首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A glutathione S-transferase (GST) was purified from the larval cattle tick, Boophilus microplus (Acari: Ixodidae), by glutathione-affinity chromatography. The purified enzyme appeared as a single band on SDS-PAGE and has a molecular mass of 25.8 kDa determined by mass spectrometry. The N-terminus of the purified enzyme was sequenced. The full-length cDNA of the enzyme was isolated by RT-PCR using degenerate oligonucleotides derived from the N-terminal amino acid sequence. The cDNA contains an open reading frame encoding a 223-amino-acid protein with the N-terminus identical to the purified GST. Comparison of the deduced amino acid sequence with GSTs from other species revealed that the enzyme is closely related to the mammalian mu class GST.  相似文献   

2.
3.
Human alcohol dehydrogenase (ADH, tiff isozyme of class I) was expressed in Escherichia coli, purified to homogeneity, and characterized regarding N-terminal processing. The expression system was obtained by ligation of a cDNA fragment corresponding to the fl-subunit of human liver alcohol dehydrogenase into the vector pKK 223-3 containing the tac promoter. The enzyme, detected by Western-blot analysis and ethanol oxidizing activity, constituted up to 3 ~o of the total amount of protein. Recombinant ADH was separated from E. coli ADH by ion-exchange chromatography and the isolated enzyme was essentially pure as judged by SDS-polyacrylamide gel electrophoresis and sequence analysis. The N-terminal sequence was identical to that of the authentic fl-subunit except that the N-terminus was non-acetylated, indicating a correct removal of the initiator methionine, but lack of further processing.  相似文献   

4.
We isolated and characterised the cDNA that encodes the glycolytic enzyme, triosephosphate isomerase from Taenia solium. A 450 bp DNA fragment was obtained by the polymerase chain reaction using a cDNA from larval stage as template and degenerate oligonucleotides designed from conserved polypeptide sequences from TPIs of several organisms. The fragment was used to screen a T. solium larval stage cDNA library. The isolated cDNA, encoding a protein of 250 amino acids shares 44.8-59.6% positional identity with other known TPIs, in which the catalytic enzyme residues were conserved. The complete coding sequence of the T. solium TPI cDNA was cloned into the expression vector pRSET and expressed as a fusion protein with an N-terminal tail of six histidine residues. The catalytic activity of the purified protein was similar to other TPI enzymes. Northern and Southern blot analysis suggest that in T. solium, single gene exists for triosephosphate isomerase and that the gene is expressed in all stages of the parasite.  相似文献   

5.
The cDNA encoding the 50-kDa subunit of Ca2+/calmodulin (CaM)-dependent protein kinase II from adult rat brain was cloned into the bacterial expression vector pK223-2 and produced in bacteria. Extensive modification of the cDNA was required to express detectable levels of enzyme. The activity of the bacterially expressed kinase was stringently dependent on Ca2+/CaM but did not exhibit cooperative activation kinetics characteristic of the forebrain enzyme and required 10-fold greater amounts of CaM for half-maximal activation. The bacterially expressed enzyme displayed an apparent Km for a synthetic peptide substrate similar to that of the forebrain enzyme (12 and 10 microM, respectively). Limited proteolysis maps of autophosphorylated peptides, and Western blot analysis demonstrated that the bacterially expressed enzyme was structurally and immunologically indistinguishable from the 50-kDa subunit of the rat forebrain holoenzyme. The bacterially expressed enzyme became Ca2+/CaM-independent after Ca2+/CaM-dependent autophosphorylation in a fashion identical to the forebrain enzyme.  相似文献   

