首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
Cdk5 is a member of the cyclin-dependent kinase (Cdk) family. In contrast to other Cdks that promote cell proliferation, Cdk5 plays a role in regulating various neuronal functions, including neuronal migration, synaptic activity, and neuron death. Cdks responsible for cell proliferation need phosphorylation in the activation loop for activation in addition to binding a regulatory subunit cyclin. Cdk5, however, is activated only by binding to its activator, p35 or p39. Furthermore, in contrast to Cdk1 and Cdk2, which are inhibited by phosphorylation at Tyr-15, the kinase activity of Cdk5 is reported to be stimulated when phosphorylated at Tyr-15 by Src family kinases or receptor-type tyrosine kinases. We investigated the activation mechanism of Cdk5 by phosphorylation at Tyr-15. Unexpectedly, however, it was found that Tyr-15 phosphorylation occurred only on monomeric Cdk5, and the coexpression of activators, p35/p25, p39, or Cyclin I, inhibited the phosphorylation. In neuron cultures, too, the activation of Fyn tyrosine kinase did not increase Tyr-15 phosphorylation of Cdk5. Further, phospho-Cdk5 at Tyr-15 was not detected in the p35-bound Cdk5. In contrast, expression of active Fyn increased p35 in neurons. These results indicate that phosphorylation at Tyr-15 is not an activation mechanism of Cdk5 but, rather, indicate that tyrosine kinases could activate Cdk5 by increasing the protein amount of p35. These results call for reinvestigation of how Cdk5 is regulated downstream of Src family kinases or receptor tyrosine kinases in neurons, which is an important signaling cascade in a variety of neuronal activities.  相似文献   

5.
6.
Although Abl functions in mature neurons, work to date has not addressed Abl's role on Cdk5 in neurodegeneration. We found that beta-amyloid (Abeta42) initiated Abl kinase activity and that blockade of Abl kinase rescued both Drosophila and mammalian neuronal cells from cell death. We also found activated Abl kinase to be necessary for the binding, activation, and translocalization of Cdk5 in Drosophila neuronal cells. Conversion of p35 into p25 was not observed in Abeta42-triggered Drosophila neurodegeneration, suggesting that Cdk5 activation and protein translocalization can be p25-independent. Our genetic studies also showed that abl mutations repressed Abeta42-induced Cdk5 activity and neurodegeneration in Drosophila eyes. Although Abeta42 induced conversion of p35 to p25 in mammalian cells, it did not sufficiently induce Cdk5 activation when c-Abl kinase activity was suppressed. Therefore, we propose that Abl and p35/p25 cooperate in promoting Cdk5-pY15, which deregulates Cdk5 activity and subcellular localization in Abeta42-triggered neurodegeneration.  相似文献   

7.
Activation or inactivation of members of the cyclin-dependent kinase family is important during cell cycle progression. However, Cdk5, a member of this family that was originally identified because of its high structural homology to Cdc2, is activated during cell differentiation and cell death but not during cell cycle progression. We previously demonstrated a correlation between the up-regulation of Cdk5 protein and kinase activity and cell death during development and pathogenesis. We report here that cyclophosphamide (CP) induces massive apoptotic cell death in mouse embryos and that Cdk5 is expressed in apoptotic cells displaying fragmented DNA. During CP-induced cell death, Cdk5 protein expression is substantially increased as detected by immunohistochemistry but not by Western blot, while its mRNA level remains the same as control, and its kinase activity is markedly elevated. The up-regulation of Cdk5 during CP-induced cell death is not due to de novo protein synthesis. We also examined p35, a regulatory protein of Cdk5 in neuronal differentiation. Using a yeast two-hybrid system, we isolated p35, a neuronal differentiation specific protein, as a protein that interacts with Cdk5 in CP-treated embryos. p35 mRNA level does not change, but the protein expression of p25, a truncated form of p35, is elevated during cell death in vivo, as established here, as well as during cell death in vitro. Our results suggest a role for Cdk5 and its regulatory proteins during CP induced cell death. These results further support the view that Cdk5 and its regulation may be key players in the execution of cell death regardless of how the cell dies, whether through biological mechanisms, disease states such as Alzheimer's disease, or induction by CP.  相似文献   

