首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.

Background

Pandemic influenza A(H1N1) (pH1N1) was first identified in North America in April 2009. Vaccination against pH1N1 commenced in the U.S. in October 2009 and continued through January 2010. The objective of this study was to evaluate the cost-effectiveness of pH1N1 vaccination.

Methodology

A computer simulation model was developed to predict costs and health outcomes for a pH1N1 vaccination program using inactivated vaccine compared to no vaccination. Probabilities, costs and quality-of-life weights were derived from emerging primary data on pH1N1 infections in the US, published and unpublished data for seasonal and pH1N1 illnesses, supplemented by expert opinion. The modeled target population included hypothetical cohorts of persons aged 6 months and older stratified by age and risk. The analysis used a one-year time horizon for most endpoints but also includes longer-term costs and consequences of long-term sequelae deaths. A societal perspective was used. Indirect effects (i.e., herd effects) were not included in the primary analysis. The main endpoint was the incremental cost-effectiveness ratio in dollars per quality-adjusted life year (QALY) gained. Sensitivity analyses were conducted.

Results

For vaccination initiated prior to the outbreak, pH1N1 vaccination was cost-saving for persons 6 months to 64 years under many assumptions. For those without high risk conditions, incremental cost-effectiveness ratios ranged from $8,000–$52,000/QALY depending on age and risk status. Results were sensitive to the number of vaccine doses needed, costs of vaccination, illness rates, and timing of vaccine delivery.

Conclusions

Vaccination for pH1N1 for children and working-age adults is cost-effective compared to other preventive health interventions under a wide range of scenarios. The economic evidence was consistent with target recommendations that were in place for pH1N1 vaccination. We also found that the delays in vaccine availability had a substantial impact on the cost-effectiveness of vaccination.  相似文献   

2.
The Influenza A H1N1 2009 pandemic was a test of the global public health response. Strategies that worked included mass vaccine production and antivirals while quarantine and isolation proved futile. Among the lessons learned was the importance of severity in the definition of a pandemic.  相似文献   

3.

Background

The 2009 influenza A (H1N1) pandemic has required decision-makers to act in the face of substantial uncertainties. Simulation models can be used to project the effectiveness of mitigation strategies, but the choice of the best scenario may change depending on model assumptions and uncertainties.

Methods

We developed a simulation model of a pandemic (H1N1) 2009 outbreak in a structured population using demographic data from a medium-sized city in Ontario and epidemiologic influenza pandemic data. We projected the attack rate under different combinations of vaccination, school closure and antiviral drug strategies (with corresponding “trigger” conditions). To assess the impact of epidemiologic and program uncertainty, we used “combinatorial uncertainty analysis.” This permitted us to identify the general features of public health response programs that resulted in the lowest attack rates.

Results

Delays in vaccination of 30 days or more reduced the effectiveness of vaccination in lowering the attack rate. However, pre-existing immunity in 15% or more of the population kept the attack rates low, even if the whole population was not vaccinated or vaccination was delayed. School closure was effective in reducing the attack rate, especially if applied early in the outbreak, but this is not necessary if vaccine is available early or if pre-existing immunity is strong.

Interpretation

Early action, especially rapid vaccine deployment, is disproportionately effective in reducing the attack rate. This finding is particularly important given the early appearance of pandemic (H1N1) 2009 in many schools in September 2009.Jurisdictions in the northern hemisphere are bracing for a “fall wave” of pandemic (H1N1) 2009.13 Decision-makers face uncertainty, not just with respect to epidemiologic characteristics of the virus,4 but also program uncertainties related to feasibility, timeliness and effectiveness of mitigation strategies.5 Policy decisions must be made against this backdrop of uncertainty. However, the effectiveness of any mitigation strategy generally depends on the epidemiologic characteristics of the pathogen as well as the other mitigation strategies adopted. Mathematical models can project strategy effectiveness under hypothetical epidemiologic and program scenarios.612 In the case of pandemic influenza, models have been used to assess the effectiveness of school closure7 and optimal use of antiviral drug6,9,10 and vaccination strategies.8 However, model projections can be sensitive to input parameter values; thus, data uncertainty is an issue.13 Uncertainty analysis can help address the impact of uncertainties on model predictions but is often underutilized.13In this article, we present a simulation model of pandemic influenza transmission and mitigation in a population. This model projects the overall attack rate (percentage of people infected) during an outbreak. We introduce a formal method of uncertainty analysis that has not previously been applied to pandemic influenza, and we use this method to assess the impact of epidemiologic and program uncertainties. The model is intended to address the following policy questions that have been raised during the 2009 influenza pandemic: What is the impact of delayed vaccine delivery on attack rates? Can attack rates be substantially reduced without closing schools? What is the impact of pre-existing immunity from spring and summer 2009? We addressed these questions using a simulation model that projects the impact of vaccination, school closure and antiviral drug treatment strategies on attack rates.  相似文献   

