首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cyclic AMP-independent protein kinase activities from Ehrlich ascites tumor cells, partially purified by DEAE-cellulose and phosphocellulose chromatography were inhibited by quercetin. The cyclic AMP in the tumor ascites cells and the cyclic AMP-dependent protein kinase activity from this tumor and from bovine and mouse tissues were unaffected by this drug. Since we reported that quercetin elevates cyclic AMP level in Ehrlich ascites tumor cells, this bioflavonoid may have a dual effect on the protein kinae activities in these cells, thus, increasing the cyclic AMP-dependent and decreasing the cyclic AMP-independent protein kinase activities.  相似文献   

2.
A nonhistone chromatin protein (NHCP) has been purified to homogeneity from a 0.5 M NaCl extract of Ehrlich ascites tumor cell (EAT cell) nuclei as a phosphate acceptor for casein kinase II using ion-exchange column chromatographies and Sephacryl S300 gel filtration. The purified NHCP (approximate Mr = 400,000) was found to be a tetramer of an Mr = 98,000 polypeptide (pI = 6.9) and to have high contents of glycine (15%) and serine (11.6%). This protein (designated as 400-kDa NHCP) was highly phosphorylated by casein kinase II (Mr = 130,000), but not by histone kinase. Casein kinase II phosphorylated only seryl residues of the purified 400-kDa NHCP. The NHCP bound with DNA, but not with RNAs, and the DNA binding ability of the protein was reduced when it was phosphorylated by casein kinase II. Moreover, we found that (a) the 400-kDa NHCP is present in large quantities in malignant mouse cells, such as EAT, EL-4, and Meth-A cells, but only slightly in normal tissues and cells; (b) the protein level is rapidly increased when mouse lymphocytes are treated with recombinant interleukin 2 (T cell growth factor) or concanavalin A; and (c) the kinase responsible for the 400-kDa NHCP phosphorylation in the chromatin of various mouse cells is a casein kinase II. These experimental results suggest that the 400-kDa NHCP acts as an effective phosphate acceptor for casein kinase II at the chromatin level and that an increased phosphorylation of the protein by the kinase may be implicated in the progress of cell differentiation and proliferation.  相似文献   

3.
Uridine kinase from mouse Ehrlich ascites cells can exist in a variety of different aggregation states, from monomer up to aggregates that may contain 32 or more subunits. With very crude enzyme preparations, uridine kinase activity is always associated with several different coexisting molecular weight species. Changes in the aggregation state are produced in the presence of normal effectors (orthophosphate, ATP and CTP) at physiological concentrations. With uridine kinase that has been purified 9,000-fold, enzyme activity is associated with only a single molecular weight species, but is still responsive to the same physiological effectors. In the presence of orthophosphate, uridine kinase has a molecular weight of 380,000 (appropriate for a dodecamer). In the presence of CTP, the enzyme dissociates with concomitant loss of activity. The dissociated enzyme can be reassociated to the native size. These results imply that alteration of the enzyme's quaternary structure by normal effectors constitutes a mechanism for regulating uridine kinase activity in vivo.  相似文献   

4.
A tyrosine-specific protein kinase from Ehrlich ascites tumor cells   总被引:2,自引:0,他引:2  
A protein tyrosine kinase that phosphorylates both alpha and beta subunits of inactivated (Na+,K+)-ATPase from dog kidney was purified about 500-fold from Ehrlich ascites tumor cell membranes. The enzyme required divalent cations Mn2+, Mg2+, or Fe2+ but was inhibited by Cu2+ or Zn2+. The purified enzyme phosphorylated the beta subunit about five times faster than the alpha subunit of the (Na+,K+)-ATPase. The random polymer poly(Glu80Tyr20) was an excellent substrate while casein was only marginally phosphorylated. In contrast, the purified transforming gene product of Rous sarcoma virus phosphorylated all three substrates and the (Na+,K+)-ATPase was preferentially phosphorylated on the alpha subunit. The transforming gene product of Fujinami sarcoma visue and EGF receptor kinase from A431 cells phosphorylated (Na+,K+)-ATPase poorly whereas casein was an excellent substrate. The molecular weight of the partially purified protein tyrosine kinase from Ehrlich ascites tumor cells determined by gel filtration was about 60,000. One of two major phosphorylated phosphopeptides resolved by sodium dodecyl sulfate-polyacrylamide gel electrophoresis had an Mr of 60 kDa, thus suggesting that it might be the autophosphorylated protein tyrosine kinase. A phosphatase that hydrolyzes phosphorylated histones or poly(Glu80Tyr20) was partially purified from the same membrane.  相似文献   

