首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The endothelial angiotensin I-converting enzyme (ACE; EC 3.4.15.1) has recently been shown to contain two large homologous domains (called here the N and C domains), each being a zinc-dependent dipeptidyl carboxypeptidase. To further characterize the two active sites of ACE, we have investigated their interaction with four competitive ACE inhibitors, which are all potent antihypertensive drugs. The binding of [3H] trandolaprilat to the two active sites was examined using the wild-type ACE and four ACE mutants each containing only one intact domain, the other domain being either deleted or inactivated by point mutation of the zinc-coordinating histidines. In contrast with all the previous studies, which suggested the presence of a single high affinity inhibitor binding site in ACE, the present study shows that both the N and C domains of ACE contain a high affinity inhibitor binding site (KD = 3 and 1 X 10(-10) M, respectively, at pH 7.5, 4 degrees C, and 100 mM NaCl). Chloride stabilizes the enzyme-inhibitor complex for each domain primarily by slowing its dissociation rate, as the k-1 values of the N and C domains are markedly decreased (about 30- and 1100-fold, respectively) by 300 mM NaCl. At high chloride concentrations, the chloride effect is much greater for the C domain than for the N domain resulting in a higher affinity of this inhibitor for the C domain. In addition, the inhibitory potency of captopril (C), enalaprilat (E), and lisinopril (L) for each domain was assayed by hydrolysis of Hip-His-Leu. Their Ki values for the two domains are all within the nanomolar range, indicating that they are all highly potent inhibitors for both domains. However, their relative potencies are different for the C domain (L greater than E greater than C) and the N domain (C greater than E greater than L). The different inhibitor binding properties of the two domains observed in the present study provide strong evidence for the presence of structural differences between the two active sites of ACE.  相似文献   

2.
The phosphorylation of sarcoplasmic reticulum ATPase with Pi in the absence of Ca2+ was studied by equilibrium and kinetic experimentation. The combination of these measurements was then subjected to analysis without assumptions on the stoichiometry of the reactive sites. The analysis indicates that the species undergoing covalent interaction is the tertiary complex E X Pi X Mg formed by independent interaction of the two ligands with the enzyme. The binding constant of Pi or Mg2+ to either free or partially associated enzyme is approximately equal to 10(2) M-1, and no significant synergistic effect is produced by one ligand on the binding of the other; the equilibrium constant (Keq) for the covalent reaction E X Pi X Mg E-P X Mg is approximately equal to 16, with kphosph = 53 s-1, and khyd = 3-4 s-1 (25 degrees C, pH 6.0, no K+). The phosphorylation reaction of sarcoplasmic reticulum ATPase with Pi is highly H+ dependent. Such a pH dependence involves the affinity of enzyme for different ionization states of Pi, as well as protonation of two protein residues per enzyme unit in order to obtain optimal phosphorylation. The experimental data can then be fitted satisfactorily assuming pK values of 5.7 and 8.5 for the two residues in the nonphosphorylated enzyme (changing to 7.7 for one of the two residues, following phosphorylation) and values of 50.0 and 0.58 for the equilibrium constants of the H2(E X HPO4) in equilibrium with H(E-PO3) + H2O and H(E X HPO4) in equilibrium with E-PO3 + H2O reactions, respectively. In addition to the interdependence of H+ and phosphorylation sites, an interdependence of Ca2+ and phosphorylation sites is revealed by total inhibition of the Pi reaction when two high affinity calcium sites per enzyme unit are occupied by calcium. Conversely, occupancy of the phosphate site by vanadate (a stable transition state analogue of phosphate) inhibits high affinity calcium binding. The known binding competition between the two cations and their opposite effects on the phosphorylation reaction suggest that interdependence of phosphorylation site, H+ sites, and Ca2+ sites is a basic mechanistic feature of enzyme catalysis and cation transport.  相似文献   

