首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zhang L  Yang C  Zhang Y  Li L  Zhang X  Zhang Q  Xiang J 《Genetica》2007,131(1):37-49
Pacific white shrimp (Litopenaeus vannamei) is the leading species farmed in the Western Hemisphere and an economically important aquaculture species in China. In this project, a genetic linkage map was constructed using amplified fragment length polymorphism (AFLP) and microsatellite markers. One hundred and eight select AFLP primer combinations and 30 polymorphic microsatellite markers produced 2071 markers that were polymorphic in either of the parents and segregated in the progeny. Of these segregating markers, 319 were mapped to 45 linkage groups of the female framework map, covering a total of 4134.4 cM; and 267 markers were assigned to 45 linkage groups of the male map, covering a total of 3220.9 cM. High recombination rates were found in both parental maps. A sex-linked microsatellite marker was mapped on the female map with 6.6 cM to sex and a LOD of 17.8, two other microsatellite markers were also linked with both 8.6 cM to sex and LOD score of 14.3 and 16.4. The genetic maps presented here will serve as a basis for the construction of a high-resolution genetic map, quantitative trait loci (QTLs) detection, marker-assisted selection (MAS) and comparative genome mapping.  相似文献   

2.
Amplified fragment length polymorphisms (AFLPs) were used for genome mapping in the Pacific oyster Crassostrea gigas Thunberg. Seventeen selected primer combinations produced 1106 peaks, of which 384 (34.7%) were polymorphic in a backcross family. Among the polymorphic markers, 349 were segregating through either the female or the male parent. Chi-square analysis indicated that 255 (73.1%) of the markers segregated in a Mendelian ratio, and 94 (26.9%) showed significant (P < 0.05) segregation distortion. Separate genetic linkage maps were constructed for the female and male parents. The female framework map consisted of 119 markers in 11 linkage groups, spanning 1030.7 cM, with an average interval of 9.5 cM per marker. The male map contained 96 markers in 10 linkage groups, covering 758.4 cM, with 8.8 cM per marker. The estimated genome length of the Pacific oyster was 1258 cM for the female and 933 cM for the male, and the observed coverage was 82.0% for the female map and 81.3% for the male map. Most distorted markers were deficient for homozygotes and closely linked to each other on the genetic map, suggesting the presence of major recessive deleterious genes in the Pacific oyster.  相似文献   

3.
Preliminary genetic linkage maps were constructed for the Pacific abalone (Haliotis discus hannai Ino) using amplified fragment length polymorphism (AFLP), randomly amplified polymorphic DNA (RAPD), and microsatellite markers segregating in a F1 family. Nine microsatellite loci, 41 RAPD, and 2688 AFLP markers were genotyped in the parents and 86 progeny of the mapping family. Among the 2738 markers, 384 (including 365 AFLP markers, 10 RAPD markers, and 9 microsatellite loci) were polymorphic and segregated in one or both parents: 241 in the female and 146 in the male. The majority of these markers, 232 in the female and 134 in the male, segregated according to the expected 1:1 Mendelian ratio (α = 0.05). Two genetic linkage maps were constructed using markers segregating in the female or the male parent. The female framework map consisted of 119 markers in 22 linkage groups, covering 1773.6 cM with an average intermarker space of 18.3 cM. The male framework map contained 94 markers in 19 linkage groups, spanning 1365.9 cM with an average intermarker space of 18.2 cM. The sex determination locus was mapped to the male map but not to the female map, suggesting a XY-male determination mechanism. Distorted markers showing excess of homozygotes were mapped in clusters, probably because of their linkage to a gene that is incompatible between two parental populations.  相似文献   

4.
Q. Li  L. Chen  L. Kong 《Animal genetics》2009,40(5):678-685
We present the first genetic maps of the sea cucumber ( Apostichopus japonicus ), constructed with an F1 pseudo-testcross strategy. The 37 amplified fragment length polymorphism (AFLP) primer combinations chosen identified 484 polymorphic markers. Of the 21 microsatellite primer pairs tested, 16 identified heterozygous loci in one or other parent, and six were fully informative, as they segregated in both parents. The female map comprised 163 loci, spread over 20 linkage groups (which equals the haploid chromosome number), and spanned 1522.0 cM, with a mean marker density of 9.3 cM. The equivalent figures for the male map were 162 loci, 21 linkage groups, 1276.9 and 7.9 cM. About 2.5% of the AFLP markers displayed segregation distortion and were not used for map construction. The estimated coverage of the genome was 84.8% for the female map and 83.4% for the male map. The maps generated will serve as a basis for the construction of a high-resolution genetic map and mapping of the functional genes and quantitative trait loci, which will then open the way for the application of a marker-assisted selection breeding strategy in this species.  相似文献   

