首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of this study was to improve the performance of affinity gels containing glycyl-D-phenylalanine (Gly-D-Phe) as a ligand to thermolysin. Gly-D-Phe was immobilized to the resin through spacers of varying chain lengths. The resulting affinity gels had spacer chain lengths of 2 carbon atoms and 11 and 13 carbon-and-oxygen atoms (designated T2, T11, and T13), and were characterized for their binding abilities to thermolysin. Measurement of adsorption isotherms showed that the association constants to thermolysin were in the order T13 > T11 > T2. In affinity column chromatography, in which 5 mg thermolysin was applied onto 1-ml volumes of the gels, the adsorption ratios of thermolysin were also in the order T13 > T11 > T2. These results indicate that the performance of affinity gels is improved by increasing the spacer chain length to 13 carbon-and-oxygen atoms.  相似文献   

2.
Guanidinobenzoatase, a plasma protein with possible application as a ‘tumor marker’, has been fully purified by one-step affinity chromatography. The affinity matrix was prepared by ‘controlled’ immobilization of an enzyme inhibitor (agmatine) onto commercial agarose gels containing carboxyl moieties activated as N-hydroxysuccinimide esters. In this way, agmatine becomes immobilized through an amido bond and preserves an ionized guanidino moiety. Different matrices with different concentration of ligands were prepared in order to evaluate their properties as affinity supports. Interestingly, matrices with a very low concentration of immobilized ligands (2 μmol/ml, corresponding to the modification of only 5% of active groups in the commercial resins) exhibited a low capacity for unspecific adsorption of proteins (as anion-exchange resins) and displayed also a high capacity for specific adsorption of our target protein. On the other hand, when affinity matrices possessed a moderate concentration of agmatine (10 μmol/ml of gel or higher), two undesirable phenomena were observed: (a) the matrix behaves as a very good anionic exchange support able to non-specifically adsorb most of plasma proteins and (b) the specific adsorption of our target protein becomes much lower. The latter phenomenon could be due to steric hindrances promoted by the interaction between each individual immobilized ligand and the corresponding binding pocket in the target protein. These hindrances could also be promoted by the presence of a fairly dense layer of immobilized ligands covering the support surface, thus preventing interactions between immobilized ligands and partially buried protein-binding pockets. In this way, a successful affinity purification (23.5% yield, ×220 purification factor, a unique electrophoretic band) could be achieved by combination of three approaches: (i) the use of affinity matrices possessing a very low density of immobilized ligands, (ii) performing affinity adsorption at high ionic strength and (iii) performing specific desorption with substrates or substrate analogues.  相似文献   

3.
Abstract: Affinity chromatography has been used for rapid and high-yield purification of synenkephalin (proenkephalin 1 -70) containing peptides present in bovine adrenal medulla (BAM) chromaffin granular lysate. A column of CN-Br-activated Sepharose 4B coupled to synenkephalin antiserum bound synenkephalin immunoreactivity which was eluted by a stepwise gradient of 50 mM ammonium acetate containing 20% (vol/vol) acetonitrile over the pH range 7–3. Synenkephalin immunoreactivity emerged as two peaks, eluting at pH 5.5 and 4.5. Characterization of the two peaks by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and immunoblotting indicated that the pH 5.5 peak contained principally low-molecular-weight proenkephalin species (8.6 and 12.6 kilodaltons), whereas the pH 4.5 peak contained, in addition, high-molecular-weight proenkephalin species (18.2 and 23.3 kilodaltons). The 8.6- and 12.6- kilodalton species were isolated from the pH 5.5 peak by TSK gel filtration HPLC, whereas the pH 4.5 peak was further purified by passage over successive affinity columns coupled to antiserum against BAM 22P (proenkephalin 182–203) and [Met5]-enkephalin-Arg6-Gly7-Leu8. The former column retains the 23.3-kilodalton species, whereas the latter column retains the 18.2-kilodalton species. The 23.3- kilodalton peptide represents a novel putative proenkephalin intermediate (proenkephalin-1–206), containing [Leu5]- enkephalin at the C-terminus.  相似文献   