8.
Hisanaga S  Saito T 《Neuro-Signals》2003,12(4-5):221-229
Cyclin-dependent kinase 5 (Cdk5) displays kinase activity predominantly in post-mitotic neurons and its physiological roles are unrelated to cell cycle progression. Cdk5 is activated by its binding to a neuron-specific activator, p35 or p39. The protein amount of p35 or p39 is a primary determinant of the Cdk5 activity in neurons, with the amount of p35 or p39 being determined by its synthesis and degradation. The expression of p35 is induced in differentiated neurons and is enhanced by extracellular stimuli such as neurotrophic factors or extracellular matrix molecules, specifically those acting on the ERK/Erg pathway. p35 is a short-lived protein and its degradation determines the life span. Degradation is mediated by the ubiquitin/proteasome system, similar to that for cyclins in proliferating cells. Autophosphorylation of p35 by Cdk5 is a signal for ubiquitination/degradation, and the degradation of p35 is triggered by glutamate treatment in cultured neurons. p35 is cleaved to p25 by calpain at the time of neuronal cell death, and this limited cleavage is suggested to be the cause of neurodegenerative diseases such as Alzheimer's disease. Active Cdk5 changes the cellular localization by cleavage of p35 to p25; p35/Cdk5 is associated with membrane or cytoskeletons, but p25/Cdk5 is a soluble protein. Cleavage also increases the life span of p25 and changes the activity or substrate specificity of Cdk5. p25/Cdk5 shows higher phosphorylating activity to tau than p35/Cdk5 in a phosphorylation site-specific manner. Phosphorylation of p35 suppresses cleavage by calpain. Thus, phosphorylation of p35 modulates its proteolytic pattern, stimulates proteasomal degradation and suppresses calpain cleavage. Phosphorylation is age dependent, as p35 is phosphorylated in foetal brains, but unphosphorylated in adult brains. Therefore, foetal phosphorylated p35 is turned over rapidly, whereas adult unphosphorylated p35 has a long life and is easily cleaved to p25 when calpain is activated. p39 is also a short-lived protein and cleaved to the N-terminal truncation form of p29 by calpain. How the metabolism of p39 is regulated, however, is a future problem to be investigated.  相似文献   

9.
Dysregulation of cyclin-dependent kinase 5 (Cdk5) by cleavage of its activator p35 to p25 by calpain is involved in the neuronal cell death observed in neurodegenerative disorders, including Alzheimer's disease. However, it is not yet clear how p25/Cdk5 induces cell death, although its cytosolic localization or extended half life are thought to be involved. We show here that endoplasmic reticulum (ER) stress causes the calpain-dependent cleavage of p35 to p25 in primary cultured cortical neurons. Generation of p25 occurred at a cell death execution step in ER-stressed neurons. p25 translocated to the nucleus in ER-stressed neurons, whereas p35/Cdk5 was perinuclear in control neurons. Cdk5 inhibitors or dominant-negative Cdk5 suppressed ER stress-induced neuronal cell death. These findings indicate that p25/Cdk5 is a proapoptotic factor that promotes ER stress-induced neuronal cell death in nuclei.  相似文献   