3.
The physicochemical properties of complexes formed between the glucocorticoid antagonist, RU38486, and the glucocorticoid receptor in rat thymus cytosol were investigated and compared with those of complexes formed with the potent agonist, triamcinolone acetonide. The equilibrium dissociation constant for the interaction of [3H]RU38486 with the molybdate-stabilized glucocorticoid receptor was lower than that for [1,2,4-3H]triamcinolone acetonide at 0 degree C but higher at 25 degrees C, suggesting that hydrophobic interactions play a major role in the binding of RU38486. Differences in equilibrium constants were reflected in corresponding differences in dissociation rate constants; association rate constants for the two steroids were similar. The rate of dissociation of [3H]RU38486 from the glucocorticoid receptor was higher in the absence of molybdate than in its presence both at 0 degree C and at 25 degrees C, suggesting that molybdate modifies the physical state of the antagonist-receptor complex, but other physical properties were similar both in the presence and in the absence of molybdate. The rate of inactivation of the unoccupied glucocorticoid receptor at 25 degrees C in the absence of molybdate was lower in phosphate buffer than in Tris-HCl buffer but the rate of dissociation of [3H]RU38486 was the same in both buffers. The binding of RU38486 afforded little, if any, protection against inactivation in either buffer; [3H]RU38486 dissociated irreversibly from the inactivated receptor at the same rate as from the non-inactivated complex but molybdate had no effect on the dissociation kinetics of the inactivated complex. It is concluded that RU38486 interacts with the ground state of the glucocorticoid receptor in a manner which neither promotes receptor transformation nor prevents receptor inactivation.  相似文献   

4.
Formation of the Meisenheimer complex or sigma-complex [1-(S-glutathionyl)-2,4,6-trinitrocyclohexadienate] between glutathione (GSH) and 1,3,5-trinitrobenzene (TNB) can be observed at the active sites of isoenzymes 3-3 and 4-4 of rat liver GSH transferase. The spectroscopic properties (UV-visible and CD) of the enzyme-bound sigma-complex are consistent with a 1:1 complex in an asymmetric environment. Competitive inhibitors which occupy the GSH binding site (e.g., gamma-L-glutamyl-D,L-2-aminomalonylglycine) inhibit sigma-complex formation. The apparent formation constants of the sigma-complex (M) with enzyme-bound GSH (E.GS- + TNB in equilibrium E.M) at pH 7.5 are 5 x 10(4) M-1 and 7 x 10(2) M-1 for isoenzymes 3-3 and 4-4, respectively. Both values are much greater than that in aqueous solution (GS- + TNB in equilibrium M), where Kf = 28 M-1. Isoenzyme 3-3 is roughly an order of magnitude more efficient than 4-4 in catalyzing nucleophilic aromatic substitutions, a fact that appears to correlate with the ability of each enzyme to stabilize the sigma-complex. The pH dependence of Kf(app) for isoenzyme 3-3 is used to probe the ionization behavior of enzyme-bound GSH. The results are consistent with a double-ionization scheme (e.g., H+E.GSH in equilibrium H+E.GS- in equilibrium E.GS-) with pK's of 5.7 and 7.6, which are assigned to the thiol pK and the pK of a protonated base in the active site, respectively. Formation of the sigma-complex is also observed in single crystals of isoenzyme 3-3, providing a clear demonstration of the chemical competence of the crystallized enzyme. The results are discussed with respect to catalytic efficiency and the ability of the enzyme to stabilize sigma-complex intermediates in nucleophilic aromatic substitution reactions.  相似文献   

5.
We have examined the influence of sulfhydryl (SH)-group modifying agents on the interaction of the rat liver glucocorticoid receptor (GR) with its known agonist triamcinolone acetonide (TA) and the newly synthesized antagonist mifepristone (RU486). In the freshly prepared cytosol, [3H]TA or [3H]RU486 bound to macromolecule(s) which sediment as 8-9 moieties: the binding of either ligand can be competed with radioinert TA or RU486. The presence of 2-10 mM dithiothreitol (DTT), beta-mercaptoethanol (beta-MER), and monothioglycerol (MTG) caused a 2-3 fold increase in the [3H]TA and [3H]RU486 binding to GR. Iodoacetamide (IA) and N-ethylmaleimide (NEM) decreased the agonist binding significantly. In contrast, the [3H]RU486 binding to GR increased by 50 percent in the presence of IA. IA and NEM inhibited the binding of the heat-transformed [3H]TA-receptor complex to DNA-cellulose by 70-90 percent whereas DNA binding of [3H]RU486-bound GR was inhibited only slightly. These results indicate that either a) the interaction of GR with the agonist or antagonist steroid ligands causes differential structural alterations, which are more readily detectable in the presence of SH-modifying agents or b) the agonist and the antagonist interact with distinct steroid binding sites.  相似文献   