4.

Background

Narcolepsy is a rare neurological sleep disorder especially in children who are younger than 10 years. In the beginning of 2010, an exceptionally large number of Finnish children suffered from an abrupt onset of excessive daytime sleepiness (EDS) and cataplexy. Therefore, we carried out a systematic analysis of the incidence of narcolepsy in Finland between the years 2002–2010.

Methods

All Finnish hospitals and sleep clinics were contacted to find out the incidence of narcolepsy in 2010. The national hospital discharge register from 2002 to 2009 was used as a reference.

Findings

Altogether 335 cases (all ages) of narcolepsy were diagnosed in Finland during 2002–2009 giving an annual incidence of 0.79 per 100 000 inhabitants (95% confidence interval 0.62–0.96). The average annual incidence among subjects under 17 years of age was 0.31 (0.12–0.51) per 100 000 inhabitants. In 2010, 54 children under age 17 were diagnosed with narcolepsy (5.3/100 000; 17-fold increase). Among adults ≥20 years of age the incidence rate in 2010 was 0.87/100 000, which equals that in 2002–2009. Thirty-four of the 54 children were HLA-typed, and they were all positive for narcolepsy risk allele DQB1*0602/DRB1*15. 50/54 children had received Pandemrix vaccination 0 to 242 days (median 42) before onset. All 50 had EDS with abnormal multiple sleep latency test (sleep latency <8 min and ≥2 sleep onset REM periods). The symptoms started abruptly. Forty-seven (94%) had cataplexy, which started at the same time or soon after the onset of EDS. Psychiatric symptoms were common. Otherwise the clinical picture was similar to that described in childhood narcolepsy.

Interpretation

A sudden increase in the incidence of abrupt childhood narcolepsy was observed in Finland in 2010. We consider it likely that Pandemrix vaccination contributed, perhaps together with other environmental factors, to this increase in genetically susceptible children.  相似文献   

5.
At this critical juncture when the world has not yet recovered from the threat of avian influenza, the virus has returned in the disguise of swine influenza, a lesser known illness common in pigs. It has reached pandemic proportions in a short time span with health personnel still devising ways to identify the novel H1N1 virus and develop vaccines against it. The H1N1 virus has caused a considerable number of deaths within the short duration since its emergence. Presently, there are no effective methods to contain this newly emerged virus. Therefore, a proper and clear insight is urgently required to prevent an outbreak in the future and make preparations that may be planned well in advance. This review is an attempt to discuss the historical perspective of the swine flu virus, its epidemiology and route of transmission to better understand the various control measures that may be taken to fight the danger of a global pandemic.  相似文献   

6.
Chiu SS  Chan KH  Wong WH  Chan EL  Peiris JS 《PloS one》2011,6(7):e21837
BACKGROUND: A wide spectrum of clinical manifestation ranging from deaths to a mild course of disease has been reported in children infected with the 2009 pandemic H1N1 (pH1N1) influenza. METHODOLOGY/MAJOR FINDINGS: We conducted an age-matched control study comparing children hospitalized for pH1N1 with historic controls infected with seasonal H1N1 and H3N2 influenza to correct for the effect of age on disease susceptibility and clinical manifestations. We also compared children with pH1N1 to children concurrently admitted for seasonal influenza during the pandemic period to adjust for differences in health-seeking behavior during the pandemic or other potential bias associated with historic controls. There was no death or intensive care admission. Children with pH1N1 were more likely to have at least one risk condition for influenza, an underlying chronic pulmonary condition, more likely to have asthma exacerbation and to be treated with oseltamivir. There was no difference in other aspects of the clinical course or outcome. CONCLUSION: Disease manifestation of children hospitalized for pH1N1 infection was mild in our patient population.  相似文献   

7.