10.
A set of different protein kinases have been involved in tau phosphorylations, including glycogen synthase kinase 3beta (GSK3 beta), MARK kinase, MAP kinase, the cyclin-dependent kinase 5 (Cdk5) system and others. The latter system include the catalytic component Cdk5 and the regulatory proteins p35, p25 and p39. Cdk5 and its neuron-specific activator p35 are essential molecules for neuronal migration and for the laminar configuration of the cerebral cortex. Recent evidence that the Cdk5/p35 complex concentrates at the leading edge of axonal growth cones, together with the involvement of this system in the phosphorylation of neuronal microtubule-asociated proteins (MAPs), provide further support to the role of this protein kinase in regulating axonal extension in developing brain neurons. Although the aminoacid sequence of p35 has little similarity with those of normal cyclins, studies have shown that its activation domain may adopt a conformation of the cyclin-folded structure. The computed structure for Cdk5 is compatible with experimental data obtained from studies on the Cdk5/p35 complex, and has allowed predictions on the protein interacting domains. This enzyme exhibits a wide cell distribution, even though a regulated Cdk5 activity has been shown only in neuronal cells. Cdk5 has been characterized as a proline-directed Ser/Thr protein kinase, that contributes to phosphorylation of human tau on Ser202, Thr205, Ser235 and Ser404. Cdk5 is active in postmitiotic neurons, and it has been implicated in cytoskeleton assembly and its organization during axonal growth. In addition to tau and other MAPs, Cdk5 phosphorylates the high molecular weight neurofilament proteins at their C-terminal domain. Moreover, nestin, a protein that regulates cytoskeleton organization of neuronal and muscular cells during development of early embryos, and several other regulatory proteins appear to be substrates of Cdk5 and are phosphorylated by this kinase. Studies also suggest, that in addition to Cdk5 involvement in neuronal differentiation, its activity is induced during myogenesis, however, the mechanisms of how this activity is regulated during muscular differentiation has not yet been elucidated. Recent studies have shown that the beta-amyloid peptide (A beta) induces a deregulation of Cdk5 in cultured brain cells, and raises the question on the possible roles of this tau-phosphorylating protein kinase in the sequence of molecular events leading to neuronal death triggered by A beta. In this context, there are evidence that Cdk5 is involved in tau hyperphosphorylation promoted by A beta in its fibrillary form. Cdk5 inhibitors protect hippocampal neurons against both tau anomalous phosphorylations and neuronal death. The links between the studies on the Cdk5/p35 system in normal neurogenesis and its claimed participation in neurodegeneration, provide the framework to understand the regulatory relevance of this kinase system, and changes in its regulation that may be implicated in disturbances such as those occurring in Alzheimer disease.  相似文献   

