首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We examined the involvement of cyclooxygenase (COX)-1 and COX-2 on mechanical scratching-induced prostaglandins (PGs) production in the skin of mice. The dorsal regions of mice were scratched using a stainless brush. COXs expressions in the skin were analyzed using real-time PCR and Western blotting. The effect of acetylsalicylic acid (ASA) on the ability of PGs production were determined based on skin PGs level induced by arachidonic acid (AA) application. Mechanical scratching increased PGD2, PGE2, PGI2 and PGF(2 alpha). COX-1 was constitutively expressed and COX-2 expression was enhanced by scratching. Intravenous administration of ASA inhibited PGs biosynthesis in the normal skin. PGs levels of the skin 6h after ASA administration (ASA 6 h) were almost equal to those of the skin 10 min after ASA administration (ASA 10 min). In the scratched skin, AA-induced PGE2 and PGI2 of ASA 6 h were significantly higher than those of ASA 10 min. The skin PGD2 and PGF(2 alpha) of ASA 10 min were almost same to those of ASA 6 h. In the normal skin of COX-1-deficient mice, skin PGD2 level was lower than that of wild-type mice, although PGE2, PGI2 and PGF(2 alpha) levels were almost equal to those of wild type. In the scratched skin of COX-1-deficient mice, PGD2, PGE2, PGI2 and PGF(2 alpha) levels were lower than those of wild-type mice. These results suggested that cutaneous PGD2 could be mainly produced by COX-1, and PGE2 and PGI2 could be produced by COX-1 and COX-2, respectively, in mice.  相似文献   

2.
Our previous studies demonstrated that, in gracilis muscle arterioles of male mice deficient in the gene for endothelial nitric oxide synthase (eNOS), flow-induced dilation (FID) is mediated by endothelial PGs. Thus the present study aimed to identify the specific isoform of cyclooxygenase (COX) responsible for the compensatory mediation of FID in arterioles of eNOS-knockout (KO) mice. Experiments were conducted on gracilis muscle arterioles of male eNOS-KO and wild-type (WT) mice. Basal tone and magnitude of FID of arterioles were comparable in the two strains of mice. A role for COX isoforms in the mediation of the responses was assessed by use of valeryl salicylate (3 mM) and NS-398 (10 microM), inhibitors of COX-1 and COX-2, respectively. In eNOS-KO arterioles, valeryl salicylate or NS-398 alone inhibited FID (at maximal flow rate) by approximately 51% and approximately 58%, respectively. Administration of both inhibitors eliminated the dilation. In WT arterioles, inhibition of COX-2 did not significantly affect FID, whereas inhibition of COX-1 decreased the dilation by approximately 57%. The residual portion of the response was abolished by additional administration of Nomega-nitro-L-arginine methyl ester. Western blot analysis indicated a comparable content of COX-1 protein in arterioles of WT and eNOS-KO mice. COX-2 protein, which was not detectable in arterioles of WT mice, was strongly expressed in arterioles of eNOS-KO mice, together with an upregulation of COX-2 gene expression. Immunohistochemical staining confirmed the presence of COX-2 in the endothelium of eNOS-KO arterioles. In conclusion, COX-2-derived PGs are the mediators responsible for maintenance of FID in arterioles of eNOS-deficient mice.  相似文献   

3.
Unlike most other mammalian cells, beta-cells of Langerhans constitutively express cyclooxygenase (COX)-2 rather than COX-1. COX-2 is also constitutively expressed in type 1 diabetes (T1D) patients' periphery blood monocytes and macrophage. To understand the role of COX-2 in the beta-cell, we investigated COX-2 expression in beta-cells and islet infiltrates of NOD and BALB/c mice using fluorescence immunohistochemistry and cytochemical confocal microscopy and Western blotting. Immunostaining showed that COX-2 is expressed in islet-infiltrating macrophages, and that the expression of insulin and COX-2 disappeared concomitantly from the beta-cells when NOD mice progressed toward overt diabetes. Also cultured INS-1E cells coexpressed insulin and COX-2 but clearly in different subcellular compartments. Treatment with celecoxib increased insulin release from these cells in a dose-dependent manner in glucose concentrations ranging from 5 to 17 mM. Excessive COX-2 expression by the islet-infiltrating macrophages may contribute to the beta-cell death during insulitis. The effects of celecoxib on INS-1E cells suggest that PGE(2) and other downstream products of COX-2 may contribute to the regulation of insulin release from the beta-cells.  相似文献   