4.
In this work the influence of four different ligands present in the xylem sap of Quercus ilex (histidine, citric, oxalic and aspartic acids) on Ni(II) adsorption by xylem was investigated. Grinded xylem was trapped in acrylic columns and solutions of Ni(II), in the absence and presence of the four ligands prepared in KNO(3) 0.1molL(-1) at pH 5.5, were percolated through the column. Aliquots of solutions were recovered in the column end for Ni determination by graphite furnace atomic absorption spectrometry (GFAAS). The experimental data to describe Ni sorption by xylem in both the presence and absence of ligands was better explained by the Freundlich isotherm model. The decreasing affinity order of ligands for Ni was: oxalic acid>citric acid>histidine>aspartic acid. On the other hand, the Ni(II) adsorption by xylem increased following the inverse sequence of ligands. Potentiometric titrations of acidic groups were carried out to elucidate the sorption site groups available in Q. ilex xylem. The potentiometric titration has shown three sorption sites: pK(a) 2.6 (57.7% of the sorption sites), related to monobasic aliphatic carboxylic acids or nitrogen aromatic bases, pK(a) 8.1 (9.6%) and pK(a) 9.9 (32.7%), related to phenolic groups.  相似文献   

5.
Alkaline conditions are generally preferred for sanitization of chromatography media by cleaning-in-place (CIP) protocols in industrial biopharmaceutical processes. The use of such rigorous conditions places stringent demands on the stability of ligands intended for use in affinity chromatography. Here, we describe efforts to meet these requirements for a divalent proteinaceous human serum albumin (HSA) binding ligand, denoted ABD*dimer. The ABD*dimer ligand was constructed by genetic head-to-tail linkage of two copies of the ABD* moiety, which is a monovalent and alkali-stabilized variant of one of the serum albumin-binding motifs of streptococcal protein G. Dimerization was performed to investigate whether a higher HSA-binding capacity could be obtained by ligand multimerization. We also investigated the influence on alkaline stability and HSA-binding capacity of three variants (VDANS, VDADS and GGGSG) of the inter-domain linker. Biosensor binding studies showed that divalent ligands coupled using non-directed chemistry demonstrate an increased molar HSA-binding capacity compared with monovalent ligands. In contrast, equal molar binding capacities were observed for both types of ligands when using directed ligand coupling chemistry involving the introduction and recruitment of a unique C-terminal cysteine residue. Significantly higher molar binding capacities were also detected when using the directed coupling chemistry. These results were confirmed in affinity chromatography binding capacity experiments, using resins containing thiol-coupled ligands. Interestingly, column sanitization studies involving exposure to 0.1 M NaOH solution (pH 13) showed that of all the tested constructs, including the monovalent ligand, the divalent ligand construct containing the VDADS linker sequence was the most stable, retaining 95% of its binding capacity after 7 h of alkaline treatment.  相似文献   

6.
We have used alkyl ether analogs of ethanolamine and choline phospholipids as ligands to purify phospholipase A2 (EC 3.1.1.4) from Crotalus adamanteus venom by affinity chromatography. One of the affinity columns was prepared with rac-1-(9-carboxy)nonyl-2-hexadecylglycero-3-phosphocholine linked to AH-Sepharose 4B via the carboxyl group. Specific adsorption of phospholipase A2 to this column was achieved in buffer containing Ca2+, and the enzyme was eluted in buffer containing EDTA. The two enzymes from this venom were prepared in good yield (greater than 90%), and were homogeneous as judged by polyacrylamide gel electrophoresis. Retention of phospholipase A2 did not occur when the initial irrigant was devoid of Ca2+. These results support the compulsory ordered mechanism for this enzyme proposed by Wells ((1972), Biochemistry 11, 1030-1041) on the basis of kinetic considerations. The second affinity support was prepared with 1,2-dihexadecyl-sn-glycero-3-phosphoethanolamine attached through the amine moiety to CH-Sepharose 4B. Specific adsorption of phospholipase A2 to this column did not occur. These data indicate that the phospholipid base group must be accessible to the enzyme for optimal binding, and that modifications in the alkyl side chains are more desirable when designing affinity matrices for purification of enzymes involved in phospholipid metabolism.  相似文献   

