首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
As detailed in a companion paper (Berk, D., and E. Evans. 1991. Biophys. J. 59:861-872), a method was developed to quantitate the strength of adhesion between agglutinin-bonded membranes without ambiguity due to mechanical compliance of the cell body. The experimental method and analysis were formulated around controlled assembly and detachment of a pair of macroscopically smooth red blood cell surfaces. The approach provides precise measurement of the membrane tension applied at the perimeter of an adhesive contact and the contact angle theta c between membrane surfaces which defines the mechanical leverage factor (1-cos theta c) important in the definition of the work to separate a unit area of contact. Here, the method was applied to adhesion and detachment of red cells bound together by different monoclonal antibodies to red cell membrane glycophorin and the snail-helix pomatia-lectin. For these tests, one of the two red cells was chemically prefixed in the form of a smooth sphere then equilibrated with the agglutinin before the adhesion-detachment procedure. The other cell was not exposed to the agglutinin until it was forced into contact with the rigid cell surface by mechanical impingement. Large regions of agglutinin bonding were produced by impingement but no spontaneous spreading was observed beyond the forced contact. Measurements of suction force to detach the deformable cell yielded consistent behavior for all of the agglutinins: i.e., the strength of adhesion increased progressively with reduction in contact diameter throughout detachment. This tension-contact diameter behavior was not altered over a ten-fold range of separation rates. In special cases, contacts separated smoothly after critical tensions were reached; these were the highest values attained for tension. Based on measurements reported in another paper (Evans et al. 1991. Biophys. J. 59:838-848) of the forces required to rupture molecular-point attachments, the density of cross-bridges was estimated with the assumption that the tension was proportional to the discrete rupture force x the number of attachments per unit length. These estimates showed that only a small fraction of agglutinin formed cross-bridges at initial assembly and increased progressively with separation. When critical tension levels were reached, it appeared that nearly all local agglutinin was involved as cross-bridges. Because one cell surface was chemically fixed, receptor accumulation was unlikely; thus, microscopic "roughness" and steric repulsion probably modulated formation of cross-bridges on initial contact.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
E Evans  D Berk    A Leung 《Biophysical journal》1991,59(4):838-848
A simple micromechanical method has been developed to measure the rupture strength of a molecular-point attachment (focal bond) between two macroscopically smooth membrane capsules. In the procedure, one capsule is prepared with a low density coverage of adhesion molecules, formed as a stiff sphere, and held at fixed position by a micropipette. The second capsule without adhesion molecules is pressurized into a spherical shape with low suction by another pipette. This capsule is maneuvered to initiate point contact at the pole opposite the stiff capsule which leads to formation of a few (or even one) molecular attachments. Then, the deformable capsule is slowly withdrawn by displacement of the pipette. Analysis shows that the end-to-end extension of the capsule provides a direct measure of the force at the point contact and, therefore, the rupture strength when detachment occurs. The range for point forces accessible to this technique depends on the elastic moduli of the membrane, membrane tension, and the size of the capsule. For biological and synthetic vesicle membranes, the range of force lies between 10(-7)-10(-5) dyn (10(-12)-10(-10) N) which is 100-fold less than presently measurable by Atomic Force Microscopy! Here, the approach was used to study the forces required to rupture microscopic attachments between red blood cells formed by a monoclonal antibody to red cell membrane glycophorin, anti-A serum, and a lectin from the snail-helix pomatia. Failure of the attachments appeared to be a stochastic function of the magnitude and duration of the detachment force. We have correlated the statistical behavior observed for rupture with a random process model for failure of small numbers of molecular attachments. The surprising outcome of the measurements and analysis was that the forces deduced for short-time failure of 1-2 molecular attachments were nearly the same for all of the agglutinin, i.e., 1-2 x 10(-6) dyn. Hence, microfluorometric tests were carried out to determine if labeled agglutinins and/or labeled surface molecules were transferred between surfaces after separation of large areas of adhesive contact. The results showed that the attachments failed because receptors were extracted from the membrane.  相似文献   