5.
We have constructed nearly complete linkage maps of Pinus sylvestris (L.) using AFLP markers based on a two-way pseudo-testcross strategy in a full-sib family founded in an advanced breeding program. With 39 primer combinations, a total of 737 markers (320 from the mother and 417 from the father) segregated in a 1:1 ratio, corresponding to DNA polymorphism: heterozygous in one parent and null in the other. In the maternal parent, 188 framework markers were mapped in 12 linkage groups, equivalent to the Pinus haploid chromosome number, with a total coverage of 1,695.5 cM. In the paternal parent, 245 framework markers established a map with 15 linkage groups, spanning a genome length of 1,718.5 cM. The estimated total map length was L(F) = 1,681 cM for the female and L(M) = 1,645 cM for the male using a modified method-of-moment estimator. Combining these values with those estimated from the observed map lengths in both parents, we estimated the genome length in Scots pine to be between 1,600 and 2,100 cM. Our genome coverage was estimated to be more than 98% with a framework marker interval of 20 cM for both parents. Most of the female and male linkage groups were associated through the analysis of the intercross markers.  相似文献   

6.
Hubert S  Hedgecock D 《Genetics》2004,168(1):351-362
We constructed male and female consensus linkage maps for the Pacific oyster Crassostrea gigas, using a total of 102 microsatellite DNA markers typed in 11-day-old larvae from three families. We identified 11 and 12 linkage groups in the male and female consensus maps, respectively. Alignment of these separate maps, however, suggests 10 linkage groups, which agrees with the haploid chromosome number. The male linkage map comprises 88 loci and spans 616.1 cM, while the female map comprises 86 loci and spans 770.5 cM. The male and the female maps share 74 loci; 2 markers remain unlinked. The estimated coverages for the consensus linkage maps are 79% for the male and 70-75% for the female, on the basis of two estimates of genome length. Ninety-five percent of the genome is expected to lie within 16 and 21 cM of markers on the male and female maps, respectively, while 95% of simulated minimum distances to the male and female maps are within 10.1 and 13.6 cM, respectively. Females have significantly more recombination than males, across 118 pairs of linked markers in common to the parents of the three families. Significant differences in recombination and orders of markers are also evident among same-sex parents of different families as well as sibling parents of opposite sex. These observations suggest that polymorphism for chromosomal rearrangements may exist in natural populations, which could have profound implications for interpreting the evolutionary genetics of the oyster. These are the first linkage maps for a bivalve mollusc that use microsatellite DNA markers, which should enable them to be transferred to other families and to be useful for further genetic analyses such as QTL mapping.  相似文献   

7.
The linkage maps of male and female tiger shrimp (P. monodon) were constructed based on 256 microsatellite and 85 amplified fragment length polymorphism (AFLP) markers. Microsatellite markers obtained from clone sequences of partial genomic libraries, tandem repeat sequences from databases and previous publications and fosmid end sequences were employed. Of 670 microsatellite and 158 AFLP markers tested for polymorphism, 341 (256 microsatellite and 85 AFLP markers) were used for genotyping with three F1 mapping panels, each comprising two parents and more than 100 progeny. Chi‐square goodness‐of‐fit test (χ2) revealed that only 19 microsatellite and 28 AFLP markers showed a highly significant segregation distortion (P < 0.005). Linkage analysis with a LOD score of 4.5 revealed 43 and 46 linkage groups in male and female linkage maps respectively. The male map consisted of 176 microsatellite and 49 AFLP markers spaced every ~11.2 cM, with an observed genome length of 2033.4 cM. The female map consisted of 171 microsatellite and 36 AFLP markers spaced every ~13.8 cM, with an observed genome length of 2182 cM. Both maps shared 136 microsatellite markers, and the alignment between them indicated 38 homologous pairs of linkage groups including the linkage group representing the sex chromosome. The karyotype of P. monodon is also presented. The tentative assignment of the 44 pairs of P. monodon haploid chromosomes showed the composition of forty metacentric, one submetacentric and three acrocentric chromosomes. Our maps provided a solid foundation for gene and QTL mapping in the tiger shrimp.  相似文献   

