首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
Receptor-interacting protein 140 (RIP140) encodes a histone deacetylase (HDAC) inhibitor-sensitive repressive activity. Direct interaction of RIP140 with HDAC1 and HDAC3 occurs in vitro and in vivo as demonstrated in co-immunoprecipitation and glutathione S-transferase pull-down experiments. The HDAC-interacting domain of RIP140 is mapped to its N-terminal domain, between amino acids 78 and 303 based upon glutathione S-transferase pull-down experiments. In chromatin immunoprecipitation assays, it is demonstrated that histone deacetylation occurs at the chromatin region of the Gal4 binding sites as a result of Gal4 DNA binding domain-tethered RIP expression. The immunocomplexes of RIP140 from cells transfected with RIP140 and HDAC are able to deacetylate histone proteins in vitro. This study presents the first evidence for RIP140 as a negative coregulator for nuclear receptor actions by directly recruiting histone deacetylases and categorizes RIP140 as a novel negative coregulator that is able to directly interact with HDACs.  相似文献   

10.
11.
12.
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is considered a housekeeping glycolitic enzyme that recently has been implicated in cell signaling. Under apoptotic stresses, cells activate nitric oxide formation leading to S-nitrosylation of GAPDH that binds to Siah and translocates to the nucleus. The GAPDH–Siah interaction depends on the integrity of lysine 227 in human GAPDH, being the mutant K227A unable to associate with Siah. As lysine residues are susceptible to be modified by acetylation, we aimed to analyze whether acetylation could mediate transport of GAPDH from cytoplasm to the nucleus. We observed that the acetyltransferase P300/CBP-associated factor (PCAF) interacts with and acetylates GAPDH. We also found that over-expression of PCAF induces the nuclear translocation of GAPDH and that for this translocation its intact acetylase activity is needed. Finally, the knocking down of PCAF reduces nuclear translocation of GAPDH induced by apoptotic stimuli. By spot mapping analysis we first identified Lys 117 and 251 as the putative GAPDH residues that could be acetylated by PCAF. We further demonstrated that both Lys were necessary but not sufficient for nuclear translocation of GAPDH after apoptotic stimulation. Finally, we identified Lys 227 as a third GAPDH residue whose acetylation is needed for its transport from cytoplasm to the nucleus. Thus, results reported here indicate that nuclear translocation of GAPDH is mediated by acetylation of three specific Lys residues (117, 227 and 251 in human cells). Our results also revealed that PCAF participates in the GAPDH acetylation that leads to its translocation to the nucleus.  相似文献   

13.
14.
15.
16.
D J Welsch  G L Nelsestuen 《Biochemistry》1988,27(13):4939-4945
Two acetylation sites on prothrombin fragment 1 (amino-terminal 156 amino acid residues of bovine prothrombin) are essential for the tight calcium and membrane binding functions of the protein; calcium protects both of these sites from acetylation [Welsch, D. J., Pletcher, C. H., & Nelsestuen, G. L. (1988) Biochemistry (first of three papers in this issue)]. The epsilon-amino groups of the lysine residues (positions 3, 11, 44, 57, and 97) were not critical to protein function and were acetylated in the calcium-protected protein. The most reactive of the two essential acetylation sites was identified as amino-terminal alanine. To identify this site, fragment 1 was first acetylated in the presence of calcium to derivatize the nonessential sites. Removal of calcium and partial acetylation with radioactive reagent produced a single major radioactive peptide. Isolation and characterization of this peptide showed that the radioactivity was associated with amino-terminal alanine. In addition, sequence analysis of calcium-protected protein showed the presence of underivatized amino-terminal alanine. Surprisingly, covalent modification with a trinitrophenyl group did not alter membrane binding activity. Thus, the positive charge on the amino terminus did not appear critical to its function. Acetylation of amino-terminal alanine without acetylation of the second essential site produced a fragment 1 derivative which had a high requirement for calcium and which had lost most membrane binding function. However, this protein had only slightly altered affinity for magnesium ion. In agreement with this metal ion selectivity, protection of amino-terminal alanine was calcium specific, and magnesium ion did not protect this site from acetylation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
18.
19.
20.
Like the full-length histone deacetylase (HDAC) 4, its amino terminus (amino acids 1-208) without the carboxyl deacetylase domain is also known to effectively bind and repress myocyte enhancer factor 2 (MEF2). Within this repressive amino terminus, we further show that a stretch of 90 amino acids (119-208) displays MEF2 binding and repressive activity. The same region is also found to associate specifically with HDAC1 which is responsible for the repressive effect. The amino terminus of HDAC4 can associate with the DNA-bound MEF2 in vitro, suggesting that it does not repress MEF2 simply by disrupting the ability of MEF2 to bind DNA. In vivo, MEF2 induces nuclear translocation of both the full-length HDAC4 and HDAC4-(1-208), whereas the nuclear HDAC4 as well as HDAC4-(1-208) in turn specifically sequesters MEF2 to distinct nuclear bodies. In addition, we show that MyoD and HDAC4 functionally antagonize each other to regulate MEF2 activity. Combined with data from others, our data suggest that the full-length HDAC4 can repress MEF2 through multiple independent repressive domains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号