11.
The dysfunction of proteasomes and mitochondria has been implicated in the pathogenesis of Parkinson disease. However, the mechanism by which this dysfunction causes neuronal cell death is unknown. We studied the role of cyclin-dependent kinase 5 (Cdk5)-p35 in the neuronal cell death induced by 1-methyl-4-phenylpyrinidinium ion (MPP+), which has been used as an in vitro model of Parkinson disease. When cultured neurons were treated with 100 μm MPP+, p35 was degraded by proteasomes at 3 h, much earlier than the neurons underwent cell death at 12–24 h. The degradation of p35 was accompanied by the down-regulation of Cdk5 activity. We looked for the primary target of MPP+ that triggered the proteasome-mediated degradation of p35. MPP+ treatment for 3 h induced the fragmentation of the mitochondria, reduced complex I activity of the respiratory chain without affecting ATP levels, and impaired the mitochondrial import system. The dysfunction of the mitochondrial import system is suggested to up-regulate proteasome activity, leading to the ubiquitin-independent degradation of p35. The overexpression of p35 attenuated MPP+-induced neuronal cell death. In contrast, depletion of p35 with short hairpin RNA not only induced cell death but also sensitized to MPP+ treatment. These results indicate that a brief MPP+ treatment triggers the delayed neuronal cell death by the down-regulation of Cdk5 activity via mitochondrial dysfunction-induced up-regulation of proteasome activity. We propose a role for Cdk5-p35 as a survival factor in countering MPP+-induced neuronal cell death.Parkinson disease (PD)3 is the second most common neurodegenerative disease, characterized pathologically by degenerated dopaminergic neurons and ubiquitin-positive aggregates known as Lewy bodies (1). Most cases of PD are sporadic, but a small proportion of patients with PD have the familial form. Several causative genes have been identified for familial PDs, including α-synuclein (2), ubiquitin C-terminal hydrolase L1 (UCH-L1) (3), and parkin, an ubiquitin ligase E3 of the ubiquitin-proteasome system (4), implicating the impairment of the ubiquitin-proteasome pathway in the pathogenesis of PD. However, the mechanisms underlying the involvement of the ubiquitin-proteasome system in the development of PD are not yet understood.The 1-methyl-4-phenylpyrinidinium ion (MPP+), a toxic metabolite of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), is a neurotoxin used widely to induce dopaminergic neuronal cell death in in vitro models of PD (5). Previous studies have indicated that MPP+ induces neuronal cell death via several pathways, including the inhibition of complex I activity of the respiratory chain in mitochondria, leading to energy depletion, protein peroxidation, and DNA damage by producing reactive oxygen species and the induction of cytotoxic glutamate secretion (6, 7). However, the precise molecular pathway resulting in neuronal cell death remains to be identified.Cyclin-dependent kinase 5 (Cdk5) is a member of the Cdk serine/threonine kinase family. Cdk5 plays a role in a variety of neuronal activities including neuronal migration during central nervous system development (8, 9), synaptic activity in matured neurons (10), and neuronal cell death in neurodegenerative diseases (11, 12). Generally, when Cdk5 are activated by their respective activator cyclins, they function in cell cycle progression. However, unlike those cell cycle Cdk5, the kinase activity of Cdk5 is detected mainly in post mitotic neurons. This is because Cdk5 activators p35 and p39 are expressed predominantly in neurons (13, 14). The amount of p35 is the major determinant of Cdk5 activity, and it is normally a short-lived protein degraded by the ubiquitin-proteasome pathway (15, 16). However, in stressed neurons, the calcium-activated protease calpain cleaves p35 to the more stable and active form, p25 (1721). Hyperactivated or mislocalized Cdk5-p25 has been implicated in the pathogenesis of numerous neurodegenerative disorders including PD and Alzheimer disease. In the case of PD, Cdk5 and p35 are found in the Lewy bodies of the dopaminergic neurons of the brain (22, 23). Cdk5 is activated by p25 and is required for cell death in mouse models of PD induced with MPTP (24) or 6-hydroxydopamine (25). It has been shown that Cdk5-p25 in MPTP-treated neurons phosphorylates the survival factor, myocyte enhancer factor 2 (MEF2), to inactivate it, leading to cell death (26, 27). However, further studies are required to clarify the involvement of p35 metabolism in the PD pathway.Contrary to its role in cell death progression, recent studies have also suggested a survival function for Cdk5 in maintaining survival signals or counteracting apoptotic signals. For example, Cdk5 inhibits c-Jun phosphorylation by c-Jun-N-terminal protein kinase 3, which is activated by UV irradiation (28). Cdk5 also promotes the survival of neurons by activating Akt through the well known neuregulin/phosphatidylinositol 3-kinase (PI3K) survival pathway, which leads to the down-regulation of proapoptotic factors (29). Cdk5 attenuates cell death either by up-regulating Bcl-2 through the phosphorylation of ERK (30) or by phosphorylating Bcl-2 to maintain its neuroprotective effect (31). However, whether Cdk5 acts as the anti-apoptotic factor in the PD model of neuronal cell death has not been determined.Here, we studied the role of Cdk5-p35 in the cell death of neurons treated with MPP+. We found that p35 was proteolysed in cultured neurons by either calpain or proteasomes depending on the concentration of MPP+ used. The proteasomal MPP+-induced degradation of p35 occurred earlier and at lower MPP+ concentrations than did its cleavage by calpain. MPP+ up-regulated the overall proteasome activity in the neurons by impairing the mitochondrial protein import system. A brief MPP+ treatment for up to ∼3 h was sufficient to induce delayed cell death at 24 h. The overexpression of p35 suppressed this MPP+-induced cell death, and depletion of p35 increased cell death. Together, these results implicate a role for Cdk5-p35 as a survival factor in MPP+-treated neurons.  相似文献   

12.
Cyclin-dependent kinase 5 (Cdk5) is a proline-directed Ser/Thr kinase that plays important roles in various neuronal activities, including neuronal migration, synaptic activity, and neuronal cell death. Cdk5 is activated by association with a neuron-specific activator, p35 or its isoform p39, but little is known about the kinase activity of Cdk5--p39. In fact, kinase-active Cdk5--p39 was not prepared from rat brain extracts nor from HEK293 cells expressing Cdk5 and p39 by immunoprecipitation in the presence of non-ionic detergent, under conditions with which active Cdk5--p35 could be isolated. p39 dissociated from Cdk5 in the presence of detergent, indicating that p39 has a lower binding affinity for Cdk5 than p35. We developed a method for purifying kinase-active Cdk5--p39 from Sf9 cells infected with baculovirus encoding Cdk5 and p39. The purified Cdk5--p39 complex showed similar substrate specificity to that of Cdk5--p35, but with opposite sensitivity to detergent. Cdk5--p39 was inactivated by Triton X-100, whereas Cdk5--p35 was activated. The N-terminal deletion from p35 and p39, the amino acid sequences of which are different, did not change the stability or substrate specificity of either Cdk5 complex. The different stability between Cdk5--p35 and Cdk5--p39 suggests their distinct roles under different regulation mechanisms in neurons.  相似文献   