4.
Akey role exists for prostaglandins (PGs) in reproductive health,including fertility and parturition. However, the cellular sources andregulation of PG production by cyclooxygenase (COX) in the human femalereproductive tract remain poorly understood. We recently reported thathuman female reproductive tract fibroblasts are divisible into distinctsubsets based on their Thy-1 surface expression. Herein, we demonstratethat the expression, induction, and subcellular localization of COX-1and COX-2 and the downstream PG biosynthesis are markedly differentbetween these subsets. Specifically, Thy-1+ fibroblastshighly express COX-1, which is responsible for high-level PGE2 production, a feature usually attributed to the COX-2isoenzyme. In contrast, COX-2, generally considered an inducibleisoform, is constitutively expressed in the Thy-1 subset,which only minimally produces PGE2. The intracellular signaling pathways for COX regulation also differ between the subsets.Determination of differences in signal transduction, COX expression andlocalization, and PG production by human reproductive fibroblastsubtypes supports the concept of fibroblast heterogeneity and thepossibility that these subsets may play unique roles in tissuehomeostasis and in inflammation.

  相似文献   

5.
Cyclooxygenase (COX) is the key enzyme for prostaglandin (PG) synthesis. PGs are mediators of many critical physiological and inflammatory responses. There are two isoforms, COX-1 and COX-2, both of which are constitutively expressed in the central nervous system (CNS). Studies have shown that COX-1 and COX-2 are involved in physiological and pathological conditions of the brain. However, little is known about the role(s) of COX in the host defense system against a viral infection in the CNS. In this report, we used Vesicular Stomatitis Virus (VSV) induced acute encephalitis to distinguish between the contribution(s) of the two isoforms. COX-2 activity was inhibited with a COX-2 selective drug, celecoxib (Celebrex), and COX-1 was antagonized with SC560. We found that inhibition of COX-2 led to decreased viral titers, while COX-1 antagonism did not have the same effect at day 1 post infection. 5-lipooxygenase (5-LO) expression and neutrophil recruitment in the CNS were increased in celecoxib-inhibited mice. Furthermore, mice treated with celecoxib expressed more Nitric Oxide Synthase-1 (NOS-1), a crucial component of the innate immune system in the restriction of VSV propagation. The expression of type 1 cytokines, IFN-gamma and IL-12, were also increased in celecoxib-treated mice.  相似文献   

6.
To determine the prostaglandin (PG) H2 synthase (generally referred to as cyclooxygenase [COX]) isozyme responsible for producing uterotonic PGs during parturition, we used PGF2alpha receptor-deficient mice, which exhibit parturition failure due to impaired withdrawal of serum progesterone at term. On ovariectomy-induced parturition in these mice, uterine COX-2 mRNA expression was drastically induced in the myometrium, whereas COX-1 mRNA expression in the endometrial epithelium decreased. The concomitant administration of progesterone with ovariectomy resulted in a delay in parturition and the disappearance of both the increase in COX-2 mRNA and the decrease in COX-1 mRNA. Thus, the expression of myometrial COX-2 and the occurrence of parturition are closely associated in this model. Furthermore, administration of the COX-nonselective inhibitor, indomethacin, or the COX-2-selective inhibitor, Dup-697 or JTE-522, effectively delayed ovariectomy-induced parturition in these mice. These findings suggest that COX-2-derived PGs contribute to the onset of parturition after the decrease in serum progesterone level.  相似文献   

7.
8.
9.
10.
Influenza is a significant cause of morbidity and mortality worldwide despite extensive research and vaccine availability. The cyclooxygenase (COX) pathway is important in modulating immune responses and is also a major target of nonsteroidal anti-inflammatory drugs (NSAIDs) and the newer COX-2 inhibitors. The purpose of the present study was to examine the effect of deficiency of COX-1 or COX-2 on the host response to influenza. We used an influenza A viral infection model in wild type (WT), COX-1-/-, and COX-2-/- mice. Infection induced less severe illness in COX-2-/- mice in comparison to WT and COX-1-/- mice as evidenced by body weight and body temperature changes. Mortality was significantly reduced in COX-2-/- mice. COX-1-/- mice had enhanced inflammation and earlier appearance of proinflammatory cytokines in the BAL fluid, whereas the inflammatory and cytokine responses were blunted in COX-2-/- mice. However, lung viral titers were markedly elevated in COX-2-/- mice relative to WT and COX-1-/- mice on day 4 of infection. Levels of PGE2 were reduced in COX-1-/- airways whereas cysteinyl leukotrienes were elevated in COX-2-/- airways following infection. Thus, deficiency of COX-1 and COX-2 leads to contrasting effects in the host response to influenza infection, and these differences are associated with altered production of prostaglandins and leukotrienes following infection. COX-1 deficiency is detrimental whereas COX-2 deficiency is beneficial to the host during influenza viral infection.  相似文献   

