首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The kinetics of aniline hydroxylation with: 1) rat liver microsomes involving NADPH and O2 (System I); 2) hepatic microsomes and tertiary butylhydroperoxide (System II) and 3) microsomes and cumyl hydroperoxide (System III) within 15--37 degrees C has been studied. The reactions were characterized by the values of the aniline oxidation rate constants, k2=v/[E]0, where [E]0 is the initial concentration of cytochrome P--450: k1 2=1,60.10(8) exp (--13400/RT) sec-1., k2 2=1,66.10(9) exp (--14500/RT) sec-1., k3 2=6,83.10(9) exp (--15300/RT) sec-1. The values of delta H* and delta S* were calculated and compared for these three systems. A conclusion is drawn that the act of oxygen insertion into the substrate molecule is the rate-limiting step in the reaction of aniline oxidation for the mentioned system.  相似文献   

2.
The interaction of cytochrome P-450 of rat liver microsomes with six amines have been investigated in Tris-HCL buffer pH 7.4 within the temperature range of 20--37 degrees C by the differential spectrophotometry method. Dissociation constants for the amine-cytochrome-P-450 complexes have been determined. The interaction of type I substrate, 1,2,7-trimethyl-decahydroquinolone-4, is characterized by the value of Ks(I)=4.14 exp (--6250/RT) mole/1. A value of Ks(II)=10(-8) exp (+6500/RT) mole/1 has been obtained for type II substrate, monomethylaniline. Association of 1,2,7-trimethyldecahydroquinolone-4 to cytochrome P-450 decreases with temperature, where as with monomethylaniline the reverse tendency is observed. Thermodynamic parameters delta H, delta F and delta S characterising the interaction of amines with cytochrome P-450 are evaluated.  相似文献   

3.
Cytochrome P-450 destruction kinetics by cumene hydroperoxide (CHP) has been studied at 25 degrees C in phosphate buffer, pH 7.25-7.50, in various systems: intact and induced rat or rabbit microsomes, highly purified LM2- and LM2- and LM4-forms of cytochrome P-450 from rabbit liver microsomes. The destruction kinetics is characterized by three phases in all systems. The CHP-influenced cytochrome P-450 destruction is a radical chain process with linear termination of the chains. The acidic phospholipids, phosphatidylserine and phosphatidylinositol and total microsomal phospholipids containing the acidic lipid components activate cytochrome P-450 in the hydroxylation of aniline and naphthalene by CHP. Phosphatidylcholine and sphingomyelin have no effect upon the cytochrome P-450 activity in the type I and II substrates oxidation by CHP. The phase transitions of the microsomal phospholipids influence the interaction of cytochrome P-450 with its reductase, altering the activation energy of type I substrates oxidation. The type II substrate oxidation is not affected by phase transitions in the full microsomal hydroxylating system.  相似文献   

4.
Cytochrome P-450IIE1 is induced by a variety of agents, including acetone, ethanol and pyrazole. Recent studies employing immunohistochemical methods have shown that P-450IIE1 was expressed primarily in the pericentral zone of the liver. In order to evaluate whether catalytic activity of P-450IIE1 is preferentially localized in the pericentral zone of the liver acinus, the oxidation of aniline and p-nitrophenol, two effective substrates for P-450IIE1, by periportal and pericentral hepatocytes isolated from pyrazole-treated rats was determined. Periportal and pericentral hepatocytes were prepared by a digitonin-collagenase procedure; the marker enzymes glutamine synthetase and gamma-glutamyl transpeptidase indicated reasonable separation of the two cell populations. Viability, yield and total cytochrome P-450 content were similar for the periportal and pericentral hepatocytes. Pericentral hepatocytes oxidized aniline and p-nitrophenol at rates that were 2-4-fold greater than periportal hepatocytes under a variety of conditions. Carbon monoxide inhibited the oxidation of the substrates with both preparations and abolished the increased oxidation found with the pericentral hepatocytes. Pyrazole or 4-methylpyrazole, added in vitro, effectively inhibited the oxidation of aniline and p-nitrophenol and prevented the augmented rate of oxidation by the pericentral hepatocytes. Western blots carried out using isolated microsomes revealed a more than 2-fold increase in immunochemical staining with microsomes isolated from the pericentral hepatocytes, which correlated to the 2-4-fold increase in the rate of oxidation of aniline or p-nitrophenol by the pericentral hepatocytes. These results suggest that functional catalytic activity of cytochrome P-450IIE1 is preferentially localized in the pericentral zone of the liver acinus, and that most of the induction by pyrazole of P-450IIE1 appears to occur within the pericentral zone.  相似文献   