8.
Genetic linkage maps for two apricot cultivars have been constructed using AFLP, RAPD, RFLP and SSR markers in 81 F1 individuals from the cross 'Goldrich' x 'Valenciano'. This family segregated for resistance to 'plum pox virus' (PPV), the most-important virus affecting Prunus species. Of the 160 RAPD arbitrary primers screened a total of 44 were selected. Sixty one polymorphic RAPD markers were scored on the mapping population: 30 heterozygous in 'Goldrich', 19 heterozygous in 'Valenciano', segregating 1:1, and 12 markers heterozygous in both parents, segregating 3:1. A total of 33 and 19 RAPD markers were mapped on the 'Goldrich' and 'Valenciano' maps respectively. Forteen primer combinations were used for AFLPs and all of them detected polymorphism. Ninety five markers segregating 1:1 were identified, of which 62 were heterozygous in the female parent 'Goldrich' and 33 in the male parent 'Valenciano'. Forty five markers were present in both parents and segregated 3:1. A total of 82 and 48 AFLP markers were mapped on the 'Goldrich' and 'Valenciano' maps. Twelve RFLPs probes were screened in the population, resulting in five loci segregating in the family, one locus heterozygous for 'Valenciano' and four heterozygous for both, segregating 1:2:1. Of the 45 SSRs screened 17 segregated in the mapping family, resulting in seven loci heterozygous for the maternal parent and ten heterozygous for both, segregating 1:2:1 or 1:1:1:1. A total of 16 and 13 co-dominant markers were mapped in the female and male parent maps respectively. A total of 132 markers were placed into eight linkage groups on the 'Goldrich' map, defining 511 cM of the total map-length. The average distance between adjacent markers was 3.9 cM. A total of 80 markers were placed into seven linkage groups on the 'Valenciano' map, defining 467.2 cM of the total map-distance, with an average interval of 5.8 cM between adjacent markers. Thirty six marker loci heterozygous in both parents revealed straightforward homologies between five linkage groups in both maps. The sharka resistance trait mapped on linkage group 2. The region containing sharka resistance is flanked by two co-dominant markers that will be used for targeted SSR development employing a recently constructed complete apricot BAC library. SSRs tightly linked to sharka resistance will facilitate MAS in breeding for resistance in apricot.  相似文献   

9.
Ma H  Chen S  Yang J  Chen S  Liu H 《Molecular biology reports》2011,38(7):4749-4764
Barfin flounder (Verasper moseri) and spotted halibut (Verasper variegatus) are two economically important marine fish species for aquaculture in China, Korea and Japan. Construction of genetic linkage maps is an interesting issue for molecular marker-assisted selection (MAS) and for better understanding the genome structure. In the present study, we constructed genetic linkage maps for both fish species using AFLP and microsatellite markers based on an interspecific F1 hybrid family (female V. moseri and male V. variegatus). The female genetic map comprised 98 markers (58 AFLP markers and 40 microsatellite markers), distributing in 27 linkage groups, and spanning 637 cM with an average resolution of 8.9 cM. Whereas the male genetic map consisted of 86 markers (48 AFLP and 38 microsatellite markers) in 24 linkage groups, covering a length of 625 cM with an average marker spacing of 10 cM. The expected genome length was 1,128 cM in female and 1,115 cM in male, and the estimated coverage of genome was 56% for both genetic maps. Moreover, five microsatellite markers were observed to be common to both genetic maps. This is the first time to report the genetic linkage maps of V. moseri and V. variegatus that could serve as the basis for genetic improvement and selective breeding, candidate genes cloning, and genome structure research.  相似文献   

10.
High-density genetic linkage maps of half-smooth tongue sole were developed with 1007 microsatellite markers, two SCAR markers and an F1 family containing 94. The female map was composed of 828 markers in 21 linkage groups, covering a total of 1447.3 cM, with an average interval 1.83 cM between markers. The male map consisted of 794 markers in 21 linkage groups, spanning 1497.5 cM, with an average interval of 1.96 cM. The female and male maps had 812 and 785 unique positions, respectively. The genome length of half-smooth tongue sole was estimated to be 1527.7 cM for the females and 1582.1 cM for the males. Based on estimations of the map lengths, the female and male maps covered 94.74 and 94.65% of the genome, respectively. The consensus map was composed of 1007 microsatellite markers and two SCAR markers in 21 linkage groups, covering a total of 1624 cM with an average interval of 1.67 cM. Furthermore, 159 sex-linked SSR markers were identified. Five sex-linked microsatellite markers were confirmed in their association with sex in a large number of individuals selected from different families. These sex-linked markers were mapped on the female map LG1f with zero recombination. Two QTLs that were identified for body weight, designated as We-1 and We-2, accounted for 26.39% and 10.60% of the phenotypic variation. Two QTLs for body width, designated Wi-1 and Wi-2, were mapped in LG4f and accounted for 14.33% and 12.83% of the phenotypic variation, respectively. Seven sex-related loci were mapped in LG1f, LG14f and LG1m by CIM, accounting for 12.5–25.2% of the trait variation. The results should prove to be very useful for improving growth traits using molecular MAS.  相似文献   