6.
Calmodulin purified from bacteria which express a cloned chicken calmodulin gene can be selectively conjugated with ubiquitin, using enzymes present in reticulocyte extracts. Analyses of peptide products generated from limited proteolytic digestion of the calmodulin conjugate containing a single ubiquitin indicate that lysine 115 on calmodulin is the site of linkage. This linkage site is identical to that previously reported for calmodulin purified from Dictyostelium discoideum. Substrate-dependent ATP hydrolysis by a partially purified ubiquitin conjugation enzyme system from reticulocyte extracts was used to determine the enzyme affinity to calmodulin. Km values of 7 and 9 microM were determined for dictyostelium and the bacterially expressed calmodulin, respectively. The bacterially expressed calmodulin, unlike the Dictyostelium protein, can also form conjugates containing a 2-5 molar ratio of ubiquitin but at a slower rate than that observed for conjugation at lysine 115. Results from these studies further support our hypothesis that the post-translational methylation of lysine 115 found in most forms of calmodulin serves the important function of protecting calmodulin from ubiquitination and from degradation by the cytoplasmic ubiquitin-dependent proteolytic pathway. The capability of the bacterially expressed calmodulin to form conjugates with a high molar ratio of ubiquitin suggests that the post-translational acetylation of the N terminus of calmodulin may serve a similar function.  相似文献   

7.
Aflatoxins are polyketide-derived secondary metabolites produced by the fungi Aspergillus flavus and Aspergillus parasiticus. Among the catalytic steps in the aflatoxin biosynthetic pathway, the conversion of sterigmatocystin to O-methylsterigmatocystin and the conversion of dihydrosterigmatocystin to dihydro-O-methylsterigmatocystin are catalyzed by an S-adenosylmethionine-dependent O-methyltransferase. A cDNA library was constructed by using RNA isolated from a 24-h-old culture of wild-type A. parasiticus SRRC 143 and was screened by using polyclonal antiserum raised against a purified 40-kDa O-methyltransferase protein. A clone that harbored a full-length cDNA insert (1,460 bp) containing the 1,254-bp coding region of the gene omt-1 was identified by the antiserum and isolated. The complete cDNA sequence was determined, and the corresponding 418-amino-acid sequence of the native enzyme with a molecular weight of 46,000 was deduced. This 46-kDa native enzyme has a leader sequence of 41 amino acids, and the mature form of the enzyme apparently consists of 377 amino acids and has a molecular weight of 42,000. Direct sequencing of the purified mature enzyme from A. parasiticus SRRC 163 showed that 19 of 22 amino acid residues were identical to the amino acid residues in an internal region of the deduced amino acid sequence of the mature protein. The 1,460-bp omt-1 cDNA was cloned into an Escherichia coli expression system; a Western blot (immunoblot) analysis of crude extracts from this expression system revealed a 51-kDa fusion protein (fused with a 5-kDa beta-galactosidase N-terminal fragment).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Beta-tubulin cDNA from the shrimp Penaeus japonicus was isolated by homology cloning. Expression of cDNA in Escherichia coli yielded a 55 kDa polypeptide, positive for monoclonal antibodies against mammalian beta-tubulin. Autoradiography demonstrated the bacterially expressed hepatopancreas beta-tubulin of P. japonicus is specifically phosphorylated by the delta isoenzyme of protein kinase C (PKC-delta) purified from the plasma membrane of the shrimp heart, in the presence of the receptor for activated PKC (RACK), but not in its absence. Purified shrimp heart PKC-delta is able to phosphorylate bacterially expressed shrimp beta-tubulin without the presence of Ca(++), but requires Mg(++). The kinase activity of purified PKC-delta on bacterially expressed beta-tubulin was enhanced by incubation with PEP(taxol), a synthetic peptide encoding the taxol-binding region of beta-tubulin. In other words, PEP(taxol) modulates the kinase activity of PKC-delta through RACK.  相似文献   

