of the two PcG complexes bind to the promoter of HoxC13. Knockout Bmi-1 results in significant loss of H2A ubiquitylation and upregulation of Hoxc13 expression, whereas EZH2-mediated H3-K27 methylation is not affected. Our results suggest that EZH2-mediated H3-K27 methylation functions upstream of PRC1 and establishes a critical role for Bmi-1 and Ring1A in H2A ubiquitylation and Hox gene silencing.  相似文献   

14.
15.
Emanuele MJ  Elia AE  Xu Q  Thoma CR  Izhar L  Leng Y  Guo A  Chen YN  Rush J  Hsu PW  Yen HC  Elledge SJ 《Cell》2011,147(2):459-474
Cullin-RING ligases (CRLs) represent the largest E3 ubiquitin ligase family in eukaryotes, and the identification of their substrates is critical to understanding regulation of the proteome. Using genetic and pharmacologic Cullin inactivation coupled with genetic (GPS) and proteomic (QUAINT) assays, we have identified hundreds of proteins whose stabilities or ubiquitylation status are regulated by CRLs. Together, these approaches yielded many known CRL substrates as well as a multitude of previously unknown putative substrates. We demonstrate that one substrate, NUSAP1, is an SCF(Cyclin F) substrate during S and G2 phases of the cell cycle and is also degraded in response to DNA damage. This collection of regulated substrates is highly enriched for nodes in protein interaction networks, representing critical connections between regulatory pathways. This demonstrates the broad role of CRL ubiquitylation in all aspects of cellular biology and provides a set of proteins likely to be key indicators of cellular physiology.  相似文献   

16.
Posttranslational modification of proteins with ubiquitin (ubiquitylation) regulates numerous cellular processes. Besides functioning as a signal for proteasomal degradation, ubiquitylation has also non-proteolytic functions by altering the biochemical properties of the modified protein. To investigate the effect(s) of ubiquitylation on the properties of a protein, sufficient amounts of homogenously and well-defined ubiquitylated proteins are required. Here, we report on the elaboration of a method for the generation of high amounts of site-specifically mono-ubiquitylated proteins. Firstly, a one-step affinity purification scheme was developed for ubiquitin containing the unnatural amino acid azidohomoalanine at the C-terminal position. This ubiquitin was conjugated in a click reaction to recombinant DNA polymerase β, equipped with an alkyne function at a distinct position. Secondly, addition of defined amounts of SDS to the reaction significantly improved product formation. With these two technical improvements, we have developed a straight forward procedure for the efficient generation of site-specifically ubiquitylated proteins that can be used to study the effect(s) of ubiquitylation on the activities/properties of a protein.  相似文献   

17.
18.
The ubiquitin system is crucial for the development and fitness of higher plants. De-etiolation, during which green plants initiate photomorphogenesis and establish autotrophy, is a dramatic and complicated process that is tightly regulated by a massive number of ubiquitylation/de-ubiquitylation events. Here we present site-specific quantitative proteomic data for the ubiquitylomes of de-etiolating seedling leaves of Zea mays L. (exposed to light for 1, 6, or 12 h) achieved through immunoprecipitation-based high-resolution mass spectrometry (MS). Through the integrated analysis of multiple ubiquitylomes, we identified and quantified 1926 unique ubiquitylation sites corresponding to 1053 proteins. We analyzed these sites and found five potential ubiquitylation motifs, KA, AXK, KXG, AK, and TK. Time-course studies revealed that the ubiquitylation levels of 214 sites corresponding to 173 proteins were highly correlated across two replicate MS experiments, and significant alterations in the ubiquitylation levels of 78 sites (fold change >1.5) were detected after de-etiolation for 12 h. The majority of the ubiquitylated sites we identified corresponded to substrates involved in protein and DNA metabolism, such as ribosomes and histones. Meanwhile, multiple ubiquitylation sites were detected in proteins whose functions reflect the major physiological changes that occur during plant de-etiolation, such as hormone synthesis/signaling proteins, key C4 photosynthetic enzymes, and light signaling proteins. This study on the ubiquitylome of the maize seedling leaf is the first attempt ever to study the ubiquitylome of a C4 plant and provides the proteomic basis for elucidating the role of ubiquitylation during plant de-etiolation.  相似文献   

19.
Post-translational modification of proteins by ubiquitin is a fundamentally important regulatory mechanism. However, proteome-wide analysis of endogenous ubiquitylation remains a challenging task, and almost always has relied on cells expressing affinity tagged ubiquitin. Here we combine single-step immunoenrichment of ubiquitylated peptides with peptide fractionation and high-resolution mass spectrometry to investigate endogenous ubiquitylation sites. We precisely map 11,054 endogenous putative ubiquitylation sites (diglycine-modified lysines) on 4,273 human proteins. The presented data set covers 67% of the known ubiquitylation sites and contains 10,254 novel sites on proteins with diverse cellular functions including cell signaling, receptor endocytosis, DNA replication, DNA damage repair, and cell cycle progression. Our method enables site-specific quantification of ubiquitylation in response to cellular perturbations and is applicable to any cell type or tissue. Global quantification of ubiquitylation in cells treated with the proteasome inhibitor MG-132 discovers sites that are involved in proteasomal degradation, and suggests a nonproteasomal function for almost half of all sites. Surprisingly, ubiquitylation of about 15% of sites decreased more than twofold within four hours of MG-132 treatment, showing that inhibition of proteasomal function can dramatically reduce ubiquitylation on many sites with non-proteasomal functions. Comparison of ubiquitylation sites with acetylation sites reveals an extensive overlap between the lysine residues targeted by these two modifications. However, the crosstalk between these two post-translational modifications is significantly less frequent on sites that show increased ubiquitylation upon proteasome inhibition. Taken together, we report the largest site-specific ubiquitylation dataset in human cells, and for the first time demonstrate proteome-wide, site-specific quantification of endogenous putative ubiquitylation sites.  相似文献   

20.
The ubiquitylation of membrane proteins destined for the vacuole/lysosome is essential for their recognition by the endosomal sorting machinery and their internalization into vesicles of multivesicular bodies (MVBs). In yeast, this process requires Rsp5p, an essential ubiquitin ligase of the Nedd4 family. We describe here two redundant proteins, Ear1p and Ssh4p, required for the vacuolar targeting of several cargoes originating from the Golgi or the plasma membrane. Ear1p is an endosomal protein that interacts with Rsp5p through its PPxY motifs, and it is required for the ubiquitylation of selected cargoes before their MVB sorting. In-frame fusion of cargo to ubiquitin overcomes the need for Ear1p/Ssh4p, confirming a role for these proteins in cargo ubiquitylation. Interestingly, Ear1p is itself ubiquitylated by Rsp5p and targeted to the vacuole. Finally, Ear1p overexpression leads to Rsp5p accumulation at endosomes, interfering with some of its functions in trafficking. Therefore, Ear1p/Ssh4p recruit Rsp5p and assist it in its function at MVBs by directing the ubiquitylation of specific cargoes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号