6.
The role of phospholipid in the binding of coenzyme, NAD(H), to 3-hydroxybutyrate dehydrogenase, a lipid-requiring membrane enzyme, has been studied with the ultrafiltration binding method, which we optimized to quantitate weak ligand binding (KD in the range 10-100 microM). 3-Hydroxybutyrate dehydrogenase has a specific requirement of phosphatidylcholine (PC) for optimal function and is a tetramer quantitated both for the apodehydrogenase, which is devoid of phospholipid, and for the enzyme reconstituted into phospholipid vesicles in either the presence or absence of PC. We find that (i) the stoichiometry for NADH and NAD binding is 0.5 mol/mol of enzyme monomer (2 mol/mol of tetramer); (ii) the dissociation constant for NADH binding is essentially the same for the enzyme reconstituted into the mixture of mitochondrial phospholipids (MPL) (KD = 15 +/- 3 microM) or into dioleoyl-PC (KD = 12 +/- 3 microM); (iii) the binding of NAD+ to the enzyme-MPL complex is more than an order of magnitude weaker than NADH binding (KD approximately 200 microM versus 15 microM) but can be enhanced by formation of a ternary complex with either 2-methylmalonate (apparent KD = 1.1 +/- 0.2 microM) or sulfite to form the NAD-SO3- adduct (KD = 0.5 +/- 0.1 microM); (iv) the binding stoichiometry for NADH is the same (0.5 mol/mol) for binary (NADH alone) and ternary complexes (NADH plus monomethyl malonate); (v) binding of NAD+ and NADH together totals 0.5 mol of NAD(H)/mol of enzyme monomer, i.e., two nucleotide binding sites per enzyme tetramer; and (vi) the binding of nucleotide to the enzyme reconstituted with phospholipid devoid of PC is weak, being detected only for the NAD+ plus 2-methylmalonate ternary complex (apparent KD approximately 50 microM or approximately 50-fold weaker binding than that for the same complex in the presence of PC). The binding of NADH by equilibrium dialysis or of spin-labeled analogues of NAD+ by EPR spectroscopy gave complementary results, indicating that the ultrafiltration studies approximated equilibrium conditions. In addition to specific binding of NAD(H) to 3-hydroxybutyrate dehydrogenase, we find significant binding of NAD(H) to phospholipid vesicles. An important new finding is that the nucleotide binding site is present in 3-hydroxybutyrate dehydrogenase in the absence of activating phospholipid since (a) NAD+, as the ternary complex with 2-methylmalonate, binds to the enzyme reconstituted with phospholipid devoid of PC and (b) the apodehydrogenase, devoid of phospholipid, binds NADH or NAD-SO3- weakly (half-maximal binding at approximately 75 microM NAD-SO3- and somewhat weaker binding for NADH).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
The degree of heterogeneity of active Na+/K(+)-ATPases has been investigated in terms of ouabain sensitivity. A mathematical analysis of the dose-response curves (inhibition of Na+/K(+)-ATPase) at equilibrium is consistent with the putative existence of three inhibitory states for ouabain two of high (very high plus high) and one of low affinity. The computed IC50 values are: 23.0 +/- 0.15 nM, 460 +/- 4.0 nM and 320 +/- 4.6 microM, respectively. The relative abundance of the three inhibitory states was estimated as: 39%, 36% and 20%, respectively. Direct measurements of [3H]ouabain-binding at equilibrium carried out on membrane preparations with ATP, Mg2+ and Na+ also revealed two distinct high affinity-binding sites, the apparent Kd values of which were 17.0 +/- 0.2 nM (very high) and 80 +/- 1 nM (high), respectively. Dissociation processes were studied at different ouabain concentrations according to both reversal of enzyme inhibition and [3H]ouabain release. The reversal of enzyme inhibition occurred at three different rates, depending upon the ouabain doses used (10 nM, 2 and 100 microM). When the high-affinity sites were involved (ouabain doses lower than 2 microM) the dissociation process was biphasic. A similar biphasic pattern was also detected by [3H]ouabain-release. The time-course of [3H]ouabain dissociation (0.1 microM) was also biphasic. These data indicate that the three catalytic subunits of rat brain Na+/K(+)-ATPase alpha 1, alpha 2 and alpha 3 (Hsu, Y.-M. and Guidotti, G. (1989) Biochemistry 28, 569-573) are able to hydrolyse ATP and exhibit different affinities for cardiac glycosides.  相似文献   