9.
cDNAs for alcohol dehydrogenase (ADH) isozymes were cloned and sequenced from two tephritid fruit flies, the medfly Ceratitis capitata and the olive fly Bactrocera oleae. Because of the high sequence divergence compared with the Drosophila sequences, the medfly cDNAs were cloned using sequence information from the purified proteins, and the olive fly cDNAs were cloned by functional complementation in yeast. The medfly peptide sequences are about 83% identical to each other, and the corresponding mRNAs have the tissue distribution shown by the corresponding isozymes, ADH-1 and ADH-2. The olive fly peptide sequence is more closely related to medfly ADH-2. The tephritid ADHs share less than 40% sequence identity with Drosophila ADH and ADH-related genes but are >57% identical to the ADH of the flesh fly Sarcophaga peregrina, a more distantly related species. To explain this unexpected finding, it is proposed that the ADH: genes of the family Drosophilidae may not be orthologous to the ADH: genes of the other two families, Tephritidae and Sarcophagidae.  相似文献   

10.
Expression systems for the heterologous expression of Drosophila melanogaster alcohol dehydrogenase (ADH) in Saccharomyces cerevisiae have been designed, analyzed and compared. Four different yeast/Escherichia coli shuttle vectors were constructed and used to transform four different yeast strains. Expression was detectable in ADH- yeast strains, from either a constitutive promoter, yeast ADH1 promoter (ADCp), or a regulated promoter, yeast GALp. The highest amount of D. melanogaster ADH was obtained from a multicopy plasmid with the D. melanogaster Adh gene expressed constitutively under the control of yeast ADCp promoter. The D. melanogaster enzyme was produced in cell extracts, as assessed by Coomassie blue staining and Western blotting after polyacrylamide-gel electrophoresis and it was fully active and able to complement the yeast ADH deficiency. Results show that D. melanogaster ADH subunits synthesized in yeast are able to assemble into functional dimeric forms. The synthesized D. melanogaster ADH represents up to 3.5% of the total extracted yeast protein.  相似文献   

11.
In the course of immunoscreening of Clonorchis sinensis cDNA library, a cDNA CsRP12 containing a tandem repeat was isolated. The cDNA CsRP12 encodes two putative peptides of open reading frames (ORFs) 1 and 2 (CsRP12-1 and -2). The repetitive region is composed of 15 repeats of 10 amino acids. Of the two putative peptides, CsRP12-1 was proline-rich and found to have homologues in several organisms. Recombinant proteins of the putative peptides were bacterially produced and purified by an affinity chromatography. Recombinant CsRP12-1 protein was recognized by sera of clonorchiasis patients and experimental rabbits, but recombinant CsRP12-2 was not. One of the putative peptide, CsRP12-1, is designated CsPRA, proline-rich antigen of C. sinensis. Both the C-termini of CsRP12-1 and -2 were bacterially produced and analysed to show no antigenicity. Recombinant CsPRA protein showed high sensitivity and specificity. In experimental rabbits, IgG antibodies to CsPRA was produced between 4 and 8 weeks after the infection and decreased thereafter over one year. These results indicate that CsPRA is equivalent to a natural protein and a useful antigenic protein for serodiagnosis of human clonorchiasis.  相似文献   

12.
An organism tentatively identified as Ralstonia eutropha was isolated from enrichment cultures containing tetrahydrofurfuryl alcohol (THFA) as the sole source of carbon and energy. The strain was able to tolerate up to 200 mM THFA in mineral salt medium. The degradation was initiated by an inducible ferricyanide-dependent alcohol dehydrogenase (ADH) which was detected in the soluble fraction of cell extracts. The enzyme catalyzed the oxidation of THFA to the corresponding tetrahydrofuran-2-carboxylic acid. Studies with n-pentanol as the substrate revealed that the corresponding aldehyde was released as a free intermediate. The enzyme was purified 211-fold to apparent homogeneity and could be identified as a quinohemoprotein containing one pyrroloquinoline quinone and one covalently bound heme c per monomer. It was a monomer of 73 kDa and had an isoelectric point of 9.1. A broad substrate spectrum was obtained for the enzyme, which converted different primary alcohols, starting from C2 compounds, secondary alcohols, diols, polyethylene glycol 6000, and aldehydes, including formaldehyde. A sequence identity of 65% with a quinohemoprotein ADH from Comamonas testosteroni was found by comparing 36 N-terminal amino acids. The ferricyanide-dependent ADH activity was induced during growth on different alcohols except ethanol. In addition to this activity, an NAD-dependent ADH was present depending on the alcohol used as the carbon source.  相似文献   