Background

Before pandemic (H1N1) 2009, less than 10% of serum samples collected from all age groups in the Lower Mainland of British Columbia, Canada, showed seroprotection against the pandemic (H1N1) 2009 virus, except those from very elderly people. We reassessed this profile of seroprotection by age in the same region six months after the fall 2009 pandemic and vaccination campaign.

Methods

We evaluated 100 anonymized serum samples per 10-year age group based on convenience sampling. We measured levels of antibody against the pandemic virus by hemagglutination inhibition and microneutralization assays. We assessed geometric mean titres and the proportion of people with seroprotective antibody levels (hemagglutination inhibition titre ≥ 40). We performed sensitivity analyses to evaluate titre thresholds of 80, 20 and 10.

Results

Serum samples from 1127 people aged 9 months to 101 years were obtained. The overall age-standardized proportion of people with seroprotective antibody levels was 46%. A U-shaped age distribution was identified regardless of assay or titre threshold applied. Among those less than 20 years old and those 80 years and older, the prevalence of seroprotection was comparably high at about 70%. Seroprotection was 44% among those aged 20–49 and 30% among those 50–79 years. It was lowest among people aged 70–79 years (21%) and highest among those 90 years and older (88%).

Interpretation

We measured much higher levels of seroprotection after the 2009 pandemic compared than before the pandemic, with a U-shaped age distribution now evident. These findings, particularly the low levels of seroprotection among people aged 50–79 years, should be confirmed in other settings and closer to the influenza season.In a previous age-based survey of about 1000 anonymized serum samples collected before substantial pandemic (H1N1) 2009 activity in the Lower Mainland of the province of British Columbia, Canada, we found that less than 10% of children and adults under 70 years of age had seroprotective levels of antibody against the pandemic (H1N1) virus.1 This proportion was slightly higher among people aged 70–79 years (27%) and substantially higher among those above 80 years of age (77%).1The 2009 influenza pandemic and the broad and effective vaccination campaign introduced major changes to this population’s immune status. The first wave in the province, in the spring and summer months, was of limited activity and was followed by a second, more substantial and widespread wave in the fall that peaked during the last week of October and resolved by the end of 2009.2 Meanwhile, a highly immunogenic adjuvanted vaccine was provided free of charge through a universal vaccination campaign that targeted all Canadians.3 Supply was limited initially, requiring sequenced rollout of the vaccine, starting with children under five years of age, pregnant women, and people under 65 years who had comorbidities.4 The uptake of the vaccine of about 35%–45% in the province overall46 and 44% in the Lower Mainland (Dr. Monika Naus, BC Centre for Disease Control, Vancouver, BC: personal communication, 2010) was estimated to be moderate compared with rates of uptake in other provinces.To assess seroprotective antibody levels after the 2009 pandemic, we repeated our age-based survey of antibody levels against the pandemic (H1N1) 2009 virus in a further 1000 serum samples collected from people in the Lower Mainland in May and June 2010, more than six months after the last peak of the epidemic.  相似文献   

8.
Masoodi TA  Shaik NA  Shafi G  Munshi A  Ahamed AK  Masoodi ZA 《Gene》2012,491(2):200-204
To gain insight into the possible origin of the hemagglutinin of 2009 outbreak, we performed its comparative analysis with hemagglutinin of influenza viral strains from 2005 to 2008 and the past pandemics of 1977, 1968, 1957 and 1918. This insilico analysis showed a maximum sequence similarity between 2009 and 1918 pandemics. Primary structure analysis, antigenic and glycosylation site analyses revealed that this protein has evolved from 1918 pandemic. Phylogenetic analysis of HA amino acid sequence of 2009 influenza A(H1N1) viruses indicated that this virus possesses a distinctive evolutionary trait with 1918 influenza A virus. Although the disordered sequences are different among all the isolates, the disordered positions and sequences between 2009 and 1918 isolates show a greater similarity. Thus these analyses contribute to the evidence of the evolution of 2009 pandemic from 1918 influenza pandemic. This is the first computational evolutionary analysis of HA protein of 2009 H1N1 pandemic.  相似文献   