11.
Linkage maps were prepared for two Araucaria cunninghamii individuals (coded H15 and Gil24) using the pseudotestcross strategy in a wide interprovenance cross. The maternal map for individual H15 contains 14 linkage groups (haploid chromosome number=13), comprising 51 amplified fragment length polymorphisms (AFLP) and 1 microsatellite; 17 markers remain unlinked. The map covered 1,290 cM [Kosambi (K)], representing 89% of the estimated genome size. The paternal map for individual Gil24 was shorter, 633 cM (K), consisted of eight linkage groups, with an average interval of 19.8 cM (K). The difference in map lengths was due to the larger number of informative markers for maternal parent (52 loci compared with 25 loci in the paternal parent). There was no significant difference in map lengths once maps were corrected for different numbers of loci. Overall, the number of segregating markers identified was surprisingly low for a wide interprovenance cross in an outcrossing tree species. For AFLP, a low average of 2.2 segregating markers per primer combination was obtained, and only 4 out of 29 microsatellite loci were informative in the cross. This low level of marker variation appears to be the result of low levels of heterozygosity in the parents and low levels of genetic divergence within A. cunninghamii. This result was consistent with other recent molecular studies of A. cunninghamii that indicate that the species may have low genetic diversity and possibly experiences localised inbreeding.  相似文献   

12.
白桦AFLP遗传连锁图谱的构建   总被引:4,自引:0,他引:4  
高福玲  姜廷波 《遗传》2009,31(2):213-218
以80个中国白桦(Betula platyphylla Suk)×欧洲白桦(Betula pendula Roth)的F1个体为作图群体, 利用扩增片段长度多态性(Amplified fragment length polymorphism, AFLP)标记, 按照拟测交作图策略, 分别构建了中国白桦和欧洲白桦的分子标记遗传连锁图谱。从64对AFLP引物组合中筛选出34对多态性丰富的引物组合, 这些入选的引物组合在分离群体中共检测到451个多态性位点。χ2检验结果表明, 有362个位点符合1∶1分离(拟测交分离位点), 41个位点符合3∶1分离, 20个位点符合1∶3分离, 28个位点属偏分离位点。在符合拟测交分离的位点中, 201个位点来自中国白桦, 161个位点来自欧洲白桦。利用2点连锁分析, 来自中国白桦的201个标记构成了14个连锁群(4个以上标记), 10个三连体和14个连锁对, 45个为非连锁位点, 连锁标记覆盖的总图距为1 296.1 cM, 平均图距15.5 cM。而来自欧洲白桦的161个标记构成了17个不同的连锁群(4个以上标记), 8个三连体和4个连锁对, 15个为非连锁位点, 连锁标记覆盖的总图距为1 035.8 cM, 平均图距12 cM。  相似文献   

13.
Genetic maps of Vitis (2n = 38) have been constructed from an interspecific hybrid population of 58 seedlings of the cross 'Horizon' ('Seyval' x 'Schuyler') x Illinois 547-1 (V. cinerea B9 x V. rupestris B38). The maps were initially constructed based on 277 RAPD (random amplified polymorphic DNA) markers using a double-pseudotestcross strategy. Subsequently, 25 microsatellites, 4 CAPS (cleaved amplified polymorphic sequence), and 12 AFLP (amplified fragment length polymorphism) markers were added to the maps. Another 120 markers, mostly those segregating 3:1, were also assigned but not positioned on the linkage groups in the two maps. The 'Horizon' map consisted of 153 markers covering 1199 cM, with an average map distance of 7.6 cM between markers. The Illinois 547-1 map had 179 markers covering 1470 cM, with an average map distance of 8.1 cM. There were 20 linkage groups in each map, one more than the basic number of chromosomes in grapes. Ten linkage groups in each map were identified as homologous using 16 microsatellite and 2 CAPS markers polymorphic in both parents. A single locus controlling sex in grapes mapped close to a microsatellite marker. These maps provide enough coverage of the genome for QTL (quantitative trait loci) analysis and as a starting point for positional gene cloning in grapes.  相似文献   