11.
Conflicting data have been reported on cyclooxygenase (COX)-1 and COX-2 expression and activity in striated muscles, including skeletal muscles and myocardium, in particular it is still unclear whether muscle cells are able to produce prostaglandins (PGs). We characterized the expression and enzymatic activity of COX-1 and COX-2 in the skeletal muscles and in the myocardium of mice, rats and humans. By RT-PCR, COX-1 and COX-2 mRNAs were observed in homogenates of mouse and rat hearts, and in different types of skeletal muscles from all different species. By Western blotting, COX-1 and -2 proteins were detected in skeletal muscles and hearts from rodents, as well as in skeletal muscles from humans. Immunoperoxidase stains showed that COX-1 and -2 were diffusely expressed in the myocytes of different muscles and in the myocardiocytes from all different species. In the presence of arachidonic acid, which is the COX enzymatic substrate, isolated skeletal muscle and heart samples from rodents released predominantly PGE(2). The biosynthesis of PGE(2) was reduced between 50 and 80% (P < 0.05 vs. vehicle) in the presence of either COX-1- or COX-2-selective blockers, demonstrating that both isoforms are enzymatically active. Exogenous PGE(2) added to isolated skeletal muscle preparations from rodents did not affect contraction, whereas it significantly fastened relaxation of a slow type muscle, such as soleus. In conclusion, COX-1 and COX-2 are expressed and enzymatically active in myocytes of skeletal muscles and hearts of rodents and humans. PGE(2) appears to be the main product of COX activity in striated muscles.  相似文献   

12.
The parr-smolt transformation involves complex modulation of immune parameters, affecting both cell populations and humoral factors. The expression of cytokines was studied in salmon cells and tissues during this period using an anadromous and a landlocked freshwater resident dwarf strain of Atlantic salmon (Salmo salar L.). The constitutive activity of three immunoregulatory genes encoding the cytokines tumour necrosis factor-alpha (TNF-alpha) and interleukin-1beta (IL-1beta) and the cyclo-oxygenase (COX) isoform COX-2 was investigated in head kidney, spleen and gill tissue from healthy, unvaccinated fish by real-time PCR. The TNF-alpha gene was generally lower expressed than COX-2 and IL-1beta1, which were approximately expressed at equal levels and constitutive expression was seen for COX-2 and IL-1beta1 in all tissues examined and at all sampling dates. The expression of all three genes in head kidney and spleen tissue seemed to be highest at the sampling in May for both strains around the time of seawater transfer suggesting an influence of smolting related hormones on cytokine expression. The gill tissue experienced the highest expression of IL-1beta1 and COX-2 at all sampling dates indicating that this organ is immunologically important.  相似文献   

13.

Background

Clinical use of selective inhibitors of cyclooxygenase (COX)-2 appears associated with increased risk of thrombotic events. This is often hypothesised to reflect reduction in anti-thrombotic prostanoids, notably PGI2, formed by COX-2 present within endothelial cells. However, whether COX-2 is actually expressed to any significant extent within endothelial cells is controversial. Here we have tested the effects of acute inhibition of COX on platelet reactivity using a functional in vivo approach in mice.

Methodology/Principal Findings

A non-lethal model of platelet-driven thromboembolism in the mouse was used to assess the effects of aspirin (7 days orally as control) diclofenac (1 mg.kg−1, i.v.) and parecoxib (0.5 mg.kg−1, i.v.) on thrombus formation induced by collagen or the thromboxane (TX) A2-mimetic, U46619. The COX inhibitory profiles of the drugs were confirmed in mouse tissues ex vivo. Collagen and U46619 caused in vivo thrombus formation with the former, but not latter, sensitive to oral dosing with aspirin. Diclofenac inhibited COX-1 and COX-2 ex vivo and reduced thrombus formation in response to collagen, but not U46619. Parecoxib inhibited only COX-2 and had no effect upon thrombus formation caused by either agonist.