7.
Omega-Aminohexyl-Sepharose 4B served as an excellent biospecific adsorbent for affinity chromatography of amine oxidase (monoamine:O2 oxidoreductase (deaminating), EC 1.4.3.4) from Aspergillus niger. The enzyme was completely adsorbed on this affinity resin when applied to a column in 0.1 M potassium phosphate buffer (pH 7.2). Although a small part of the enzyme was retained on the column through ionic interaction and eluted with 1.0 M potassium phosphate buffer (pH 7.2), most of the enzyme adsorbed was eluted with 0.5 M potassium phosphate buffer (pH 7.2) containing 10 mM butylamine. Essentially no retention of the enzyme on a column of epsilon-aminopentyl-Sepharose or delta-aminobutyl-Sepharose occurred under the same conditions, indicating that an appropriate length (more than approx. 12 A) of a hydrocarbon extension between the agarose matrix and the terminal amino group would be necessary for efficient adsorption of amine oxidase. The modification of the enzyme with 3-methyl-2-benzothiazolinone hydrazone (carbonyl inhibitor) or dithionite (reducing agent) resulted in loss of the ability to bind to omega-aminohexyl-Sepharose. It was also demonstrated that the affinity chromatography on omega-aminohexyl-Sepharose can be used as a powerful means of purifying this enzyme from crude extracts of Aspergillus niger. All of the three adsorbents were effective as a substrate in the amine oxidase reaction, but their substrate activities were as low as the corresponding free diamines.  相似文献   

8.
Human plasma fibronectin is composed of at least five distinct domains which we refer to as Hep-1/Fib-1, Gel, Cell, Hep-2 and Fib-2 depending on their affinity for heparin (Hep), gelatin (Gel), the cell surface (Cell) or fibrin (Fib). These domains are aligned from the NH2 to the COOH terminus in the above order and can be separated from each other by mild proteolytic digestion. We have studied the elution of fibronectin thermolysin digest from a hydroxyapatite column using a linear gradient (0.5-190 mM) of sodium phosphate buffer. The five major fibronectin domains were eluted from the hydroxyapatite chromatography column in the following order: Gel, Fib-2, Cell, Hep-1/Fib-1 and Hep-2. They were identified on the basis of their molecular mass, affinity to different macromolecules and reaction with domain-specific monoclonal antibodies. All domains except the Cell and Hep-2 domains eluted as single homogeneous peaks. The Cell domain eluted as two different peaks and the Hep-2 domain eluted as four different peaks. This is the first time that heterogeneity of these two domains has been observed. Since chromatography of a fibronectin thermolysin digest on a hydroxyapatite column provides a good separation of the five major fibronectin domains, we have elaborated a procedure in which each fibronectin domain is purified by no more than two steps; hydroxyapatite and molecular exclusion chromatography. Fractionation of fibronectin proteolytic digest on a hydroxyapatite chromatography column should be of great value in the comparative analysis of fibronectin from different sources and in the study of fibronectin heterogeneity. Its use in combination with molecular exclusion chromatography offers a simple and high-yield method for the purification of large amounts of fibronectin domains.  相似文献   

9.
A peptide isolated from calf spleen has been identified as thymosin alpha 1. The isolation involved defatting of the desiccated glands with acetone, extraction of the acetone power with pyridine acetate pH 5.5, heat denaturation, reverse phase chromatography on an RP-8 column, anion exchange chromatography on a Partisil SAX column and, finally, reverse phase purification on a microBondapak C18 column. The identification was based on: 1) amino acid analysis; 2) thermolysin digest; and 3) retention time in two different HPLC systems. The amount isolated from the spleen was 10-20% of that isolated from calf thymus glands.  相似文献   

10.
Thermolysin is a representative zinc metalloproteinase derived from Bacillus thermoproteolyticus and a target in protein engineering to understand the catalytic mechanism and thermostability. Extracellular production of thermolysin has been achieved in Bacillus, but not in Escherichia coli, although it is the most widely used as a host for the production of recombinant proteins. In this study, we expressed thermolysin as a single polypeptide pre-proenzyme in E. coli under the original promoter sequences in the npr gene, the gene from B. thermoproteolyticus, which encodes thermolysin. Active mature thermolysin (34.6 kDa) was secreted into the culture medium. The recombinant thermolysin was purified to homogeneity by sequential column chromatography procedures of the supernatant with hydrophobic-interaction chromatography followed by affinity chromatography. The purified recombinant product is indistinguishable from natural thermolysin from B. thermoproteolyticus as assessed by hydrolysis of N-[3-(2-furyl)acryloyl]-glycyl-L-leucine amide and N-carbobenzoxy-L-asparatyl-L-phenylalanine methyl ester. The results demonstrate that our expression system should be useful for structural and functional analysis of thermolysin.  相似文献   