5.
The fractionation of the liver of goldfish (Carassius auratus) was studied, and the properties of the microsomal fraction were examined. The microsomal fraction contained cytochrome P-450 and catalyzed the oxidation of aminopyrine, aniline, 7-ethoxycoumarin and benzo(a)pyrene. The oxidation activities were significantly lower than those of rat liver microsomes. The titration of cytochrome P-450 by potassium cyanide indicated the presence of multiple forms of cytochrome P-450 in goldfish liver microsomes. Feeding of goldfish with 3-methylcholanthrene-containing food greatly induced benzo(a)pyrene hydroxylation activity of the liver microsomes. The Soret peak of the carbon monoxide compound of cytochrome P-450 was shifted from 450 to 448 nm.  相似文献   

6.
Cytochrome P-450d was isolated from isosafrol-induced rat liver microsomes by affinity chromatography on 1.8-diaminooctyl-Sepharose 4B and chromatography on hydroxylapatite using a linear potassium phosphate gradient (45-250 mM). The enzyme has a molecular mass of 54 kDa, CO-maximum 448 nm is characterized by a high spin state; the rate of 4-aminobiphenyl hydroxylation is 54 nmol/min/nmol of cytochrome P-450d (37 degrees C), those, of 7-ethoxyresorufin O-deethylation and benz (a) pyrene oxidation are 1 nmol/min/nmol of cytochrome P-450d (22 degrees C) and 2 nmol/min/nmol of cytochrome P-450d (37 degrees C), respectively. The properties of cytochrome P-450d were compared to those of cytochrome P-450c isolated from 3-methylcholanthrene-induced rats. The yield of these cytochromes under the conditions used (10% P-450d from isosafrol-induced microsomes and 15% P-450c from 3-methylcholanthrene-induced microsomes) was relatively high. Antibodies to cytochromes P-450d and P-450c were obtained. Using rocket immunoelectrophoresis the percentage of these hemoprotein forms in 3-methylcholanthrene-induced (P-450d-20%, P-450c-70%) and isosafrol-induced rat liver microsomes (P-450d-50%, P-450c-15%) was determined.  相似文献   

7.
The electron transport components of the microsomal fraction of cauliflower buds and mung bean hypocotyls were investigated using split-beam and dual wavelength spectrophotometry under a variety of reducing conditions. Cauliflower microsomes were found to contain an ascorbate-reducible component, termed cytochrome b-559.5 [E'0 = +135 +/- 20 mV; lambdamax (reduced minus oxidised) = 559.5, 527 and 429 nm at 23 degrees C], cytochrome b5 [E'0 = -20 +/- 20 mV; lambdamax (reduced minus oxidised) = 556, 526 and 425 nm at 23 degrees C], cytochromes P-450 and P-420. On the basis of binding studies with ethyl isocyanide, degradation of cytochrome P-450 to P-420, redox potential, aniline binding, and relative rates of reduction by NADPH and NADH, it is suggested that the cytochrome P-450 system is analogous to that mammalian microsomes. Other components, reducible only by dithionite, may also be present. Mung bean microsomes were found to contain an ascorbate-reducible component, termed cytochrome b-562 [E'0 = +120 +/- 20 mV; lambdamax (reduced minus oxidised) = 562, 528 and 430 nm at 23 degrees C], cytochrome b5, and a low potential component which was reducible only by sodium dithionite. No cytochrome P-450 or P-420 could be detected. A general method of analysis of the cytochromes was developed and applied to the microsomes from a variety of plant sources. The results indicate that large variations, both in type and amount of components, occur between the microsomes from different plant materials.  相似文献   

