首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
Bradyrhizobium japonicum is a Gram-negative soil bacterium symbiotically associated with soya bean plants, which is also able to denitrify under free-living and symbiotic conditions. In B. japonicum, the napEDABC, nirK, norCBQD and nosRZDYFLX genes which encode reductases for nitrate, nitrite, nitric oxide and nitrous oxide respectively are required for denitrification. Similar to many other denitrifiers, expression of denitrification genes in B. japonicum requires both oxygen limitation and the presence of nitrate or a derived nitrogen oxide. In B. japonicum, a sophisticated regulatory network consisting of two linked regulatory cascades co-ordinates the expression of genes required for microaerobic respiration (the FixLJ/FixK2 cascade) and for nitrogen fixation (the RegSR/NifA cascade). The involvement of the FixLJ/FixK2 regulatory cascade in the microaerobic induction of the denitrification genes is well established. In addition, the FNR (fumarase and nitrate reduction regulator)/CRP(cAMP receptor protein)-type regulator NnrR expands the FixLJ/FixK2 regulatory cascade by an additional control level. A role for NifA is suggested in this process by recent experiments which have shown that it is required for full expression of denitrification genes in B. japonicum. The present review summarizes the current understanding of the regulatory network of denitrification in B. japonicum.  相似文献   

4.
Expression of Bradyrhizobium japonicum wild-type strain USDA110 nirK , norC and nosZ denitrification genes in soybean root nodules was studied by in situ histochemical detection of β -galactosidase activity. Similarly, PnirK- lacZ , PnorC- lacZ , and PnosZ- lacZ fusions were also expressed in bacteroids isolated from root nodules. Levels of β -galactosidase activity were similar in both bacteroids and nodule sections from plants that were solely N2-dependent or grown in the presence of 4 m M KNO3. These findings suggest that oxygen, and not nitrate, is the main factor controlling expression of denitrification genes in soybean nodules. In plants not amended with nitrate, B. japonicum mutant strains GRK308, GRC131, and GRZ25, that were altered in the structural nirK , norC and nosZ genes, respectively, showed a wild-type phenotype with regard to nodule number and nodule dry weight as well as plant dry weight and nitrogen content. In the presence of 4 m M KNO3, plants inoculated with either GRK308 or GRC131 showed less nodules, and lower plant dry weight and nitrogen content, relative to those of strains USDA110 and GRZ25. Taken together, the present results revealed that although not essential for nitrogen fixation, mutation of either the structural nirK or norC genes encoding respiratory nitrite reductase and nitric oxide reductase, respectively, confers B. japonicum reduced ability for nodulation in soybean plants grown with nitrate. Furthermore, because nodules formed by each the parental and mutant strains exhibited nitrogenase activity, it is possible that denitrification enzymes play a role in nodule formation rather than in nodule function.  相似文献   

5.
A gene cluster which includes genes required for the expression of nitric oxide reductase in Rhodobacter sphaeroides 2.4.3 has been isolated and characterized. Sequence analysis indicates that the two proximal genes in the cluster are the Nor structural genes. These two genes and four distal genes apparently constitute an operon. Mutational analysis indicates that the two structural genes, norC and norB, and the genes immediately downstream, norQ and norD, are required for expression of an active Nor complex. The remaining two genes, nnrT and nnrU, are required for expression of both Nir and Nor. The products of norCBQD have significant identity with products from other denitrifiers, whereas the predicted nnrT and nnrU gene products have no similarity with products corresponding to other sequences in the database. Mutational analysis and functional complementation studies indicate that the nnrT and nnrU genes can be expressed from an internal promoter. Deletion analysis of the regulatory region upstream of norC indicated that a sequence motif which has identity to a motif in the gene encoding nitrite reductase in strain 2.4.3 is critical for nor operon expression. Regulatory studies demonstrated that the first four genes, norCBQD, are expressed only when the oxygen concentration is low and nitrate is present but that the two distal genes, nnrTU, are expressed constitutively.  相似文献   

6.
7.
8.
The genes for a nitric oxide reductase-like cytochrome bc complex were cloned from a thermophilic, chemolithoautotrophic hydrogen-oxidizing bacterium, Hydrogenobacter thermophilus TK-6. The structural genes norC and norB, which encode cytochrome c and cytochrome b subunits of the complex respectively, are probably transcribed as a tricistronic operon with a following gene encoding a putative membrane protein. NorC has, unusually, two hydrophobic transmembrane spans in its N-terminus. Immunoblot analysis showed that expression of NorC was induced by nitrate, nitrite, or sodium nitropurusside, suggesting that the norCB gene product is a denitrification enzyme, nitric oxide reductase. The consensus sequences for the DNR/NnrR-type or the NorR/FhpR-type nitric oxide-sensing regulators of proteobacteria were not found in the norC promoter region, but consensus -35 and -10 sequences were found in this region. These results indicate that strain TK-6 has a nitrogen oxide-sensing regulatory system that differs from proteobacterial systems.  相似文献   