13.
14.
Expression of active yeast pyruvate decarboxylase in Escherichia coli.   总被引:1,自引:0,他引:1  
We have shown by appropriate modification of the translational signals and using the strong T7 RNA polymerase promoter phi 10, that a cloned Saccharomyces cerevisiae pyruvate decarboxylase gene (pdc1) can be expressed in Escherichia coli. This protein, which migrated as a single band on SDS-polyacrylamide gels, was found to have a subunit molecular mass of approximately 62 kDa, similar to that of the enzyme produced by yeast. Polyclonal antibodies raised against purified yeast pyruvate decarboxylase recognized this bacterially produced protein. We found that this recombinant enzyme is active, indicating that the homotetramer encoded by the pdc1 gene is functional.  相似文献   

15.
Carboxypeptidases were purified from guts of larvae of corn earworm (Helicoverpa armigera), a lepidopteran crop pest, by affinity chromatography on immobilized potato carboxypeptidase inhibitor, and characterized by N-terminal sequencing. A larval gut cDNA library was screened using probes based on these protein sequences. cDNA HaCA42 encoded a carboxypeptidase with sequence similarity to enzymes of clan MC [Barrett, A. J., Rawlings, N. D. & Woessner, J. F. (1998) Handbook of Proteolytic Enzymes. Academic Press, London.], but with a novel predicted specificity towards C-terminal acidic residues. This carboxypeptidase was expressed as a recombinant proprotein in the yeast Pichia pastoris. The expressed protein could be activated by treatment with bovine trypsin; degradation of bound pro-region, rather than cleavage of pro-region from mature protein, was the rate-limiting step in activation. Activated HaCA42 carboxypeptidase hydrolysed a synthetic substrate for glutamate carboxypeptidases (FAEE, C-terminal Glu), but did not hydrolyse substrates for carboxypeptidase A or B (FAPP or FAAK, C-terminal Phe or Lys) or methotrexate, cleaved by clan MH glutamate carboxypeptidases. The enzyme was highly specific for C-terminal glutamate in peptide substrates, with slow hydrolysis of C-terminal aspartate also observed. Glutamate carboxypeptidase activity was present in larval gut extract from H. armigera. The HaCA42 protein is the first glutamate-specific metallocarboxypeptidase from clan MC to be identified and characterized. The genome of Drosophila melanogaster contains genes encoding enzymes with similar sequences and predicted specificity, and a cDNA encoding a similar enzyme has been isolated from gut tissue in tsetse fly. We suggest that digestive carboxypeptidases with sequence similarity to the classical mammalian enzymes, but with specificity towards C-terminal glutamate, are widely distributed in insects.  相似文献   

16.
Cloning and gene expression of Schistosoma mansoni protease   总被引:5,自引:0,他引:5  
Schistosomes utilize proteases (termed hemoglobinases) for degradation of host globin. cDNA clones encoding Schistosoma mansoni protease were isolated by immunologically screening an expression cDNA library with antisera raised against purified hemoglobinase. Confirmation of the identities of the clones was obtained immunologically and biochemically. The bacterially produced fusion protein encoded by one clone, lambda Hb2, degraded hemoglobin in vitro. The sequence of this clone suggested that this S. mansoni protease is synthesized in a precursor form in vivo. Gene titrations indicated that S. mansoni contains multiple genes corresponding to this cDNA. The expression of these genes may be regulated during the organism's life cycle since adult, female worms contained the highest abundances of homologous mRNA and protein compared to other stages.  相似文献   