8.
The following lipophilic spin-labeled cytochrome P-450 analogs were synthesized: 2-octyl-4-(3-iodine-2-oxopropylidene)-2,3,5,5-tetramethylimidaz olidine-1-oxyl (RIII), 2-nonyl-4-(3-iodine-2-oxopropylidene)-2,3,5,5-tetramethylimidaz olidine-1-oxyl (RIV), 2-hepta-decyl-4-(3-iodine-2-oxopropylidene)-2,3,5,5-tetramethyl imidazolidine-1- oxyl (RV). The distribution coefficients, k, in water--lipid and water--octanol systems as well as the theoretical estimates of k for these and previously synthesized analogs, i.e., 4-(3-iodine-2-oxo-propylidenyl)-2,2,3,5,5-pentamethylimidazolid ine-1-oxyl (RI) and 2-hexyl-4-(3-iodine-2-oxopropylidene)-2,3,5,5-tetramethylimidaz olidine- 1-oxyl (RII) were determined. It was shown that RIII and RIV bind as type I substrates to cytochrome P-450 from rat microsomes induced with phenobarbital or 3-methylcholanthrene as well as to those from control rats. Radicals RIII and RIV inhibit the oxidation of aniline, aminopyrine and benzphetamine. RIII-RV strongly inhibit the O-deethylation of 7-etoxyresorufin. The inhibitory activity of the radicals increases in the following order: RV less than RIV less than or equal to RI less than or equal to RIII less than RII. The experimental results suggest that the inhibitory properties are nonmonotonuesly related to the lipophility. The high lipophility of RIII and its strong inhibitory properties permit to render the latter to the class of inhibitors which can be transported by liposome membrane vehicles to the liver, inhibit the in vivo activity of the microsomal system and thus prolong the effects of drugs oxidized by cytochrome P-450.  相似文献   

9.
Cytochrome P-450j has been purified to electrophoretic homogeneity from hepatic microsomes of adult male rats administered ethanol and compared to the corresponding enzyme from isoniazid-treated rats. The enzymes isolated from ethanol- and isoniazid-treated rats have identical chromatographic properties, minimum molecular weights, spectral properties, peptide maps, NH2-terminal sequences, immunochemical reactivities, and substrate selectivities. Both preparations of cytochrome P-450j have high catalytic activity in aniline hydroxylation, butanol oxidation, and N-nitrosodimethylamine demethylation with turnover numbers of 17-18, 37-46, and 15 nmol product/min/nmol of P-450, respectively. A single immunoprecipitin band exhibiting complete identity was observed when the two preparations were tested by double diffusion analysis with antibody to isoniazid-inducible cytochrome P-450j. Ethanol- and isoniazid-inducible rat liver cytochrome P-450j preparations have also been compared and contrasted with cytochrome P-450 isozyme 3a, the major ethanol-inducible isozyme from rabbit liver. The rat and rabbit liver enzymes have slightly different minimum molecular weights and somewhat different peptide maps but similar spectral, catalytic, and immunological properties, as well as significant homology in their NH2-terminal sequences. Antibody to either the rat or rabbit isozyme cross-reacts with the heterologous enzyme, showing a strong reaction of partial identity. Antibody against isozyme 3a specifically recognizes cytochrome P-450j in immunoblots of induced rat liver microsomes. Aniline hydroxylation catalyzed by the reconstituted system containing cytochrome P-450j is markedly inhibited (greater than 90%) by antibody to the rabbit protein. Furthermore, greater than 85% of butanol or aniline metabolism catalyzed by hepatic microsomes from ethanol- or isoniazid-treated rats is inhibited by antibody against isozyme 3a. Results of antibody inhibition studies suggest that cytochrome P-450j is induced four- to sixfold by ethanol or isoniazid treatment of rats. All of the evidence presented in this study indicates that the identical cytochrome P-450, P-450j, is induced in rat liver by either isoniazid or ethanol, and that this isozyme is closely related to rabbit cytochrome P-450 isozyme 3a.  相似文献   