8.
The periplasmic Fe-hydrogenase from Desulfovibrio vulgaris (Hildenborough) contains three iron-sulfur prosthetic groups: two putative electron transferring [4Fe-4S] ferredoxin-like cubanes (two F-clusters), and one putative Fe/S supercluster redox catalyst (one H-cluster). Combined elemental analysis by proton-induced X-ray emission, inductively coupled plasma mass spectrometry, instrumental neutron activation analysis, atomic absorption spectroscopy and colorimetry establishes that elements with Z > 21 (except for 12-15 Fe) are present in 0.001-0.1 mol/mol quantities, not correlating with activity. Isoelectric focussing reveals the existence of multiple charge conformers with pI in the range 5.7-6.4. Repeated re-chromatography results in small amounts of enzyme of very high H2-production activity determined under standardized conditions (approximately 7000 U/mg). The enzyme exists in two different catalytic forms: as isolated the protein is 'resting' and O2-insensitive; upon reduction the protein becomes active and O2-sensitive. EPR-monitored redox titrations have been carried out of both the resting and the activated enzyme. In the course of a reductive titration, the resting protein becomes activated and begins to produce molecular hydrogen at the expense of reduced titrant. Therefore, equilibrium potentials are undefined, and previously reported apparent Em and n values [Patil, D. S., Moura, J. J. G., He, S. H., Teixeira, M, Prickril, B. C., DerVartanian, D. V., Peck, H. D. Jr, LeGall, J. & Huynh, B.-H. (1988) J. Biol. Chem. 263, 18,732-18,738] are not thermodynamic quantities. In the activated enzyme an S = 1/2 signal (g = 2.11, 2.05, 2.00; 0.4 spin/protein molecule), attributed to the oxidized H cluster, exhibits a single reduction potential, Em,7 = -307 mV, just above the onset potential of H2 production. The midpoint potential of the two F clusters (2.0 spins/protein molecule) has been determined either by titrating active enzyme with the H2/H+ couple (E,m = -330 mV) or by dithionite-titrating a recombinant protein that lacks the H-cluster active site (Em,7.5 = -340 mV). There is no significant redox interaction between the two F clusters (n approximately 1).  相似文献   

9.
8-hydroxy-2(di-n-propylamino)tetraline (8-OH-DPAT) and 5-methoxy-3(1,2,3,6-tetrahydro-4-pyridinyl)1H indole succinate (RU 24969), two agonists on the putative serotonin 1A and serotonin 1B receptors, were used for exploring the role of these sites in the inhibitory effect of serotonin (5-HT) on feeding. In free-feeding rats, 2.5-5 mg/kg RU 24969 significantly reduced food intake while doses of 8-OH-DPAT ranging from 0.125 to 0.5 mg/kg increased eating. The effects of the highest doses were associated with hyperlocomotion and hyperreactivity for RU 24969 and a typical motor syndrome (flat body posture and forepaw treading) for 8-OH-DPAT. The motor syndrome caused by 0.5 mg/kg 8-OH-DPAT was much more obvious in food-deprived rats in which food intake was also markedly reduced. RU 24969 1.25 and 5 mg/kg reduced food intake by food-deprived rats and caused hyperlocomotion not different from that in free-feeding animals. Pretreatment with metergoline (2 mg/kg i.p.) prevented the effect of 5 mg/kg RU 24969 on food intake by food-deprived rats but had no effect on the reduction of eating caused by 0.5 mg/kg 8-OH-DPAT. The motor syndrome caused by 8-OH-DPAT was not changed by metergoline but the hyperlocomotion caused by RU 24969 was potentiated. Haloperidol (0.1 mg/kg i.p.) completely blocked the hyperlocomotion but did not change the reduction of food intake caused by RU 24969 in food-deprived rats. It is suggested that the putative serotonin 1B receptors specifically mediate the inhibitory effect of 5-HT on feeding whereas serotonin 1A sites act by enhancing eating only in free-feeding animals.  相似文献   