13.
Cyclin-dependent kinases (Cdks) play a key role in orchestrating the coordination of cell cycle progression in proliferating cells. The escape from the proper, control of the cell cycle by the upregulation of cyclins or aberrant activation of Cdks leads to malignant transformation. In quiescent cells and/or terminally differentiated cells, the expression pattern and activity of Cdks is altered. In postmitotic neurons, expression of mitotic kinases is downregulated, whereas Cdk5 expression becomes upregulated. Similarly to other Cdks, free Cdk5 displays no enzymatic activity and requires complex formation with a specific regulatory subunit. Two activators of Cdk5 have been identified. p35 and its isoform p39 bind to, and thereby activate, Cdk5. Unlike mitotic kinases, Cdk5 does not require activating phosphorylation within the T-loop. Because p35 is a short-lived protein, the p35/Cdk5 complexes are unstable. The stability of the p35 protein is regulated by its Cdk5-mediated phosphorylation of p35. Activated p35/Cdk5 kinase phosphorylates numerous physiological targets. The proper phosphorylation of the most important substrates, such as τ protein and neurofilament H, is essential for the correct regulation of the cytoskeletal organization, thereby regulating cell adhesion, motility, and synaptic plasticity. Moreover, Cdk5 regulates the activity of the p53 tumor suppressor via phosphorylation. p53 is upregulated in multiple neuronal death paradigms, including hypoxia, ischemia, and excitotoxicity, and plays a key role in the induction of apoptosis. On the other hand, an abnormally high expression and elevated activity of Cdk5 was observed in neurodegenerative diseases, suggesting the application of Cdk inhibitors for their therapy. Considering the action of some Cdk inhibitors on the expression and activity of the p53 protein, their therapeutic efficacy must be carefully evaluated.  相似文献   

14.
Cyclin-dependent kinases (Cdks) play a key role in orchestrating the coordination of cell cycle progression in proliferating cells. The escape from the proper control of the cell cycle by the upregulation of cyclins or aberrant activation of Cdks leads to malignant transformation. In quiescent cells and/or terminally differentiated cells, the expression pattern and activity of Cdks is altered. In postmitotic neurons, expression of mitotic kinases is downregulated, whereas Cdk5 expression becomes upregulated. Similarly to other Cdks, free Cdk5 displays no enzymatic activity and requires complex formation with a specific regulatory subunit. Two activators of Cdk5 have been identified. p35 and its isoform p39 bind to, and thereby activate, Cdk5. Unlike mitotic kinases, Cdk5 does not require activating phosphorylation within the T-loop. Because p35 is a short-lived protein, the p35/Cdk5 complexes are unstable. The stability of the p35 protein is regulated by its Cdk5-mediated phosphorylation of p35. Activated p35/Cdk5 kinase phosphorylates numerous physiological targets. The proper phosphorylation of the most important substrates, such as tau protein and neurofilament H, is essential for the correct regulation of the cytoskeletal organization, thereby regulating cell adhesion, motility, and synaptic plasticity. Moreover, Cdk5 regulates the activity of the p53 tumor suppressor via phosphorylation. p53 is upregulated in multiple neuronal death paradigms, including hypoxia, ischemia, and excitotoxicity, and plays a key role in the induction of apoptosis. On the other hand, an abnormally high expression and elevated activity of Cdk5 was observed in neurodegenerative diseases, suggesting the application of Cdk inhibitors for their therapy. Considering the action of some Cdk inhibitors on the expression and activity of the p53 protein, their therapeutic efficacy must be carefully evaluated.  相似文献   