11.
ω-Aminohexyl-Sepharose 4B served as an excellent biospecific adsorbent for affinity chromatography of amine oxidase (monoamine:O2 oxidoreductase (deaminating), EC 1.4.3.4) from Aspergillus niger. The enzyme was completely adsorbed on this affinity resin when applied to a column in 0.1 M potassium phosphate buffer (pH 7.2). Although a small part of the enzyme was retained on the column through ionic interaction and eluted with 1.0 M potassium phosphate buffer (pH 7.2), most of the enzyme adsorbed was eluted with 0.5 M potassium phosphate buffer (pH 7.2) containing 10 mM butylamine. Essentially no retention of the enzyme on a column of ε-aminopentyl-Sepharose or δ-aminobutyl-Sepharose occurred under the same conditions, indicating that an appropriate length (more than approx. 12 Å) of a hydrocarbon extension between the agarose matrix and the terminal amino group would be necessary for efficient adsorption of amine oxidase. The modification of the enzyme with 3-methyl-2-benzothiazolinone hydrazone (carbonyl inhibitor) or dithionite (reducing agent) resulted in loss of the ability to bind to ω-aminohexyl-Sepharose. I was also demonstrated that the affinity chromatography on ω-aminohexyl-Sepharose can be used as a powerful means of purifying this enzyme from crude extracts of Aspergillus niger. All of the three adsorbents were effective as a substrate in the amine oxidase reaction, but their substrate activities were as low as the corresponding free diamines.  相似文献   

12.
Rabies virus glycoprotein and snake venom curaremimetic neurotoxins share a region of high homology (30-45 for neurotoxins and 190-203 for the glycoprotein) in the regions that are believed to be responsible for binding the nicotinic acetylcholine receptor. Monoclonal antibodies raised to the 190-203 synthetic fragment of rabies virus glycoprotein were immobilized on a high performance affinity chromatography column and were able to bind neurotoxins. Toxins were displaced from the affinity column by elution at acidic pH and by affinity competition with acetylcholine at neutral pH. Furthermore, the affinity column proved to be useful for the purification of cholinergic ligands. Overall, these results indicate that the paratope of our monoclonal antibodies could behave as an 'internal image' of the nicotinic cholinergic receptor acetylcholine binding site.  相似文献   

13.
We have studied the binding of fibronectin and its thermolysin fragments to DNA and heparin. Elution of polypeptides bound to DNA-cellulose and heparin-Sepharose affinity chromatography columns was performed by NaCl linear gradients in buffers at different pH and in the presence and absence of calcium ions. The NaCl concentration required to elute fibronectin from both types of column increased as the pH decreased. Fibronectin was not retained on DNA-cellulose or heparin-Sepharose affinity chromatography columns using a buffer containing physiological concentrations of Ca2+, Mg2+ and NaCl, at pH 7.4. On the other hand at pH 6.4 in conditions of physiological ionic strength, fibronectin was retained by both columns, eluting from the DNA-cellulose at 280 mM NaCl and from the heparin-Sepharose column at 210 mM. Furthermore, we have studied the interaction of thermolysin-digested fibronectin both with DNA-cellulose and heparin-Sepharose using the above procedure. The results demonstrate that there are four distinct domains, which interact both with DNA and heparin. We also report here the modulation by pH and Ca2+ ions of the interaction with DNA and heparin of these different domains.  相似文献   