10.
The inhibition of the type-3 copper enzyme tyrosinase by halide ions was studied by kinetic and paramagnetic (1)H NMR methods. All halides are inhibitors in the conversion of l-3,4-dihydroxyphenylalanine (l-DOPA) with apparent inhibition constants that follow the order I(-) < F(-) < Cl(-) < Br(-) at pH 6.80. The results show that the inhibition arises from the interaction of halide with both the oxidized (affinity F(-) > Cl(-) > Br(-) > I(-)) and reduced (affinity I(-) > Br(-) > Cl(-) > F(-)) enzyme. The paramagnetic (1)H NMR of the oxidized enzyme complexed with the halides is consistent with a direct interaction of halide with the type-3 site and shows that the (Cu-His(3))(2) coordination occurs in all halide-bound species. It is surmised that halides bridge both of the copper ions in the active site. Fluoride and chloride are shown to bind only to the low pH form of oxidized tyrosinase, explaining the strong pH dependence of the inhibition by these ions. We further show that p-toluic acid and the bidentate transition state analogue, Kojic acid, displace chloride from the oxidized active site, whereas the monodentate substrate analogue, p-nitrophenol, forms a ternary complex with the enzyme and the chloride ion. On the basis of the experimental results, a model is formulated for the inhibitor action and for the reaction of diphenols with the oxidized enzyme.  相似文献   

11.
Aminopeptidases catalyze the hydrolysis of amino acid residues from the amino terminus of peptide substrates. They are found in most cells and tissues, and their activity has been implicated in myriad fundamental biochemical and physiological processes. Nevertheless, little is known about the structure of the aminopeptidase active sites. Beef lens leucine aminopeptidase (blLAP) can be considered prototypical of many enzymes in this family of peptidases. Bestatin, [(2S,3R)-(3-amino-2-hydroxy-4-phenyl-butanoyl)-L-leucine] is a nonhydrolyzable substrate analogue of a peptide, PheLeu, which is rapidly cleaved by blLAP. Bestatin incorporates elements of the putative tetrahedral intermediate, and this results in a greater than 10(5)-fold enhancement of binding relative to analogous peptides. Bestatin is the most tightly bound inhibitor of many aminopeptidases. Bestatin was successively converted to nitrobestatin, p-aminobestatin, [3H]-p-aminobestatin, and finally [3H]-p-azidobestatin (pAB). Like bestatin, pAB is a slow binding inhibitor of LAP (Ki*, the dissociation constant for the final complex, = approximately 4 x 10(-9); Ki, the dissociation constant for the initial collision complex, = approximately 10(-8). The t1/2 for binding of 2 x 10(-8) M and 8 x 10(-8) M bestatin are approximately 60 min and approximately 38 min, respectively. pAB, nitrobestatin, bestatin, and physiological peptides appear to bind in the same site, the first three with similar avidity. In the dark, pAB and bestatin protect low concentrations of the enzyme against inactivation upon extensive dialysis. The t1/2 for photoactivation of pAB is approximately 3 s. Irradiation of blLAP for such short periods of time resulted in insignificant change in activity. blLAP which was placed in 254-nm light in the presence of pAB was inactivated significantly. Treatment of photolabeled blLAP with trypsin produces only two peptides. Autoradiography and scintillation counting indicate that the active site is in the peptide which includes residues 138-487. Treatment of the same blLAP with hydroxylamine produces two different peptides, with the active site in the peptide 323-487. This indicates that the active site is in the carboxyl-terminal one-third of the protomer. It is likely that this photoaffinity label will be useful in identifying active sites in other aminopeptidases as well.  相似文献   