Conclusions/Significance

Inhibition of COX-1 by diclofenac or aspirin reduced thrombus formation induced by collagen, which is partly dependent upon platelet-derived TXA2, but not that induced by U46619, which is independent of platelet TXA2. These results are consistent with the model demonstrating the effects of COX-1 inhibition in platelets, but provide no support for the hypothesis that acute inhibition of COX-2 in the circulation increases thrombosis.  相似文献   

14.
We investigated the regulation of cyclooxygenase-2 (COX-2) by 17-beta-estradiol (E2) in the rat oviduct. We observed that COX-2 is expressed mainly in proestrous and estrous stages, periods under estrogenic influence. While exogenous administration of E2 (1 microg/rat) significantly increased COX-2 protein levels, progesterone did not modify it. COX-2 was mainly localized on oviductal epithelial cells from estrogenized rat. Induction of COX-2 expression by E2 was partially reverted by tamoxifen (1 mg/rat), an E2 receptor antagonist. Estradiol treatment also increased prostaglandins (PGs) synthesis: 6-keto-PGF(1alpha) (40%), a stable metabolite of prostacyclin (PGI2), PGF(2alpha) (40%) and PGE2 (50%). Tamoxifen completely suppressed this enhancement. In order to discriminate which isoform of COX was implicated in the stimulatory effect of E2 on PGs synthesis, oviducts were preincubated with meloxicam (Melo: 10(-9)M) or NS-398 (10(-7)M), two selective COX-2 inhibitors. Both Melo and NS-398 abolished the increase of PGs synthesis stimulated by E2. All together, these data indicate that E2 could upregulate COX-2 expression and activity in the rat oviduct and that the stimulatory effect of E2 may be receptor-mediated.  相似文献   

15.
Cyclooxygenase (COX) catalyses the rate-limiting step of prostanoid biosynthesis. Two COX isoforms have been identified, COX-1, the constitutive form, and COX-2, the inducible form. While COX-2 has been implicated in body fat regulation, the underlying cellular mechanism remains to be elucidated. The present study was undertaken to examine the potential role of COX in modulating adipogenesis and to dissect the relative contribution of the two isoenzymes in this process. COX-2 was found to be expressed in undifferentiated 3T3-L1 cells and down-regulated during differentiation, whereas the cellular level of COX-1 remained relatively constant. Abrogating the activity of either of these two isoenzymes by selective COX inhibitors accelerated cellular differentiation, suggesting that both COX isoenzymes negatively influenced differentiation. Tumor necrosis factor-alpha (TNFalpha) significantly up-regulated COX-2 expression ( approximately 2-fold) in differentiating 3T3-L1 cells, whereas similar effect was not observed with COX-1 expression. Abrogating the induced COX-2 activity reversed the TNFalpha-induced inhibition of differentiation by approximately 70%, implying a role for COX-2 in mediating TNFalpha signaling. Hence, both COX isoforms were involved in the negative modulation of adipocyte differentiation. COX-2 appeared to be the main isoform mediating at least part of the negative effects of TNFalpha.  相似文献   

16.
17.
Resveratrol (3,4',5-trihydroxy-trans-stilbene) is a phytoalexin found in grapes that has anti-inflammatory, cardiovascular protective, and cancer chemopreventive properties. It has been shown to target prostaglandin H(2) synthase (COX)-1 and COX-2, which catalyze the first committed step in the synthesis of prostaglandins via sequential cyclooxygenase and peroxidase reactions. Resveratrol discriminates between both COX isoforms. It is a potent inhibitor of both catalytic activities of COX-1, the desired drug target for the prevention of cardiovascular disease, but only a weak inhibitor of the peroxidase activity of COX-2, the isoform target for nonsteroidal anti-inflammatory drugs. We have investigated the unique inhibitory properties of resveratrol. We find that it is a potent peroxidase-mediated mechanism-based inactivator of COX-1 only (k(inact) = 0.069 +/- 0.004 s(-1), K(i(inact)) = 1.52 +/- 0.15 microm), with a calculated partition ratio of 22. Inactivation of COX-1 was time- and concentration-dependent, it had an absolute requirement for a peroxide substrate, and it was accompanied by a concomitant oxidation of resveratrol. Resveratrol-inactivated COX-1 was devoid of both the cyclooxygenase and peroxidase activities, neither of which could be restored upon gel-filtration chromatography. Inactivation of COX-1 by [(3)H]resveratrol was not accompanied by stable covalent modification as evident by both SDS-PAGE and reverse phase-high performance liquid chromatography analysis. Structure activity relationships on methoxy-resveratrol analogs showed that the m-hydroquinone moiety was essential for irreversible inactivation of COX-1. We propose that resveratrol inactivates COX-1 by a "hit-and-run" mechanism, and offers a basis for the design of selective COX-1 inactivators that work through a mechanism-based event at the peroxidase active site.  相似文献   