3.
Flow-cytometric analysis of acriflavin-Feulgen stained chicken erythrocytes shows a complex distribution of amounts of deoxyribonucleic acid fluorescence, the profile consisting of a main peak and a right hand shoulder. This bimodal distribution, an artifact characteristically seen on analysis of flattened cells using orthogonal flow systems, results from fluorescence emission in preferred directions stemming from the combined effects of refractility and orientation of the cells. The shoulder disappears on analysis of lysed erythrocyte ghosts, also on analysis of cells in a medium whose refractive index approximates that the cells. An orientation effect for matrue erythrocytes was indicated by reanalysis of fractions after sorting on the basis of high and low fluorescence or scatter signals. Both fractions gave the original range of values on reanalysis, although some changes in shape of the profile and in the peak positions for the sorted cells were seen. Sodium dodecyl sulfate treatment of stained cells "loosened" the cells' structure, yielding lowered scatter values, and fluorescence values approaching those of the shoulder. The average fluorescence emission of the erythrocytes was lower than that of reticulocytes and lymphocytes. The values of the latter correspond closely, although coincidently, to that the erythrocyte shoulder values. Dual parameter analysis of forward light scatter, and fluorescence, which was detected at 90 degrees to the laser beam, showed the low fluorescence to be accompanied by low scatter signal, and the high fluorescence among the cells with the high scatter signal. The lowered forward scatter signal is due to a wider scattering of light from cells oriented edge-on to the detector, and loss of signal beyond the acceptance angle of the detector. These results suggest that the preferred directions for fluorescence are in the plane of the cells, and the values are dependent on the cells' orientation in the stream. These interpretations were supported by the results of analysis of partially oriented cells. The approaches used and conclusions arrived at are similar to those of Gledhill et al (16), Van Dilla et al (37), in their analysis of fluorescence of flat sperm cells although the affects in the case of the erythrocytes are less extreme.  相似文献   

4.
5.
Spontaneous rosette formation in humans is restricted to a subpopulation of the circulating T cells. We have previously shown that the interaction between lymphocytes and autologous red blood cells (auto-RBC) is not mediated by a self-recognition mechanism, since allogeneic (allo-) RBC bind to T cells through the same receptors. In this work, we have extended these observations to thymocytes. Using a mixed-rosette assay in which one type of erythrocyte was identified by FITC labeling, we have shown that almost all the thymocytes which attached auto-RBC could also fix allo-RBC. However, as for the peripheral blood lymphocytes (PBL), binding of human RBC to thymocytes occurred with varying affinities according to the erythrocyte's origin. In order to further study the specificity of the erythrocyte to lymphocyte binding in rosette formation, PBL were mixed with auto-RBC and erythrocytes of xenogeneic (xeno-) origin. Although very disparate incidences of rosettes were found according to the species from which the RBC were derived, most of the autorosetting lymphocytes also had receptors for xeno-RBC. In addition, preincubation of PBL with monoclonal antibody OKT11A (directed against the sheep RBC receptors on T cells) completely abrogated rosette formation with all the erythrocytes tested (human auto- and allo-, sheep, pig, and rabbit) except mouse RBC. Taken together these data strongly suggest that human auto- or allo-, as well as sheep or some other xeno-RBC, bind to T lymphocytes by a single receptor and that the combining sites are expressed with different densities or varying affinities depending upon the RBC's origin. Therefore, spontaneous autorosettes may represent T lymphocytes having high-affinity receptors for sheep RBC.  相似文献   

6.
Cakir T  Tacer CS  Ulgen KO 《Bio Systems》2004,78(1-3):49-67
Five enzymopathies (G6PDH, TPI, PGI, DPGM and PGK deficiencies) in the human red blood cells are investigated using a stoichiometric modeling approach, i.e., metabolic pathway analysis. Elementary flux modes (EFMs) corresponding to each enzyme deficiency case are analyzed in terms of functional capabilities. When available, experimental findings reported in literature related to metabolic behavior of the human red blood cells are compared with the results of EFM analysis. Control-effective flux (CEF) calculation, a novel approach which allows quantification and interpretation of determined EFMs, is performed for further analysis of enzymopathies. Glutathione reductase reaction is found to be the most effective reaction in terms of its CEF value in all enzymopathies in parallel with its known essential role for red blood cells. Efficiency profiles of the enzymatic reactions upon the degree of enzyme deficiency are obtained by the help of the CEF approach, as a basis for future experimental studies. CEF analysis, which is found to be promising in the analysis of erythrocyte enzymopathies, has the potential to be used in modeling efforts of human metabolism.  相似文献   

7.
8.
An integral hypothesis is submitted on the interaction of endogenous and exogenous factors in the mechanism of senescence of erythrocytes and on their selective phagocytosis by autologous macrophages. A method that allows quantitative determination and preparative yield of senescent erythrocytes is proposed.  相似文献   

9.
10.
11.
In this paper we test the predictions of the differential polarization imaging theory developed in the previous two papers. A characterization of the patterns of polymerization of hemoglobin in red blood cells from patients with sickle cell anemia is presented. This system was chosen because it is relatively easy to handle and because previous studies have been done on it. A differential polarization microscope designed and built in our laboratory was used to carry out this study. This microscope uses an image dissector camera, a photoelastic modulator, and a phase-lock amplifier. This design represents a substantial modification with respect to the instrumentation used in the previous results communicated on this system. Therefore, the results presented here also permit us to confirm the validity of our conclusions. On the basis of the differential polarization images obtained, models of the patterns of polymerization of the hemoglobin S inside the sickle cells are proposed and their M12 and regular images are calculated by the theory. Good agreement between those models and the experimental systems is found, as well as with the results previously reported.  相似文献   