17.
Chicken muscle adenylate kinase was produced in a large amount in Escherichia coli cells harboring an expression plasmid, pKK-cAKl-1. The plasmid was constructed by placing the cDNA sequence for chicken muscle adenylate kinase after the tac promoter. After induction by isopropyl-beta-D-thiogalactopyranoside, the enzyme protein amounted to about 10% of the bacterial proteins. The enzyme was readily purified in two steps by using phosphocellulose and Sephadex G-100 columns. The apparent molecular weight of the enzyme produced in E. coli was estimated to be 22,000 on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, in agreement with the value deduced from the cDNA sequence. Ten amino acids in the NH2-terminal region were determined, and were identical with the sequence deduced from the cDNA sequence except that the terminal methionine was absent. Michaelis constants for ATP, ADP, and AMP of the enzyme thus synthesized were essentially identical to those determined with the enzyme in crude extracts of chicken skeletal muscle.  相似文献   

18.
We isolated a cDNA encoding liver catalase from a human liver cDNA library. The cDNA had a high degree of sequence similarity to the corresponding enzyme from other sources. It was expressed in E. coli using the pET15b vector. The protein produced was enzymatically active after purification, and its kinetic parameters closely resembled those of other mammalian catalases. Monoclonal antibodies were generated against the purified catalase; six antibodies recognizing different epitopes were obtained, one of which inhibited the enzyme. The cross reactions of the antibodies with brain catalases from human and other mammalian tissues were investigated, and all the immunoreactive bands obtained on Western blots had molecular masses of about 58 kDa. Similarly fractionated extracts of several mammalian cell lines all gave a single band of molecular mass 58 kDa. These results indicate that mammalian livers and human cell lines contain only one major type of immunologically reactive catalase, even though some of catalases have been previously reported to differ in certain properties.  相似文献   

19.
A fusion protein containing a Drosophila choline acetyltransferase (ChAT) cDNA insert was purified from a lambda gtll lysate of Escherichia coli. The cDNA insert, which contained a 728-amino acid coding region for ChAT, was used for immunizing rabbits. Three different antisera were produced that could recognize native Drosophila ChAT with low titer. In addition, all three antisera stained enzyme polypeptides using the Western blot technique at high titers. The antisera recognized ChAT polypeptides with molecular masses of 67 and 54 kilodaltons in Western blots of partially purified enzyme; these polypeptides had previously been identified using monoclonal anti-ChAT antibodies and are the major components of completely purified enzyme. It was surprising that when these antisera were used to stain Western blots of Drosophila head homogenates, the major immunoreactive band had a molecular mass of 75 kilodaltons. The relationship of this 75-kilodalton polypeptide to ChAT activity was investigated by fractionating fresh fly head homogenates using rapid HPLC gel filtration chromatography. Analysis of column fractions for enzyme activity and immunoreactive polypeptides indicated that the 75- and 67-kilodalton polypeptides can be resolved and are both enzymatically active. In addition, a correlation was observed between the relative immunostaining intensities of both the 75- and 67-kilodalton bands and ChAT activity when supernatants from fresh fly head homogenates were autolyzed at 37 degrees C. Our results indicate that ChAT is present in fresh Drosophila heads primarily as an active enzyme with a molecular mass of 75 kilodaltons.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
The cDNA encoding the catalytic subunit (C alpha) from mouse cAMP-dependent protein kinase (PK) was expressed in Saccharomyces cerevisiae. By a plasmid swap procedure, we demonstrated that the mammalian C alpha subunit can functionally replace its yeast homolog to maintain the viability of a yeast strain containing genetic disruptions of the three TPK genes encoding the yeast C subunits. C alpha subunit produced in yeast was purified and its biochemical properties were determined. The protein isolated from yeast appears to be myristylated, as has been found for C subunits from higher eukaryotic cells. This system would be useful for studying the biochemistry of the mammalian enzyme in vitro and its biological role in a model in vivo system. These studies demonstrate that the PK substrate(s) required for viability are recognized by the mammalian enzyme. In general terms, these results demonstrate that heterologous proteins with only 50% sequence conservation with their yeast counterparts can be functional in yeast. This is an important result because it validates the use of yeast to identify the biological role of newly cloned genes from heterologous systems, a key tenet of the Human Genome Initiative.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号