12.
M A Moore  F Ahmed  R B Dunlap 《Biochemistry》1986,25(11):3311-3317
The proposed mechanism of action of thymidylate synthase envisages the formation of a covalent ternary complex of the enzyme with the substrate dUMP and the cofactor 5,10-methylenetetrahydrofolate (CH2H4folate). The proposed structure of this adduct has been based by analogy on that of the covalent inhibitory ternary complex thymidylate synthase-FdUMP-CH2H4folate. Our recent success in using the protein precipitant trichloroacetic acid to trap the latter complex and covalent binary complexes of the enzyme with FdUMP, dUMP, and dTMP led to the use of this technique in attempts to trap the transient putative covalent catalytic ternary complex. Experiments performed with [2-14C]dUMP and [3',5',7,9-3H]CH2H4folate show that both the substrate and the cofactor remained bound to the protein after precipitation with trichloroacetic acid. The trapped putative covalent catalytic complex was subjected to CNBr fragmentation, and the resulting peptides were fractionated by reverse-phase high-pressure liquid chromatography. The isolated active site peptide was shown to retain the two ligands and was further characterized by a limited sequence analysis using the dansyl Edman procedure. The inhibitory ternary complex, which was formed with [14C]FdUMP and [3H]CH2H4folate, served as a control. The active site peptide isolated from the CNBr-treated inhibitory ternary complex was also subjected to sequence analysis. The two peptides exhibited identical sequences for the first four residues from the N-terminus, Ala-Leu-Pro-Pro, and the fifth amino acid residue was found to be associated with the labeled nucleotides and the cofactor.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
The essentials of estimation of the number of enzyme active sites by reversible inhibition are discussed. The necessity of evaluation of the substrate effect on the equilibrium of the systems with a rapidly dissociating enzyme -- inhibitor complex has been demonstrated. Some procedures for determination of the number of active sites of dipeptidyl-carboxypeptidase (EC 3.4.15.1) from bovine kidney cortex, using the competitive inhibitor SQ 20 881 (Glu-Trp-Pro-Arg-Pro-Gln-Ile-Pro-Pro) have been developed. The kinetic and equilibrium constants for the enzyme-inhibitor interaction (ki = 3.2 . 10(6) M-1s-1, k-i = 8 ms-1 and Ki = 2.5 +/- 0.5 nm) have been calculated.  相似文献   

14.
Several vascular and nonvascular mammalian tissue extracts exhibited variable amounts of two peaks (peaks I and II) of cGMP-dependent protein kinase by NaCl elution of DEAE columns. When [3H]cGMP was added to the extracts before chromatography, a peak of protein-bound [3H]cGMP coeluted with peak II. [3H]cGMP was added to purified bovine lung cyclic nucleotide-free enzyme followed by chromatography on high performance liquid chromatography-DEAE. Two kinase peaks, the first of which represented mainly cGMP-free enzyme and the second of which represented cGMP-bound enzyme, eluted at the same positions as peaks I and II, respectively, of the crude extracts. The relative amount of peak II increased as a function of increasing the [3H]cGMP added before chromatography, and peak II could be converted partially to peak I by rechromatography. The holoenzyme is known to contain two slowly exchanging cGMP binding sites (sites 1) and two rapidly exchanging sites (sites 2). Some protein-bound [3H] cGMP found entirely in site 1 coeluted with peak I, although most of the enzyme in that peak was cGMP-free. When low [3H]cGMP was used for the initial incubation, relatively more of the protein-bound [3H] cGMP appeared in peak I and could represent binding of [3H]cGMP to only one of the two sites 1 of the kinase. The [3H]cGMP bound to the peak II enzyme completely filled both sites 1. Cyclic GMP binding to these sites caused the apparent conformational change which shifted the DEAE elution position of the enzyme. The peak II kinase was partially active and had a higher sensitivity to further cGMP activation of kinase than did the cGMP-free enzyme, suggesting that activation of kinase by binding of cGMP to site 2 was facilitated by prior binding at site 1. In fractions of the trailing edge of peak II, the kinase activity was virtually cGMP-independent, and both sites 1 and 2 were almost saturated with [3H]cGMP. These results suggested a further conformational change and direct increase in activity by binding of cGMP at site 2.  相似文献   