18.
IL-10 is a potent anti-inflammatory and immune regulatory cytokine. IL-10(-/-) mice produce exaggerated amounts of inflammatory cytokines when stimulated with LPS, indicating that endogenous IL-10 is a central regulator of inflammatory cytokine production in vivo. PGs are lipid mediators that are also produced in large amounts during the inflammatory response. To study the role of IL-10 in the regulation of PG production during the acute inflammatory response, we evaluated LPS-induced cyclooxygenase (COX) expression and PG production in wild-type (wt) and IL-10(-/-) mice. LPS-induced PGE(2) production from IL-10(-/-) spleen cells was 5.6-fold greater than that from wt spleen cells. LPS stimulation resulted in the induction of COX-2 mRNA and protein in both wt and IL-10(-/-) spleen cells; however, the magnitude of increase in COX-2 mRNA was 5.5-fold greater in IL-10(-/-) mice as compared with wt mice. COX-1 protein levels were not affected by LPS stimulation in either wt or IL-10(-/-) mice. Neutralization of IFN-gamma, TNF-alpha, or IL-12 markedly decreased the induction of COX-2 in IL-10(-/-) spleen cells, suggesting that increased inflammatory cytokine production mediates much of the COX-2 induction in IL-10(-/-) mice. Treatment of IL-10(-/-) mice with low doses of LPS resulted in a marked induction of COX-2 mRNA in the spleen, whereas wt mice had minimal expression of COX-2 mRNA. These findings indicate that, in addition to IL-10's central role in the regulation of inflammatory cytokines, endogenous IL-10 is an important regulator of PG production in the response to LPS.  相似文献   

19.
Intestinal resident macrophages play an important role in gastrointestinal dysmotility by producing prostaglandins (PGs) and nitric oxide (NO) in inflammatory conditions. The causal correlation between PGs and NO in gastrointestinal inflammation has not been elucidated. In this study, we examined the possible role of PGE(2) in the LPS-inducible inducible NO synthase (iNOS) gene expression in murine distal ileal tissue and macrophages. Treatment of ileal tissue with LPS increased the iNOS and cyclooxygenase (COX)-2 gene expression, which lead to intestinal dysmotility. However, LPS did not induce the expression of iNOS and COX-2 in tissue from macrophage colony-stimulating factor-deficient op/op mice, indicating that these genes are expressed in intestinal resident macrophages. iNOS and COX-2 protein were also expressed in dextran-phagocytized macrophages in the muscle layer. CAY10404, a COX-2 inhibitor, diminished LPS-dependent iNOS gene upregulation in wild-type mouse ileal tissue and also in RAW264.7 macrophages, indicating that PGs upregulate iNOS gene expression. EP(2) and EP(4) agonists upregulated iNOS gene expression in ileal tissue and isolated resident macrophages. iNOS mRNA induction mediated by LPS was decreased in the ileum isolated from EP(2) or EP(4) knockout mice. In addition, LPS failed to decrease the motility of EP(2) and EP(4) knockout mice ileum. EP(2)- or EP(4)-mediated iNOS expression was attenuated by KT-5720, a PKA inhibitor and PD-98059, an ERK inhibitor. Forskolin or dibutyryl-cAMP mimics upregulation of iNOS gene expression in macrophages. In conclusion, COX-2-derived PGE(2) induces iNOS expression through cAMP/ERK pathways by activating EP(2) and EP(4) receptors in muscularis macrophages. NO produced in muscularis macrophages induces dysmotility during gastrointestinal inflammation.  相似文献   

20.
The aim of this study was to assess cyclooxygenase (COX)-1 and COX-2 expression in skeletal muscle after an ischemia-reperfusion (I/R). Male Sprague-Dawley rats were subjected to unilateral hindlimb ischemia for 2 h and then euthanized after 0, 1, 2, 4, 6, 10, 24, and 72 h of reperfusion. The COX protein and mRNA were assessed in control and injured gastrocnemius muscle. Muscle damage was indirectly determined by plasma creatine kinase activity and edema by weighing wet muscle. Creatine kinase activity in plasma increased as early as 1 h after reperfusion and returned to control levels by 72 h of reperfusion. Edema was observed at 6 and 10 h of reperfusion, but histological investigations showed an absence of tissular inflammatory cell infiltration. COX-1 mRNA was expressed in control muscle and was increased at 72 h of reperfusion, but the levels of associated COX-1 protein detected in control and injured gastrocnemius muscle were similar. COX-2 mRNA was not, or only slightly, detectable in control muscle and after I/R. In contrast, I/R induced major overexpression of COX-2 immunoreactivity at 6 and 10 h of reperfusion with a maximum at 10 h, whereas COX-2 protein was undetectable in control muscle. In conclusion, hindlimb I/R induced a large overexpression of COX-2 but not COX-1 protein between 6 and 10 h after injury. These results suggest a role for COX-2 enzyme in such pathophysiological conditions of the skeletal muscle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号