14.
Wang W  Tian Y  Kong J  Li X  Liu X  Yang C 《Genetika》2012,48(4):508-521
In this study, totally 54 selected polymorphic SSR loci of Chinese shrimp (Fenneropenaeus chinensis), in addition with the previous linkage map of AFLP and RAPD markers, were used in consolidated linkage maps that composed of SSR, AFLP and RAPD markers of female and male construction, respectively. The female linkage map contained 236 segregating markers, which were linked in 44 linkage groups, and the genome coverage was 63.98%. The male linkage map contained 255 segregating markers, which were linked in 50 linkage groups, covering 63.40% of F. chinensis genome. There were nine economically important traits and phenotype characters of F. chinensis were involved in QTL mapping using multiple-QTL mapping strategy. Five potential QTLs associated with standard length (q-standardl-01), with cephalothorax length (q-cephal-01), with cephaloghorax width (q-cephaw-01), with the first segment length (q-firsel-01) and with anti-WSSV (q-antiWSSV-01) were detected on female LG1 and male LG44 respectively with LOD> 2.5. The QTL q-firsel-01 was at 73.603 cM of female LG1. Q-antiWSSV-01 was at 0 cM of male LG44. The variance explained of these five QTLs was from 19.7-33.5% and additive value was from -15.9175 to 7.3675. The closest markers to these QTL were all SSR, which suggested SSR marker was superior to AFLP and RAPD in the QTL mapping.  相似文献   

15.
A molecular genetic map of cassava (Manihot esculenta Crantz)   总被引:12,自引:0,他引:12  
 A genetic linkage map of cassava has been constructed with 132 RFLPs, 30 RAPDs, 3 microsatellites, and 3 isoenzyme markers segregating from the heterozygous female parent of an intraspecific cross. The F1 cross was made between ‘TMS 30572’ and ‘CM 2177-2’, elite cassava cultivars from Nigeria and Colombia, respectively. The map consists of 20 linkage groups spanning 931.6 cM or an estimated 60% of the cassava genome. Average marker density is 1 per 7.9 cM. Since the mapping population is an F1 cross between heterozygous parents, with unique alleles segregating from either parent, a second map was constructed from the segregation of 107 RFLPs, 50 RAPDs, 1 microsatellite, and 1 isoenzyme marker from the male parent. Comparison of intervals in the male-and female-derived maps, bounded by markers heterozygous in both parents, revealed significantly less meiotic recombination in the gametes of the female than in the male parent. Six pairs of duplicated loci were detected by low-copy genomic and cDNA sequences used as probes. Efforts are underway to saturate the cassava map with additional markers, to join the male- and female-derived maps, and to elucidate genome organization in cassava. Received: 5 July 1996/Accepted: 22 November 1996  相似文献   

16.
In accordance with pseudo-testcross strategy, the first genetic linkage map of Eucommia ulmoides Oliv. was constructed by an F1 population of 122 plants using amplified fragment length polymorphism (AFLP) markers. A total of 22 AFLP primer combinations generated 363 polymorphic markers. We selected 289 markers segregating as 1:1 and used them for constructing the parent-specific linkage maps. Among the candidate markers, 127 markers were placed on the maternal map LF and 108 markers on the paternal map Q1. The maternal map LF spanned 1116.1 cM in 14 linkage groups with a mean map distance of 8.78 cM; the paternal map Q1 spanned 929.6 cM in 12 linkage groups with an average spacing of 8.61 cM. The estimated coverage of the genome through two methods was 78.5 and 73.9% for LF, and 76.8 and 71.2% for Q1, respectively. This map is the first linkage map of E. ulmoides and provides a basis for mapping quantitative-trait loci and breeding applications.  相似文献   

17.
Sekino M  Hara M 《Genetics》2007,175(2):945-958
This study presents linkage maps for the Pacific abalone (Haliotis discus hannai) based on 180 microsatellite DNA markers. Linkage mapping was performed using three F1 outbred families, and a composite linkage map for each sex was generated by incorporating map information from the multiple families. A total of 160 markers are placed on the consolidated female map and 167 markers on the male map. The numbers of linkage groups in the composite female and male maps are 19 and 18, respectively; however, by aligning the two maps, 18 linkage groups are formed, which are consistent with the haploid chromosome number of H. discus hannai. The female map spans 888.1 cM (Kosambi) with an average spacing of 6.3 cM; the male map spans 702.4 cM with an average spacing of 4.7 cM. However, we encountered several linkage groups that show a high level of heterogeneity in recombination rate between families even within the same sex, which reduces the precision of the consolidated maps. Nevertheless, we suggest that the composite maps are of significant potential use as a scaffold to further extend the coverage of the H. discus hannai genome with additional markers.  相似文献   