9.
The 2009 H1N1 pandemic influenza virus represents the greatest incidence of human infection with an influenza virus of swine origin to date. Moreover, triple-reassortant swine (TRS) H1N1 viruses, which share similar host and lineage origins with 2009 H1N1 viruses, have been responsible for sporadic human cases since 2005. Similar to 2009 H1N1 viruses, TRS viruses are capable of causing severe disease in previously healthy individuals and frequently manifest with gastrointestinal symptoms; however, their ability to cause severe disease has not been extensively studied. Here, we evaluated the pathogenicity and transmissibility of two TRS viruses associated with disease in humans in the ferret model. TRS and 2009 H1N1 viruses exhibited comparable viral titers and histopathologies following virus infection and were similarly unable to transmit efficiently via respiratory droplets in the ferret model. Utilizing TRS and 2009 H1N1 viruses, we conducted extensive hematologic and blood serum analyses on infected ferrets to identify lymphohematopoietic parameters associated with mild to severe influenza virus infection. Following H1N1 or H5N1 influenza virus infection, ferrets were found to recapitulate several laboratory abnormalities previously documented with human disease, furthering the utility of the ferret model for the assessment of influenza virus pathogenicity.  相似文献   

10.
新世纪流感大流行的思考   总被引:3,自引:0,他引:3  
2009年从墨西哥开始暴发了一场席卷全世界的流感疫情.此次大流行的毒株,甲型H1N1病毒,包含了猪源、禽源和人源流感病毒的基因片段.研究该毒株的基因重配、进化历程及其生物学特性,将对防控此次流行具有重要意义.目前,该毒株的遗传进化关系已明确,通过遗传性状分析可获知该毒株可能的生物学性状,但流感大流行动向、毒株遗传变化、毒力及致病性变化仍在密切监控中.流感病毒生态系统具有复杂性,其基因组易突变、易重配、易在自然宿主保存,使得流感大流行存在一定的必然性.正视流感大流行的威胁,积极提高流感病毒在生态系统中的监控,加强流行病学调查,发展疫苗与药物,建立有效公共卫生保障体系,才能降低流感大流行的破坏性.  相似文献   

11.
Wang DY  Shu YL 《病毒学报》2011,27(3):304-307
历史上最具杀伤力的1918年西班牙流感大流行由H1N1亚型流感病毒引起[1],随后H1N1亚型流感继续在人群中流行,并且在20世纪20年代到50年代又引起了数次暴发[2-3]。1957年,H1N1流  相似文献   

12.
After the emergence of the H1N1 influenza in 2009, some countries responded with travel-related controls during the early stage of the outbreak in an attempt to contain or slow down its international spread. These controls along with self-imposed travel limitations contributed to a decline of about 40% in international air traffic to/from Mexico following the international alert. However, no containment was achieved by such restrictions and the virus was able to reach pandemic proportions in a short time. When gauging the value and efficacy of mobility and travel restrictions it is crucial to rely on epidemic models that integrate the wide range of features characterizing human mobility and the many options available to public health organizations for responding to a pandemic. Here we present a comprehensive computational and theoretical study of the role of travel restrictions in halting and delaying pandemics by using a model that explicitly integrates air travel and short-range mobility data with high-resolution demographic data across the world and that is validated by the accumulation of data from the 2009 H1N1 pandemic. We explore alternative scenarios for the 2009 H1N1 pandemic by assessing the potential impact of mobility restrictions that vary with respect to their magnitude and their position in the pandemic timeline. We provide a quantitative discussion of the delay obtained by different mobility restrictions and the likelihood of containing outbreaks of infectious diseases at their source, confirming the limited value and feasibility of international travel restrictions. These results are rationalized in the theoretical framework characterizing the invasion dynamics of the epidemics at the metapopulation level.  相似文献   