15.
Cyclin-dependent kinases (Cdks) play a key role in orchestrating the coordination of cell cycle progression in proliferating cells. The escape from the proper control of the cell cycle by the upregulation of cyclins or aberrant activation of Cdks leads to malignant transformation. In quiescent cells and/or terminally differentiated cells, the expression pattern and activity of Cdks is altered. In postmitotic neurons, expression of mitotic kinases is downregulated, whereas Cdk5 expression becomes upregulated. Similarly to other Cdks, free Cdk5 displays no enzymatic activity and requires complex formation with a specific regulatory subunit. Two activators of Cdk5 have been identified. p35 and its isoform p39 bind to, and thereby activate, Cdk5. Unlike mitotic kinases, Cdk5 does not require activating phosphorylation within the T-loop. Because p35 is a short-lived protein, the p35/Cdk5 complexes are unstable. The stability of the p35 protein is regulated by its Cdk5-mediated phosphorylation of p35. Activated p35/Cdk5 kinase phosphorylates numerous physiological targets. The proper phosphorylation of the most important substrates, such as tau protein and neurofilament H, is essential for the correct regulation of the cytoskeletal organization, thereby regulating cell adhesion, motility, and synaptic plasticity. Moreover, Cdk5 regulates the activity of the p53 tumor suppressor via phosphorylation. p53 is upregulated in multiple neuronal death paradigms, including hypoxia, ischemia, and excitotoxicity, and plays a key role in the induction of apoptosis. On the other hand, an abnormally high expression and elevated activity of Cdk5 was observed in neurodegenerative diseases, suggesting the application of Cdk inhibitors for their therapy. Considering the action of some Cdk inhibitors on the expression and activity of the p53 protein, their therapeutic efficacy must be carefully evaluated.  相似文献   

16.
Cyclin-dependent kinase 5 (Cdk5) is a member of the cyclin-dependent kinase family that is mostly seen in neurons, does not vary with cell cycle, and is activated in many neurodegenerative disorders and other non-neuronal pathologies, but its relationship to non-neuronal apoptosis is not understood, nor is the control of the activation of Cdk5 by its activators. The most widely studied activator of Cdk5, p35, is cleaved to p25 by calpain, an event that has been linked with activation of Cdk5 and neuronal death. Here we report that calpain-mediated Cdk5/p25 activation accompanies non-neuronal as well as neuronal cell death, suggesting that the p35/calpain/p25/Cdk5 activation sequence is a general feature of cell death. We further demonstrate that Cdk5 can be activated in the absence of p53, Apaf-1, caspase-9, and -3 during cell death, indicating that its activation relates more to cell death than to a specific pathway of apoptosis.  相似文献   

17.
Cyclin‐dependent kinase 5 (Cdk5) is a serine/threonine kinase, and its activity is dependent upon an association with a neuron‐specific activating subunit. It was previously reported that Cdk5−/− mice exhibit perinatal lethality and defective neuronal positioning. In this study, they focused on the analysis of neuronal positioning of GABAergic neurons in the forebrain. Defective formation of the ventral striatum, nucleus accumbens, and olfactory tubercles was found in Cdk5−/− embryos. To further study this abnormal development, we generated and analyzed Dlx5/6‐Cre p35 conditional KO (cKO); p39−/− mice in which forebrain GABAergic neurons have lost their Cdk5 kinase activity. Defective formation of the nucleus accumbens and olfactory tubercles as well as neuronal loss in the striatum of Dlx5/6‐Cre p35cKO; p39−/− mice was found. Elevated levels of phosphorylated JNK were observed in neonatal striatal samples from Dlx5/6‐Cre p35cKO; p39−/− mice, suggestive of neuronal death. These results indicate that Cdk5 is required for the formation of the ventral striatum in a cell‐autonomous manner, and loss of the kinase activity of Cdk5 causes GABAergic neuronal death in the developing mouse forebrain. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 419–437, 2017  相似文献   