9.
10.
11.
12.
Cleavage of genomic DNA from Bradyrhizobium japonicum strain 3I1b110 by the restriction enzymes PmeI, PacI, and SwaI has been used together with pulsed-field gel electrophoresis and Southern hybridization to locate the nirK, norCBQD, and nosRZDFYLX denitrification genes on the chromosomal map of B. japonicum strain 110spc4. Mutant strains GRK13, GRC131, and GRZ25 were obtained by insertion of plasmid pUC4-KIXX-aphII-PSP, which carries recognition sites for the enzymes PacI, PmeI and SwaI, into the B. japonicum 3I1b110 nirK, norC and nosZ genes, respectively. Restriction of strain 3I1b110 genomic DNA with PacI, PmeI and SwaI yielded three, five and nine fragments, respectively. Pulsed-field gel electrophoresis of restricted mutant DNAs resulted in an altered fragment pattern that allowed determination of the position of the selected genes. Complementary mapping data were obtained by hybridization using digoxigenin-labeled B. japonicum 3I1b110 nirK, norBQD and nosZD as gene probes. The nirK, norCBQD and nosRZDFYLX genes were located close to the groEL(2), cycH and cycVWX genes, respectively, on the strain 110spc4 genetic map. In contrast to other denitrifiers, B. japonicum 3I1b110 denitrification genes were dispersed over the entire chromosome.  相似文献   

13.
Growth inhibition of Rhodobacter sphaeroides f. sp. denitrificans IL106 by nitrite under anaerobic-light conditions became less pronounced when the gene encoding nitrite reductase was deleted. Growth of another deletion mutant of the genes encoding nitric oxide reductase was severely suppressed by nitrite. Our results suggest that nitrite reductase increases the sensitivity to nitrite through the production of nitric oxide.  相似文献   

14.
15.
Two genes, norB and norZ, encoding two independent nitric oxide reductases have been identified in Alcaligenes eutrophus H16. norB and norZ predict polypeptides of 84.5 kDa with amino acid sequence identity of 90%. While norB resides on the megaplasmid pHG1, the norZ gene is located on a chromosomal DNA fragment. Amino acid sequence analysis suggests that norB and norZ encode integral membrane proteins composed of 14 membrane-spanning helices. The region encompassing helices 3 to 14 shows similarity to the NorB subunit of common bacterial nitric oxide reductases, including the positions of six strictly conserved histidine residues. Unlike the Nor enzymes characterized so far from denitrifying bacteria, NorB and NorZ of A. eutrophus contain an amino-terminal extension which may form two additional helices connected by a hydrophilic loop of 203 amino acids. The presence of a NorB/NorZ-like protein was predicted from the genome sequence of the cyanobacterium Synechocystis sp. strain PCC6803. While the common NorB of denitrifying bacteria is associated with a second cytochrome c subunit, encoded by the neighboring gene norC, the nor loci of A. eutrophus and Synechocystis lack adjacent norC homologs. The physiological roles of norB and norZ in A. eutrophus were investigated with mutants disrupted in the two genes. Mutants bearing single-site deletions in norB or norZ were affected neither in aerobic nor in anaerobic growth with nitrate or nitrite as the terminal electron acceptor. Inactivation of both norB and norZ was lethal to the cells under anaerobic growth conditions. Anaerobic growth was restored in the double mutant by introducing either norB or norZ on a broad-host-range plasmid. These results show that the norB and norZ gene products are isofunctional and instrumental in denitrification.  相似文献   

16.
17.
We have cloned the nap locus encoding the periplasmic nitrate reductase in Rhodobacter sphaeroides f. sp. denitrificans IL106. A mutant with this enzyme deleted is unable to grow under denitrifying conditions. Biochemical analysis of this mutant shows that in contrast to the wild-type strain, the level of synthesis of the nitrite and N(2)O reductases is not increased by the addition of nitrate. Growth under denitrifying conditions and induction of N oxide reductase synthesis are both restored by the presence of a plasmid containing the genes encoding the nitrate reductase. This demonstrates that R. sphaeroides f. sp. denitrificans IL106 does not possess an efficient membrane-bound nitrate reductase and that nitrate is not the direct inducer for the nitrite and N(2)O reductases in this species. In contrast, we show that nitrite induces the synthesis of the nitrate reductase.  相似文献   

18.
Ammonia-oxidizing bacteria are believed to be an important source of the climatically important trace gas nitrous oxide (N(2)O). The genes for nitrite reductase (nirK) and nitric oxide reductase (norB), putatively responsible for nitrous oxide production, have been identified in several ammonia-oxidizing bacteria, but not in Nitrosospira strains that may dominate ammonia-oxidizing communities in soil. In this study, sequences from nirK and norB genes were detected in several cultured Nitrosospira species and the diversity and phylogeny of these genes were compared with those in other ammoniaoxidizing bacteria and in classical denitrifiers. The nirK and norB gene sequences obtained from Nitrosospira spp. were diverse and appeared to be less conserved than 16S rRNA genes and functional ammonia monooxygenase (amoA) genes. The nirK and norB genes from some Nitrosospira spp. were not phylogenetically distinct from those of denitrifiers, and phylogenetic analysis suggests that the nirK and norB genes in ammonia-oxidizing bacteria have been subject to lateral transfer.  相似文献   

19.
Nitric oxide (NO) is a gaseous signalling molecule which becomes very toxic due to its ability to react with multiple cellular targets in biological systems. Bacterial cells protect against NO through the expression of enzymes that detoxify this molecule by oxidizing it to nitrate or reducing it to nitrous oxide or ammonia. These enzymes are haemoglobins, c-type nitric oxide reductase, flavorubredoxins and the cytochrome c respiratory nitrite reductase. Expression of the genes encoding these enzymes is controlled by NO-sensitive regulatory proteins. The production of NO in rhizobia-legume symbiosis has been demonstrated recently. In functioning nodules, NO acts as a potent inhibitor of nitrogenase enzymes. These observations have led to the question of how rhizobia overcome the toxicity of NO. Several studies on the NO response have been undertaken in two non-dentrifying rhizobial species, Sinorhizobium meliloti and Rhizobium etli, and in a denitrifying species, Bradyrhizobium japonicum. In the present mini-review, current knowledge of the NO response in those legume-associated endosymbiotic bacteria is summarized.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号