14.
Tubulin and actin often bind nonspecifically to affinity chromatography resins, complicating research toward identifying the cellular targets of small molecules. Reduction of nonspecific binding proteins is important for the success of such biochemical approaches. To develop strategies to circumvent this problem, we quantitatively investigated the binding of tubulin and actin to a series of affinity resins bearing 15 variant ligands on 3 commercially available polymer supports. Nonspecific protein binding was proportional to the hydrophobicity of the affinity resins and could be quantitatively correlated to the CLOGP values of the ligands, which are a measure of compound hydrophobicity. When compounds had CLOGP values greater than 1.5, (amount of tubulin) = 0.73 x CLOGP - 1.1 (n = 7, r = 0.97), and (amount of actin) = 0.42 x CLOGP - 0.79 (n = 7, r = 0.99). On the basis of these studies, we designed a novel hydrophilic poly(ethylene glycol) (PEG) spacer (26) for the conjugation of ligands to chromatography resins. As predicted by our binding algorithm, introduction of this spacer reduced the amount of nonspecific protein binding in proportion to the number of ethylene glycol units.  相似文献   

15.
Affinity chromatography based on the reaction between SH groups in protein and +HgC6H4CO groups in the p-mercuribenzoylaminoethyl derivative of Sepharose 4B was examined with a crude preparation of calf thymus cysteine-containing histone. Adsorption of the histone onto the column by specific coupling was found to be optimal in 0.1 M citrate buffer, pH 5.5, containing 5M urea to prevent any aggregation of histones and their non-specific adsorption onto the column, and elution from the column was successfully performed by cleavage of the resulting S-Hg bond with urea-buffer solution containing 0.05 M 2-mercaptoethanol. Under these conditions both the adsorption and elution were quantitative; no adsorption was observed when either SH-blocked histone or unsubstituted Sepharose was used. The cysteine-containing histone thus recovered, after further purification by Bio-Gel P-60 chromatography to remove some cysteine-containing nonhistone proteins contaminating the starting material, showed a single band on polyacrylamide gel electrophoresis and an amino acid composition agreeing with the known sequence of this histone.  相似文献   

16.
The binding between thermolysin and its specific inhibitor, talopeptin (MKI), was found to show a fluorescence increase when excited at 280 nm and 295 nm, and a difference spectrum characterized by two peaks at 294 nm and 285 nm with a shoulder around 278 nm, indicating a microenvironmental change in tryptophan residue(s) of thermolysin and/or talopeptin. The inhibitor constant of talopeptin against thermolysin, Ki, was determined over the pH range 5-9 from the inhibition of the enzyme activity towards 3-(2-furylacryloyl)-glycyl-L-leucine amide (FAGLA) as a substrate. The dissociation constant of thermolysin-talopeptin complex, Kd, determined directly from fluorometric titration was in good agreement with the inhibitor constant, Ki, between pH 6 and 8.5. The pH dependence of Ki and Kd suggested that at least two ionizable groups of thermolysin in their protonated forms are essential for the binding between thermolysin and talopeptin. The temperature dependence of K1 at pH 5.5 indicated that the binding is largely exothermic (delta H degree = -12 kcal/mol) and essentially enthalpy-driven.  相似文献   

17.
Here we show that robust and small protein ligands can be used for affinity capture of recombinant proteins from crude cell lysates. Two ligands selectively binding to bacterial Taq DNA polymerase and human apolipoprotein A-1(M), respectively, were used in the study. The ligands were selected from libraries of a randomized alpha-helical bacterial receptor domain derived from staphylococcal protein A and have dissociation constants in the micromolar range, which is typical after primary selection from these libraries consisting of approximately 40 million different members each. Using these ligands in affinity chromatography, both target proteins were efficiently recovered from crude cell lysates with high selectivities. No loss of column capacity or selectivity was observed for repeated cycles of sample loading, washing and low pH elution. Interestingly, column sanitation could be performed using 0. 5 M sodium hydroxide without significant loss of ligand performance. The results suggest that combinatorial approaches using robust protein domains as scaffolds can be a general tool in the process of designing purification strategies for biomolecules.  相似文献   