18.
Genetic maps for individual Pinus elliottii var. elliottii and P. caribaea var. hondurensis trees were generated using a pseudo-testcross mapping strategy. A total of 329 amplified fragment length polymorphic (AFLP) and 12 microsatellite markers were found to segregate in a sample of 93 interspecfic F(1) progeny. The male P. caribaea var. hondurensis parent was more heterozygous than the female P. elliottii var. elliottii parent with 19% more markers segregating on the male side. Framework maps were constructed using a LOD 5 threshold for grouping and interval support threshold of LOD 2. The framework map length for the P. elliottii var. elliottii megagametophyte parent (1,170 cM Kosambi; 23 linkage groups) was notably smaller than the P. caribaea var. hondurensis pollen parent (1,658 cM Kosambi; 27 linkage groups). The difference in map lengths was assumed to be due to sex-related recombination variation, which has been previously reported for pines, as the difference in map lengths not be accounted for by the larger number of markers mapping to the P. caribaea var. hondurensis parent - 109 compared with 78 in P. elliottii var. elliottii parent. Based on estimated genome sizes for these species, the framework maps for P. elliottii var. elliottii and P. caribaea var. hondurensis covered 82% and 88% of their respective genomes. The pseudo-testcross strategy was extended to include AFLP and microsatellite markers in an intercross configuration. These comprehensive maps provided further genome coverage, 1,548 and 1,828 cM Kosambi for P. elliottii var. elliottii and P. caribaea var. hondurensis, respectively, and enabled homologous linkage groups to be identified in the two parental maps. Homologous linkage groups were identified for 11 out of 24 P. elliottii var. elliottii and 10 out of 25 P. caribaea var. hondurensis groups. A higher than expected level of segregation distortion was found for both AFLP and microsatellite markers. An explanation for this segregation distortion was not clear, but it may be at least in part due to genetic mechanisms for species isolation in this wide cross.  相似文献   

19.
A genetic linkage map of the tetraploid white yam (Dioscorea rotundata Poir.) was constructed based on 341 co-dominantly scored amplified fragment length polymorphism (AFLP) markers segregating in an intraspecific F1 cross. The F1 mapping population was produced by crossing a landrace cultivar TDr 93-1 as female parent to a breeding line TDr 87/00211 as the male parent. The marker segregation data were split into maternal and paternal data sets, and separate genetic linkage maps were constructed since the mapping population was an F1 cross between two presumed heterozygous parents. The markers segregated like a diploid cross-pollinator population suggesting that the D. rotundata genome is an allo-tetraploid (2n = 4x = 40). The maternal map comprised 155 markers mapped on 12 linkage groups with a total map length of 891 cM. Three linkage groups consisted of maternal parent markers only. The paternal map consisted of 157 markers mapped on 13 linkage groups with a total map length of 852 cM. Three and one quantitative trait loci (QTLs) with effects on resistance to Yam Mosaic Virus (YMV) were identified on the maternal and paternal linkage maps, respectively. Prospects for detecting more QTLs and using marker-assisted selection in white yam breeding appear good, but this is subject to the identification of additional molecular markers to cover more of the genome.  相似文献   

20.
Genetic linkage maps of Fenneropenaeus chinensis were constructed using a “double pseudo-testcross” strategy with 200 single nucleotide polymorphisms (SNPs) markers. This study represents the first SNP genetic linkage map for F. chinensis. The parents and F 1 progeny of 100 individuals were used as mapping populations. 21 genetic linkage groups in the male and female maps were identified. The male linkage map was composed of 115 loci and spanned 879.7 cM, with an average intermarker spacing of 9.4 cM, while the female map was composed of 119 loci and spanned 876.2 cM, with an average intermarker spacing of 8.9 cM. The estimated coverage of the linkage maps was 51.94% for the male and 53.77% for the female, based on two estimates of genome length. The integrated map contains 180 markers distributed in 16 linkage groups, and spans 899.3 cM with an average marker interval of 5.2 cM. This SNP genetic map lays the foundation for future shrimp genomics and genetic breeding studies, especially the discovery of gene or regions for economically important traits in Chinese shrimp.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号