10.
Induction of cytochrome P-450 IIE1 by pyrazole has been shown in a variety of studies with isolated microsomes or reconstituted systems containing the purified P-450 isozyme. Experiments were conducted to document induction by pyrazole in intact hepatocytes by studying the oxidation of p-nitrophenol to 4-nitrocatechol or of aniline to p-aminophenol. Hepatocytes prepared from rats treated with pyrazole for 2 days oxidized p-nitrophenol or aniline at rates which were 3- to 4-fold higher than saline controls. To observe maximal induction in hepatocytes, it was necessary to add metabolic substrates such as pyruvate, sorbitol or xylitol, which suggests that availability of the NADPH cofactor may be rate-limiting in the hepatocytes from the pyrazole-treated rats. Carbon monoxide inhibited the oxidation of p-nitrophenol and aniline by hepatocytes from the pyrazole-treated rats and controls, demonstrating the requirement for cytochrome P-450. The oxidation of both substrates by the hepatocyte preparations was inhibited by a variety of agents that interact with and are effective substrates for oxidation by P-450 IIE1 such as ethanol, dimethylnitrosamine, pyrazole and 4-methylpyrazole. Microsomes isolated from pyrazole-treated rats oxidized aniline and p-nitrophenol at elevated rats compared to saline controls. These results indicate that induction by pyrazole of the oxidation of drugs which are effective substrates for P-450 IIE1 can be observed in intact hepatocytes. The extent of induction and many of the characteristics of aniline or p-nitrophenol oxidation observed with isolated microsomes from pyrazole-treated rats can also be found in the intact hepatocytes.  相似文献   

11.
Cytochrome P-450 LMeb was purified from liver microsomes obtained from rabbits treated with either benzene or imidazole and was shown to have identical N-terminal amino acid sequence as that of cytochrome P-450 LM3a. The amino acid compositions of the proteins were indistinguishable. Quantitation of P-450 LMeb in various types of microsomes using radial immunodiffusion, revealed that pyrazole- or imidazole-treatment of the animals caused a 2-3-fold induction of the enzyme, accompanied by 2-3-fold increases of the rates of ethanol and aniline oxidation.  相似文献   

12.
1. Cytochrome P-450LgM2 was purified from sheep lung microsomes in the presence of detergents, Emulgen 913 and cholate. 2. The purification procedure involved the chromatography of the detergent solubilized microsomes on DEAE-cellulose and hydroxylapatite. 3. Cytochrome P-450LgM2 was further purified on second DEAE-cellulose and hydroxylapatite columns. 4. The specific content of the highly purified P-450LgM2 was 16-18 nmol P-450/mg protein and purified 164-fold. 5. The yield was 16% of the initial content in microsomes. 6. The SDS-polyacrylamide slab gel electrophoresis (PAGE) of the purified lung cytochrome P-450LgM2 showed one protein band having the monomer molecular weight of 49,500. 7. The absolute CO-difference spectrum of dithionate-reduced P-450LgM2 gave a peak at 451 nm. 8. When sheep lung cytochrome P-450LgM2 and P-450LM2 purified from liver of phenobarbital (PB)-induced rabbit were subjected to Western Blotting and visualized immunochemically with anti-P-450LM2, they showed identical mobilities. 9. P-450LgM2 was found to be very active in N-demethylation of benzphetamine in a reconstituted system containing purified sheep lung reductase and synthetic lipid. 10. Turnover numbers (min-1) for benzphetamine, aniline, ethylmorphine and p-nitrophenol were determined to be 273, 1.2, 15.5 and 1.05, respectively, in a reconstituted microsomal lung monooxygenase system. 11. Spectral, electrophoretic, biocatalytic and immunochemical properties of sheep lung P-450LgM2 were found to be similar to those of P-450 isozyme 2, purified from PB-treated rabbit liver and of rabbit lung microsomes.  相似文献   

13.
Deuterium isotope effects [D(V/K)] and stereoselectivity of ethanol oxidation in cytochrome P-450 containing systems and in the xanthine-xanthine oxidase system were compared with those of yeast alcohol dehydrogenase. The isotope effects were determined by using both a noncompetitive method, including incubation of unlabeled or [1,1-2H2]ethanol at various concentrations, and a competitive method, where 1:1 mixtures of [1-13C]- and [2H6]ethanol or [2,2,2-2H3]- and [1,1-2H2]ethanol were incubated and the acetaldehyde formed was analyzed by gas chromatography/mass spectrometry. The D(V/K) isotope effects of the cytochrome P-450 dependent ethanol oxidation were about 4 with liver microsomes from imidazole-, phenobarbital- or acetone-treated rabbits or with microsomes from acetone- or ethanol-treated rats. Similar isotope effects were reached with reconstituted membranes containing the rabbit ethanol-inducible cytochrome P-450 (LMeb), whereas control rat microsomes and membranes containing rabbit phenobarbital-inducible P-450 LM2 oxidized the alcohol with D(V/K) of about 2.8 and 1.8, respectively. Addition of FeIIIEDTA either to microsomes from phenobarbital-treated rabbits or to membranes containing P-450 LMeb significantly lowered the isotope effect, which approached that of the xanthine-xanthine oxidase system (1.4), whereas desferrioxamine had no significant effect. Incubations of all cytochrome P-450 containing systems or the xanthine-xanthine oxidase systems with (1R)- and (1S)-[1-2H]ethanol, revealed, taking the isotope effects into account, that 44-66% of the ethanol oxidized had lost the 1-pro-R hydrogen.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
The substrate binding step in the reaction sequence of the cytochrome P-450 enzyme system (rat liver microsomes) has been investigated. The type I/II substrate classification kinetically holds too. The rate constants are in the 10(3) to 10(5) (M-1 sec-1) range, the type I compounds are preferably bound by about one order of magnitude. The rate constants of the binding process to the reduced cytochrome are considerably decreased. The results favour the ordered reaction mechanism.  相似文献   