12.
In this paper we test the predictions of the differential polarization imaging theory developed in the previous two papers. A characterization of the patterns of polymerization of hemoglobin in red blood cells from patients with sickle cell anemia is presented. This system was chosen because it is relatively easy to handle and because previous studies have been done on it. A differential polarization microscope designed and built in our laboratory was used to carry out this study. This microscope uses an image dissector camera, a photoelastic modulator, and a phase-lock amplifier. This design represents a substantial modification with respect to the instrumentation used in the previous results communicated on this system. Therefore, the results presented here also permit us to confirm the validity of our conclusions. On the basis of the differential polarization images obtained, models of the patterns of polymerization of the hemoglobin S inside the sickle cells are proposed and their M12 and regular images are calculated by the theory. Good agreement between those models and the experimental systems is found, as well as with the results previously reported.  相似文献   

13.
Studies of binding of the reversible inhibitor DNDS (for abbreviations, see Nomenclature) and red blood cell membranes revealed 8.6 +/- 0.7 x 10(5) high-affinity binding sites per cell (KD = 0.8 +/- 0.4 muM). Under conditions of "mutual depletion," inhibition studies of anion exchange revealed 8.0 +/- 0.7 x 10(5) DNDS inhibitory sites per cell (KD = 0.87 +/- 0.04 muM). Binding and kinetics studies with DNDS indicate that there are 0.8 -- 0.9 x 10(6) functional anion transport sites per blood cell. The transport of DNDS displayed high temperature and concentration dependencies, chemical specificity, susceptibility to inhibition by DIDS, and differences between egress and ingress properties. Under conditions of no DNDS penetration (e.g., 0 degrees C), inhibition of anion exchange by DNDS showed marked sidedness from the outside inhibitions and were demonstrable at micromolar concentrations, whereas from the inside no inhibition occurred even at millimolar concentrations. The asymmetry of DNDS transport properties and the sidedness of binding and inhibition suggest that anion transport sites have a very low affinity for or are inaccessible to DNDS at the inner membrane face. The site of DNDS permeation, although susceptible to DIDS, is apparently not the site of anion exchange.  相似文献   

14.
15.
16.
17.
18.
Equine red blood cells were washed in saline heavy water (2H2O) to exchange the hydrogen atoms of the non-hemoglobin components with deuterons. This led to novel neutron scattering measurements of protein vibrations within a cellular system and permitted a comparison with inelastic neutron scattering measurements on purified horse hemoglobin, either dry or wetted with 2H2O. As a function of wavevector transfer Q and the frequency transfer v the neutron response typified by the dynamic structure factor S(Q, v) was found to be similar for extracted and cellular hemoglobin at low and high temperatures. At 77 K, in the cells, a peak in S(Q, v) due to the protein was found near 0.7 THz, approximately half the frequency of a strong peak in the aqueous medium. Measurements at higher temperatures (170 and 230 K) indicated similar small shifts downwards in the peak frequencies of both components. At 260 K the low frequency component became predominantly quasielastic, but a significant inelastic component could still be ascribed to the aqueous scattering. Near 295 K the frequency responses of both components were similar and centered near zero. When scattering due to water is taken into account it appears that the protein neutron response in, or out of, red blood cells is little affected by hydration in the low frequency regime where Van der Waals forces are thought to be effective.  相似文献   

19.
The effect of electric fields as related to red blood cell sizing techniques, hemolysis, mobility, and general behavior is examined. A review is made of the varying theories concerning these effects. In addition, the physical ramifications of electric field experimentation is viewed. Criticisms are made with regard to technique and lack of consideration for certain experimental variables.  相似文献   

20.
Low frequency electrorotation of fixed red blood cells.   总被引:2,自引:0,他引:2       下载免费PDF全文
Electrorotation of fixed red blood cells has been investigated in the frequency range between 16 Hz and 30 MHz. The rotation was studied as a function of electrolyte conductivity and surface charge density. Between 16 Hz and 1 kHz, fixed red blood cells undergo cofield rotation. The maximum of cofield rotation occurs between 30 and 70 Hz. The position of the maximum depends weakly on the bulk electrolyte conductivity and surface charge density. Below 3.5 mS/m, the cofield rotation peak is broadened and shifted to higher frequencies accompanied by a decrease of the rotation speed. Surface charge reduction leads to a decrease of the rotation speed in the low frequency range. These observations are consistent with the recently developed electroosmotic theory of low frequency electrorotation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号