13.
After the outbreak of the swine-origin influenza A H1N1 virus in April 2009, World Health Organization declared this novel H1N1 virus as the first pandemic influenza virus (2009 pH1N1) of the 21st century. To elucidate the characteristics of 2009 pH1N1, the growth properties of A/Korea/01/09 (K/09) was analyzed in cells. Interestingly, the maximal titer of K/09 was higher than that of a seasonal H1N1 virus isolated in Korea 2008 (S/08) though the RNP complex of K/09 was less competent than that of S/08. In addition, the NS1 protein of K/09 was determined as a weak interferon antagonist as compared to that of S/08. Thus, in order to confine genetic determinants of K/09, activities of two major surface glycoproteins were analyzed. Interestingly, K/09 possesses highly reactive NA proteins and weak HA cell-binding avidity. These findings suggest that the surface glycoproteins might be a key factor in the features of 2009 pH1N1. [BMB Reports 2012; 45(11): 653-658]  相似文献   

14.
15.

Background

In April 2009, a novel triple-reassortant swine influenza A H1N1 virus (“A/H1N1pdm”; also known as SOIV) was detected and spread globally as the first influenza pandemic of the 21st century. Sequencing has since been conducted at an unprecedented rate globally in order to monitor the diversification of this emergent virus and to track mutations that may affect virus behavior.

Methodology/Principal Findings

By Sanger sequencing, we determined consensus whole-genome sequences for A/H1N1pdm viruses sampled nationwide in Canada over 33 weeks during the 2009 first and second pandemic waves. A total of 235 virus genomes sampled from unique subjects were analyzed, providing insight into the temporal and spatial trajectory of A/H1N1pdm lineages within Canada. Three clades (2, 3, and 7) were identifiable within the first two weeks of A/H1N1pdm appearance, with clades 5 and 6 appearing thereafter; further diversification was not apparent. Only two viral sites displayed evidence of adaptive evolution, located in hemagglutinin (HA) corresponding to D222 in the HA receptor-binding site, and to E374 at HA2-subunit position 47. Among the Canadian sampled viruses, we observed notable genetic diversity (1.47×10−3 amino acid substitutions per site) in the gene encoding PB1, particularly within the viral genomic RNA (vRNA)-binding domain (residues 493–757). This genome data set supports the conclusion that A/H1N1pdm is evolving but not excessively relative to other H1N1 influenza A viruses. Entropy analysis was used to investigate whether any mutated A/H1N1pdm protein residues were associated with infection severity; however no virus genotypes were observed to trend with infection severity. One virus that harboured heterozygote coding mutations, including PB2 D567D/G, was attributed to a severe and potentially mixed infection; yet the functional significance of this PB2 mutation remains unknown.

Conclusions/Significance

These findings contribute to enhanced understanding of Influenza A/H1N1pdm viral dynamics.  相似文献   

16.
The last decade has seen the emergence of two new influenza A subtypes and they have become a cause of concern for the global community. These are the highly pathogenic H5N1 influenza A virus (H5N1) and the Pandemic 2009 influenza H1N1 virus. Since 2003 the H5N1 virus has caused widespread disease and death in poultry, mainly in south East Asia and Africa. In humans the number of cases infected with this virus is few but the mortality has been about 60%. Most patients have presented with severe pneumonia and acute respiratory distress syndrome. The second influenza virus, the pandemic H1N1 2009, emerged in Mexico in March this year. This virus acquired the ability for sustained human to human spread and within a few months spread throughout the world and infected over 4 lakh individuals. The symptoms of infection with this virus are similar to seasonal influenza but it currently affecting younger individuals more often. Fortunately the mortality has been low. Both these new influenza viruses are currently circulating and have different clinical and epidemiological characteristics.  相似文献   

17.

Background

Though recommended by many and mandated by some, influenza vaccination rates among health care workers, even in pandemics, remain below optimal levels. The objective of this study was to assess vaccination uptake, attitudes, and distinguishing characteristics (including doctor-nurse differences) of health care workers who did and did not receive the pandemic H1N1 influenza vaccine in late 2009.