15.
Antibodies to mouse liver cytochrome P3-450 (anti-P3-450) and antibodies to rat liver cytochrome P-450d (anti-P-450d-c) inhibit the 0-deethylation of 7-ethoxyresorufin (ER) in liver microsomes of benz(a)pyrene-induced (BP) mice but do not inhibit the 0-deethylase activity in liver microsomes of BP-induced rats. Anti-P3-450 and anti-P-450c inhibit BP-hydroxylation in BP-induced mouse liver microsomes by 20%, but they do not inhibit this reaction at all in BP-induced rat liver microsomes. In a reconstituted monooxygenase system isolated cytochrome P3-450 metabolized 7-ER and BP. In contrast, its homologue, cytochrome P-450d, did not metabolize these substrates. The fraction containing cytochrome P1-450 metabolized 7-ER at a low rate and BP at a rate of 3.6 nmol product/min/nmol cytochrome. Western blot analysis with anti-P-450c + d revealed two bands in SDS-PAGE gels containing BP-induced mouse liver microsomes. The interaction of mouse liver BP-microsomes with anti-P3-450 and anti-P-450d-c was accompanied by the appearance of a single band (cytochrome P3-450).  相似文献   

16.
Antibodies to cytochrome P-450 isozyme 3a, the ethanol-inducible isozyme in rabbit liver, were used to determine the role of this enzyme in the microsomal oxidation of alcohols and the p-hydroxylation of aniline. P-450 isozymes, 2, 3b, 3c, 4, and 6 did not crossreact with anti-3a IgG as judged by Ouchterlony double diffusion, and radioimmunoassays indicated a crossreactivity of less than 1%. Greater than 90% of the activity of purified form 3a toward aniline, ethanol, n-butanol, and n-pentanol was inhibited by the antibody in the reconstituted system. The catalytic activity of liver microsomes from control or ethanol-treated rabbits was unaffected by the addition of either desferrioxamine (up to 1.0 mM) or EDTA (0.1 mM), suggesting that reactions involving the production of hydroxyl radicals from H2O2 and any contaminating iron in the system did not make a significant contribution to the microsomal activity. The addition of anti-3a IgG to hepatic microsomes from ethanol-treated rabbits inhibited the metabolism of ethanol, n-butanol, n-pentanol, and aniline by about 75, 70, 80, and 60%, respectively, while the inhibition of the activity of microsomes from control animals was only about one-half as great. The rate of microsomal H2O2 formation was inhibited to a lesser extent than the formation of acetaldehyde, thus suggesting that the antibody was acting to prevent the direct oxidation of ethanol by form 3a. Under conditions where purified NADPH-cytochrome P-450 reductase-catalyzed substrate oxidations was minimal, the P-450 isozymes other than 3a had low but significant activity toward the four substrates examined. The residual activity at maximal concentrations of the antibody most likely represents the sum of the activities of P-450 isozymes other than 3a present in the microsomal preparations. The results thus indicate that the enhanced monooxygenase activity of liver microsomes from ethanol-treated animals represents catalysis by P-450 isozyme 3a.  相似文献   