15.
Thermal unfolding of dodecameric manganese glutamine synthetase (622,000 M(r)) at pH 7 and approximately 0.02 ionic strength occurs in two observable steps: a small reversible transition (Tm approximately 42 degrees C; delta H approximately equal to 0.9 J/g) followed by a large irreversible transition (Tm approximately 81 degrees C; delta H approximately equal to 23.4 J/g) in which secondary structure is lost and soluble aggregates form. Secondary structure, hydrophobicity, and oligomeric structure of the equilibrium intermediate are the same as for the native protein, whereas some aromatic residues are more exposed. Urea (3 M) destabilizes the dodecamer (with a tertiary structure similar to that without urea at 55 degrees C) and inhibits aggregation accompanying unfolding at < or = 0.2 mg protein/mL. With increasing temperature (30-70 degrees C) or incubation times at 25 degrees C (5-35 h) in 3 M urea, only dodecamer and unfolded monomer are detected. In addition, the loss in enzyme secondary structure is pseudo-first-order (t1/2 = 1,030 s at 20.0 degrees C in 4.5 M urea). Differential scanning calorimetry of the enzyme in 3 M urea shows one endotherm (Tmax approximately 64 degrees C; delta H = 17 +/- 2 J/g). The enthalpy change for dissociation and unfolding agrees with that determined by urea titrations by isothermal calorimetry (delta H = 57 +/- 15 J/g; Zolkiewski M, Nosworthy NJ, Ginsburg A, 1995, Protein Sci 4: 1544-1552), after correcting for the binding of urea to protein sites exposed during unfolding (-42 J/g). Refolding and assembly to active enzyme occurs upon dilution of urea after thermal unfolding.  相似文献   

16.
[3H]Progesterone and [3H]RU38486 binding in the chick oviduct cytosol is associated with macromolecules which sediment as 8 S and 4 S moieties, respectively, in molybdate-containing 5-20% sucrose gradients. The [3H]progesterone binding could be displaced by excess progesterone, but not by RU38486. Conversely, the [3H]RU38486 binding was able to compete with RU38486 but not by excess progesterone. A preparation containing antibodies against chick oviduct progesterone receptor recognized only the [3H]progesterone-receptor complex but not the 4 S, [3H]RU38486 binding component of the chick cytosol. In the calf uterus cytosol, [3H]R5020 (a synthetic progestin) and [3H]RU38486 were associated with 8 S molecules and the peaks of radioactivity were displaceable upon preincubation with radionert steroids. In addition, the complexes were recognized by antibodies to chick oviduct progesterone receptor. Our data suggest that in the chick oviduct cytosol, RU38486 does not bind to progesterone receptor, but interacts with an immunologically distinct macromolecule.  相似文献   

17.
Human immunodeficiency virus 1 (HIV-1) protease is an aspartyl protease composed of two identical protomers linked by a four-stranded antiparallel beta-sheet consisting of the NH2- and COOH-terminal segments (Weber, I.T. (1990) J. Biol. Chem. 265, 10492-10496). Kinetic analysis of the HIV-1 protease-catalyzed hydrolysis of a fluorogenic substrate demonstrates that the enzyme is an obligatory dimer. At pH = 5.0, 0.1 M sodium acetate, 1 M NaCl, 1 mM EDTA buffer, 37 degrees C, the equilibrium dissociation constant, Kd = 3.6 +/- 1.9 nM. We found that the tetrapeptide Ac-Thr-Leu-Asn-Phe-COOH, corresponding to the COOH-terminal segment of the enzyme, is an excellent inhibitor of the enzyme. Kinetic analysis shows that the inhibitor binds to the inactive protomers and prevents their association into the active dimer (dissociative inhibition). The dissociative nature of this inhibition is consistent with the results obtained from sedimentation equilibrium experiments in which the apparent molecular weight of the enzyme was observed to be 20,800 +/- 1,500 and 12,100 +/- 300, in the absence and presence of the COOH-terminal tetrapeptide, respectively. The dissociation constant of the protomer-inhibitor complex is Ki = 45.1 +/- 1.8 microM. This is the first kinetic analysis and direct experimental demonstration of noncovalent dissociative inhibition.  相似文献   