18.
Aspirin [acetylsalicylic acid (ASA)] is an anti-inflammatory drug that protects against cellular injury by inhibiting cyclooxygenases (COX), inducible nitric oxide synthase (iNOS) and p44/42 mitogen-activated protein kinase (p44/42 MAPK), or by preventing translocation of nuclear factor kappaB (NF-kappaB). We studied the effect of ASA pre-treatment on neuronal survival after hypoxia/reoxygenation damage in rat spinal cord (SC) cultures. In this injury model, COX, iNOS and NF-kappaB played no role in the early neuronal death. A 20-h treatment with 3 mm ASA prior to hypoxia/reoxygenation blocked the hypoxia/reoxygenation-induced lactate dehydrogenase (LDH) release from neurons. This neuroprotection was associated with increased phosphorylation of neurofilaments, which are substrates of p44/42 MAPK and cyclin-dependent kinase 5 (Cdk5). PD90859, a p44/42 MAPK inhibitor, had no effect on ASA-induced tolerance, but olomoucine and roscovitine, Cdk5 inhibitors, reduced ASA neuroprotection. Hypoxia/reoxygenation alone reduced both the protein amount and activity of Cdk5, and this reduction was inhibited by pre-treatment with ASA. Moreover, the protein amount of a neuronal Cdk5 activator, p35, recovered after reoxygenation only in ASA-treated samples. The prevention of the loss in Cdk5 activity during reoxygenation was crucial for ASA-induced protection, because co-administration of Cdk5 inhibitors at the onset ofreoxygenation abolished the protection. In conclusion, pre-treatment with ASA induces tolerance against hypoxia/reoxygenation damage in spinal cord cultures by restoring Cdk5 and p35 protein expression.  相似文献   

19.
Infection with HIV-1 causes degeneration of neurons leading to motor and cognitive dysfunction in AIDS patients. One of the key viral regulatory proteins, Tat, which is released by infected cells, can be taken up by various uninfected cells including neurons and by dysregulating several biological events induces cell injury and death. In earlier studies, we demonstrated that treatment of neuronal cells with Tat affects the nerve growth factor (NGF) signaling pathway involving MAPK/ERK. Here we demonstrate that a decrease in the level of Egr-1, one of the targets for MAPK, by Tat has a negative impact on the level of p35 expression in NGF-treated neural cells. Further, we demonstrate a reduced level of Egr-1 association with the p35 promoter sequence in NGF-treated cells expressing Tat. As p35, by associating with Cdk5, phosphorylates several neuronal proteins including neurofilaments and plays a role in neuronal differentiation and survival, we examined kinase activity of p35 complexes obtained from cells expressing Tat. Results from H1 kinase assays showed reduced activity of the p35 complex from Tat-expressing cells in comparison to that from control cells. Accordingly, the level of phosphorylated neurofilaments was diminished in Tat-expressing cells. Similarly, treatment of PC12 cells with Tat protein or supernatant from HIV-1 infected cells decreased kinase activity of p35 in these cells. These observations ascribe a role for Tat in altering p35 expression and its activity that affects phosphorylation of proteins involved in neuronal cell survival.  相似文献   

20.
Cyclin-dependent kinase 5 (Cdk5)/p35 kinase activity is known to decrease the affinity of beta-catenin for cadherin in developing cortical neurons. Our recent work demonstrated that depolarization causes an increased affinity between beta-catenin and cadherin. Here, we examine whether Cdk5/p35 regulates beta-catenin-cadherin affinity in response to neural activity. In hippocampal neurons depolarization caused a significant decrease in Cdk5 kinase activity, without changing the protein levels of either Cdk5 or p35, suggesting that the proteasome pathway is not involved. Decreasing Cdk5 kinase activity with the inhibitor roscovitine increased the amount of beta-catenin that was co-immunoprecipitated with cadherin. Inhibiting Cdk5 activity also resulted in a redistribution of EGFP-beta-catenin from the dendritic shaft to the spines, where cadherins are highly concentrated. The redistribution of beta-catenin induced by roscovitine is similar to that induced by depolarization. Interestingly, the redistribution induced by the Cdk5 inhibitor was completely blocked by either a tyrosine phosphatase inhibitor, orthovanadate or by point mutations of beta-catenin Tyr-654 to Glu or Phe. Immunoprecipitation studies further revealed that roscovitine increases the affinity of the wild-type, but not mutated, EGFP-beta-catenin for cadherin. These results suggest that Cdk5 activity regulates the affinity of beta-catenin for cadherin by changing the phosphorylation level of beta-catenin Tyr-654.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号