18.
The chromatographic behaviour of monoclonal antibodies (MAbs) of IgM class against mutant (T103I) amidase from Pseudomonas aeruginosa was investigated. The effect of ligand concentration, the length of spacer arm and the nature of metal ion were investigated on immobilized metal ion affinity chromatography (IMAC). MAbs against mutant amidase adsorbed to Cu (II), Ni (II), Zn (II), Co (II) and Ca (II)-IDA agarose columns. The adsorption of MAbs onto immobilized metal chelates was pH dependent because an increase in the binding of MAbs was observed as the pH was raised from 6.0 to 8.0. The adsorption of MAbs to metal chelates was due to coordination of histidine residues which are available in the 3rd constant domain of heavy chain (CH3) of immunoglobulins since the presence of imidazole in the equilibration buffer abolished the adsorption of MAbs to the column packed with commercial IDA-Zn(II) agarose at pH 8.0. The combination of tailor-made stationary phases for IMAC and a correct choice of the adsorption conditions permitted to design a one-step purification procedure for MAbs of IgM class. Culture supernatants containing MAbs of IgM class against mutant amidase (T103I) were chromatographed by IMAC Co (II) column at pH 8.0. The results strongly suggest that one-step purification of MAbs of IgM class by IMAC is a cost-effective and process-compatible alternative to the other purification procedures.  相似文献   

19.
The chromatographic behavior of monoclonal antibodies (MAbs) of immunoglobulin (Ig) M class against mutant (T103I) amidase from Pseudomonas aeruginosa was investigated on immobilized metal chelates. The effect of ligand concentration, the length of spacer arm, and the nature of metal ion were investigated in immobilized metal affinity chromatography (IMAC). The MAbs against mutant amidase adsorbed to Cu(II), Ni(II), Zn(II), Co(II), and Ca(II)-iminodiacetic acid (IDA) agarose columns. The increase in ligand concentration (epichlorohydrin: 30-60 and 1,4-butanediol-diglycidyl ether: 16-36) resulted in higher adsorption to IgM into immobilized metal chelates. The length of spacer arm was found to affect protein adsorption, as longer spacer arm (i.e., 1,4-butanediol-diglycidyl ether) increased protein adsorption of immobilized metal chelates. The adsorption of IgM onto immobilized metal chelates was pH dependent because an increase in the binding of IgM was observed as the pH varied from 6.0 to 8.0. The adsorption of IgM to immobilized metal chelates was the result of coordination of histidine residues to metal chelates that are available in the third constant domain of heavy chain (CH3) of immunoglobulins, as the presence of imidazole (5 mM) in the equilibration buffer abolished the adsorption of IgM to the column. The combination of tailor-made stationary phases for IMAC and a correct design of the adsorption parameters permitted to devise a one-step purification procedure for IgM. Culture supernatants containing IgM against mutant amidase (T103I) were purified either by IMAC on EPI-60-IDA-Co (II) column or by gel filtration chromatography on Sephacryl S-300HR. The specific content of IgM and final recovery of antibody activity exhibited similar values for both purification schemes. The purified preparations of IgM obtained by both schemes were apparently homogeneous on native polyacrylamide gel electrophoresis with a Mr of 851,000 Da. The results presented in this work strongly suggest that one-step purification of IgM by IMAC is a cost-effective and processcompatible alternative to other types of chromatography.  相似文献   

20.
Ornithine decarboxylase from calf liver. Purification and properties   总被引:5,自引:0,他引:5  
M K Haddox  D H Russell 《Biochemistry》1981,20(23):6721-6729
Ornithine decarboxylase (ODC) was purified 25000-fold from calf liver to apparent homogeneity by methods developed to circumvent the lability of the enzyme. Appropriate ratios of sample protein applied to column size and/or gradient size were derived for each purification procedure (ion-exchange, gel filtration ahd hydroxylapatite chromatography, electrophoresis, and thiol affinity chromatography) to maintain enzymatic activity. The enzyme was labile to dilution at all steps of the purification; the inclusion of poly(ethylene glycol) or additional protein decreased but did not eliminate the activity loss. The purified enzyme had a Stokes radius of 3.14 and a molecular weight of 54000. The Km for ornithine was 0.12 mM, and pyridoxal phosphate was 2.0 microM; the pH optimum for the decarboxylation reaction was 7.0. Analysis by sievorptive ion-exchange chromatography indicated the presence of three ionic forms. In the presence of Tris-barbital buffer containing thioglycolic acid, the ODC preparation assumed an apparent molecular weight of 100000 and a Stokes radius of 4.5 and retained full catalytic activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号