17.
Theophylline metabolism has been studied in a reconstituted monooxygenase system with purified forms of cytochrome P-450: P-450a, P-450b, P-450d and P-450k as well as in liver microsomes of control and 3-methylcholanthrene-induced rats. Cytochrome P-450 isoforms, P-450a and P-450b, had no effect on theophylline metabolism, whereas forms P-450d and P-450k induced the synthesis of 1.3-dimethyluric acid (1.3-DMA) at the rates of 900 and 330 pmol/min/nmol of protein, respectively. The catalytic activity of these isoforms was fully inhibited by homologous monospecific antibodies. P-450c catalyzed the formation of a nonidentified metabolite. In microsomes of control animals antibodies specifically directed to cytochrome P-450k suppressed the rate of 1.3-DMA synthesis by 73%, whereas antibodies specifically raised against P-450c+d--by 11%. In microsomes of methylcholanthrene-induced animals the rate of 1.3-DMA synthesis was increased two-fold. This activity was inhibited by 61% by antibodies to cytochrome P-450k and by 18% by anti-P-450c+d antibodies.  相似文献   

18.
Rat liver microsomes oxidize pyrazole to 4-hydroxypyrazole and this oxidation is increased in microsomes isolated from rats treated with inducers of cytochrome P-450 IIE1, such as pyrazole or ethanol. A reconstituted system containing the P-450 IIE1, purified from pyrazole-treated rats, oxidized pyrazole to 4-hydroxypyrazole in a time- and P-450-dependent manner. Oxidation of pyrazole was dependent on the concentration of pyrazole over the range of 0.15 mM to 1.0 mM. In isolated microsomes, glycerol inhibited pyrazole oxidation by about 50% under concentration conditions which occur in the reconstituted system; hence, the values for pyrazole oxidation by the reconstituted systems are underestimated because of the presence of glycerol. Oxidation of pyrazole was inhibited by competitive substrates for P-450 IIE1, such as 4-methylpyrazole, aniline and ethanol, as well as by an antibody raised against the pyrazole-induced P-450 IIE1. Thus, pyrazole is an effective substrate for oxidation by purified P-450 IIE1, extending the substrate specificity of this isozyme to potent inhibitors of alcohol dehydrogenase.  相似文献   

19.
The effects of starvation on rat renal cytochrome P-450s were studied. The content of spectrally measured cytochrome P-450 in the renal microsomes of male rats increased 2-fold with 72 h starvation, but cytochrome b5 and NADPH-cytochrome P-450 reductase were not induced. 7-Ethoxycoumarin O-dealkylation and aniline hydroxylation activities of the renal microsomes of control male rats were very low but were induced 2.5-3-fold by 72 h starvation. Aminopyrine N-demethylation and lauric acid hydroxylation activities were induced 1.5-2-fold by 72 h starvation. The changes in catalytic activities suggested that the contents of individual cytochrome P-450s in the renal microsomes were altered by starvation. The contents of some cytochrome P-450s were measured by Western blotting. P450 DM (P450IIE1), a typical form of cytochrome P-450 induced by starvation in rat liver, was barely detected in rat kidney and was induced 2-fold by 72 h starvation. P450 K-5, a typical renal cytochrome P-450 and lauric acid hydroxylase, accounted for 81% of the spectrally measured cytochrome P-450 in the renal microsomes of control male rats and was induced 2-fold by 72 h starvation. P450 K-5 was not induced in rat kidney by treatment with chemicals such as acetone or clofibrate. The renal microsomes of male rats contained 6-times as much P450 K-5 as those of female rats. These results suggest that P450 K-5 is regulated by an endocrine factor.  相似文献   

20.
Preincubation of mouse liver microsomes with NADPH resulted in malondialdehyde formation, destruction of cytochrome P-450, and decreased rates of aniline hydroxylation and N-demethylation of aminopyrine and ethylmorphine. These phenomena were more pronounced in phosphate than in Tris buffer. No reduction in rates of NADPH-linked oxidation of ethanol or in the activities of NADPH oxidase and NADPH-cytochrome c reductase was observed. While addition of EDTA to preincubation mixtures prevented lipid peroxidation, loss of cytochrome P-450, and inactivation of the drug-metabolizing capacity of microsomes, it did not alter ethanol oxidation rates and the activities of NADPH oxidase and NADPH-cytochrome c reductase. These findings argue against the involvement of cytochrome P-450 in the microsomal ethanol-oxidizing system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号