Methodology/Principal Findings

In early 2010 we mailed a self-administered survey to 800 physicians and 800 nurses currently licensed and practicing in Minnesota. 1,073 individuals responded (cooperation rate: 69%). 85% and 62% of Minnesota physicians and nurses, respectively, reported being vaccinated. Accurately estimating the risk of vaccine side effects (OR 2.0; 95% CI 1.5–2.7), agreeing with a professional obligation to be vaccinated (OR 10.1; 95% CI 7.1–14.2), an ethical obligation to follow public health authorities'' recommendations (OR 9.9; 95% CI 6.6–14.9), and laws mandating pandemic vaccination (OR 3.1; 95% CI 2.3–4.1) were all independently associated with receiving the H1N1 influenza vaccine.

Conclusions/Significance

While a majority of health care workers in one midwestern state reported receiving the pandemic H1N1 vaccine, physicians and nurses differed significantly in vaccination uptake. Several key attitudes and perceptions may influence health care workers'' decisions regarding vaccination. These data inform how states might optimally enlist health care workers'' support in achieving vaccination goals during a pandemic.  相似文献   

18.

Background

Epidemic models are being extensively used to understand the main pathways of spread of infectious diseases, and thus to assess control methods. Schools are well known to represent hot spots for epidemic spread; hence, understanding typical patterns of infection transmission within schools is crucial for designing adequate control strategies. The attention that was given to the 2009 A/H1N1pdm09 flu pandemic has made it possible to collect detailed data on the occurrence of influenza-like illness (ILI) symptoms in two primary schools of Trento, Italy.

Results

The data collected in the two schools were used to calibrate a discrete-time SIR model, which was designed to estimate the probabilities of influenza transmission within the classes, grades and schools using Markov Chain Monte Carlo (MCMC) methods. We found that the virus was mainly transmitted within class, with lower levels of transmission between students in the same grade and even lower, though not significantly so, among different grades within the schools. We estimated median values of R 0 from the epidemic curves in the two schools of 1.16 and 1.40; on the other hand, we estimated the average number of students infected by the first school case to be 0.85 and 1.09 in the two schools.

Conclusions

The discrepancy between the values of R 0 estimated from the epidemic curve or from the within-school transmission probabilities suggests that household and community transmission played an important role in sustaining the school epidemics. The high probability of infection between students in the same class confirms that targeting within-class transmission is key to controlling the spread of influenza in school settings and, as a consequence, in the general population.
  相似文献   

19.
20.

Background

In 2009, a novel influenza virus (2009 pandemic influenza A (H1N1) virus (pH1N1)) caused significant disease in the United States. Most states, including Florida, experienced a large fall wave of disease from September through November, after which disease activity decreased substantially. We determined the prevalence of antibodies due to the pH1N1 virus in Florida after influenza activity had peaked and estimated the proportion of the population infected with pH1N1 virus during the pandemic.

Methods

During November-December 2009, we collected leftover serum from a blood bank, a pediatric children''s hospital and a pediatric outpatient clinic in Tampa Bay Florida. Serum was tested for pH1N1 virus antibodies using the hemagglutination-inhibition (HI) assay. HI titers ≥40 were considered seropositive. We adjusted seroprevalence results to account for previously established HI assay specificity and sensitivity and employed a simple statistical model to estimate the proportion of seropositivity due to pH1N1 virus infection and vaccination.

Results

During the study time period, the overall seroprevalence in Tampa Bay, Florida was 25%, increasing to 30% after adjusting for HI assay sensitivity and specificity. We estimated that 5.9% of the population had vaccine-induced seropositivity while 25% had seropositivity secondary to pH1N1 virus infection. The highest cumulative incidence of pH1N1 virus infection was among children aged 5–17 years (53%) and young adults aged 18–24 years (47%), while adults aged ≥50 years had the lowest cumulative incidence (11–13%) of pH1N1 virus infection.

Conclusions

After the peak of the fall wave of the pandemic, an estimated one quarter of the Tampa Bay population had been infected with the pH1N1 virus. Consistent with epidemiologic trends observed during the pandemic, the highest burdens of disease were among school-aged children and young adults.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号