18.
Binding characteristics of synthetic steroid, mifepristone (RU38486 - also referred to as RU486), were examined in cytosol prepared from the chick oviduct and the calf uterus, and were compared with those of progesterone and synthetic progestin R5020. Unlike [3H]progesterone binding, the [3H]RU486 binding in the oviduct cytosol did not saturate at 50 nM ligand concentration. The [3H]progesterone binding could not be eliminated in the presence of excess RU486, and [3H]RU486 binding was seen to be indisplaceable upon pretreatment of the chick oviduct cytosol with a 1000-fold excess progesterone. It is apparent that the chick oviduct cytosol is endowed with two separate sets of sites which interact with progesterone and RU486 independently. Furthermore, [3H]RU486 binding in the chick oviduct cytosol remained intact when incubated for 60 min at 37°C; it exhibited a single ionic form upon elution from DEAE-Sephacel and the [3H]RU486-associated radioactivity sedimented in the 4 S region both in salt-free and 0.3 M KCl-containing 5–20% sucrose gradients. In the calf uterus cytosol, both steroids exhibited comparable binding profiles. Our results provide evidence that chick oviduct possesses distinct binding sites that accept either progesterone or RU486, but not both, as is the case in the calf uterus.  相似文献   

19.
V K Moudgil  C Hurd 《Biochemistry》1987,26(16):4993-5001
Effects of different transforming agents were examined on the sedimentation characteristics of calf uterine progesterone receptor (PR) bound to the synthetic progestin [3H]R5020 or the known progesterone antagonist [3H]RU38486 (RU486). [3H]R5020-receptor complexes [progesterone-receptor complexes (PRc)] sedimented as fast migrating 8S moieties in 8-30% linear glycerol gradients containing 0.15 M KCl and 20 mM Na2MoO4. Incubation of cytosol containing [3H]PRc at 23 degrees C for 10-60 min, or at 0 degrees C with 0.15-0.3 M KCl or 1-10 mM ATP, caused a gradual transformation of PRc to a slow sedimenting 4S form. This 8S to 4S transformation was molybdate sensitive. In contrast, the [3H]RU486-receptor complex exhibited only the 8S form. Treatment with all three activation agents caused a decrease in the 8S form but no concomitant transformation of the [3H]RU486-receptor complex into the 4S form. PR in the calf uterine cytosol incubated at 23 or at 0 degrees C with 0.3 M KCl or 10 mM ATP could be subsequently complexed with [3H]R5020 to yield the 4S form of PR. However, the cytosol PR transformed in the absence of any added ligand failed to bind [3H]RU486. Heat treatment of both [3H]R5020- and [3H]RU486-receptor complexes caused an increase in DNA-cellulose binding, although the extent of this binding was lower when RU486 was bound to receptors. An aqueous two-phase partitioning analysis revealed a significant change in the surface properties of PR following both binding to ligand and subsequent transformation. The partition coefficient (Kobsd) of the heat-transformed [3H]R5020-receptor complex increased about 5-fold over that observed with PR at 0 degrees C.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Myeloperoxidase (MPO) catalyzes the two-electron oxidation of chloride, thereby producing hypochlorous acid (HOCl). Taurine (2-aminoethane-sulfonic acid, Tau) is thought to act as a trap of HOCl forming the long-lived oxidant monochlorotaurine [(N-Cl)-Tau], which participates in pathogen defense. Here, we amend and extend previous studies by following initial and equilibrium rate of formation of (N-Cl)-Tau mediated by MPO at pH 4.0-7.0, varying H(2)O(2) concentration. Initial rate studies show no saturation of the active site under assay conditions (i.e. [H(2)O(2)] > or = 2000 [MPO]). Deceleration of Tau chlorination under equilibrium is quantitatively described by the redox equilibrium established by H(2)O(2)-mediated reduction of compound I to compound II. At equilibrium regime the maximum chlorination rate is obtained at [H(2)O(2)] and pH values around 0.4mM and pH 5. The proposed mechanism includes known acid-base and binding equilibria taking place at the working conditions. Kinetic data ruled out the currently accepted mechanism in which a proton participates in the molecular step (MPO-I+Cl(-)) leading to the formation of the chlorinating agent. Results support the formation of a chlorinating compound I-Cl(-) complex (MPO-I-Cl) and/or of ClO(-), through the former or even independently of it. ClO(-) diffuses away and rapidly protonates to HOCl outside the heme pocket. Smaller substrates will be chlorinated inside the enzyme by MPO-I-Cl and outside by HOCl, whereas bulkier ones can only react with the latter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号