5.
6.
(1) l-Cysteine inhibits aerobic glycolysis and restores the Pasteur effect in Ehrlich ascites tumour cells or in their supernatants, while d-cysteine has no effect on this process. (2) Other compounds which have configuration l at the α-carbon and a thiol group in the β-position (penicillamine) or restore them in vivo (3-mercaptopyruvate, cystine or l-serine together with l-homocysteine) also show inhibitory properties. (3) dl-Homocysteine with a free thiol group in the γ-position, reduced glutathione, methionine and products of cysteine oxidation (cysteic acid, taurine) do not inhibit tumour aerobic glycolysis. (4) Glycolysis of normal tissue supernatants (mouse liver and muscle) is not sensitive to the inhibitory effect of cysteine. (5) Metabolic studies showing a cysteine-induced decrease in ATP content, coupled with cross-over of the pyruvate and 2-phosphoenolpyruvate concentrations in Ehrlich ascites tumour cells, indicate that tumour pyruvate kinase is an enzyme sensitive to cysteine inhibition. (6) Enzymatic studies carried out both after preincubation of Ehrlich ascites tumour cells with cysteine or during direct action of this substance on tumour and normal tissue supernatants indicate the presence of a cysteine-sensitive isoenzyme besides the normal cysteine-insensitive pyruvate kinase in tumour material.  相似文献   

7.
The native structures of protein phosphatases have not been clearly established. Several tissues contain high molecular weight enzymes which are converted to active species of Mr approximately 35,000 by denaturing treatments or partial proteolysis. We have used a monoclonal antibody directed against purified bovine cardiac Mr = 38,000 protein phosphatase to determine whether this species is the native catalytic subunit or a proteolytic product of a larger polypeptide. Monoclonal antibody was obtained from a cloned hybrid cell line produced by the fusion of Sp2 myeloma cells with spleen cells from a mouse immunized with phosphatase coupled to hemocyanin. This antibody was specific for the Mr = 38,000 phosphatase as determined by immunoblot analysis of purified enzyme or cardiac tissue extracts after native or sodium dodecyl sulfate-polyacrylamide gel electrophoresis. A single immunoreactive protein of Mr = 38,000 was present in cardiac tissue extracts including extracts prepared from freeze-clamped rat heart rapidly denatured in hot sodium dodecyl sulfate buffer. Precipitation of cardiac extract with 80% ethanol did not alter the Mr of the phosphatase nor did it liberate new immunoreactive material not observed in the extract. Ethanol precipitation caused the dissociation of both phosphatase activity and immunoreactivity from a high Mr form to a form of Mr between 30,000 and 40,000. An immunoreactive protein of Mr = 38,000 was identified in several bovine and rat tissues as well as tissues from rabbits, mice and chickens and human HT-29 cells. From these data we conclude that the Mr = 38,000 cardiac phosphatase is a native catalytic subunit of higher molecular complexes which are dissociated by ethanol precipitation. A very similar, or identical, protein is present in several tissues and species suggesting that this catalytic subunit is a ubiquitous enzyme important in many dephosphorylation reactions.  相似文献   

8.
We have shown previously that proteoliposomes reconstituted with purified Na+K+-ATPase from Ehrlich ascites tumor cells, transport Na+ with low efficiency (Spector, M., O'Neal, S. and Racker, E. (1980) J. Biol. Chem., 255, 5504-5507). We now present evidence that this low efficiency (expressed in the ratio of Na+-transported/ATP-hydrolyzed) is caused by the phosphorylation of the beta subunit of the Na+K+-ATPase by an endogenous protein kinase. On addition of [gamma-32P]ATP, crude tumor plasma membrane preparations phosphorylated the beta subunit of the ATPase, whereas crude mouse brain plasma membranes did not. However, solubilized Na+K+-ATPase from either tumor or brain wre phosphorylated by purified protein kinase from the tumor plasma membrane and dephosphorylated by a phosphatase. In both cases, the phosphorylated enzyme was inefficient; the dephosphorylated enzyme was efficient after reconstitution into liposomes. During isolation of the Na+K+-ATPase from Ehrlich ascites tumor or mouse brain, an endogenous protease partially cleaved from the beta subunit a polypeptide of 29,000 daltons that contained the phosphorylation site. The proteolytic cleavage of the beta subunit was partially inhibited by phenylmethylsulfonyl fluoride and the major site of phosphorylation was then seen in the 53,000-dalton beta subunit of the enzyme. The isolated 29,000-dalton polypeptide from mouse brain ATPase was phosphorylated by tumor protein kinase with a stoichiometry of 1 mol of phosphate/mol of protein. When this 29,000-dalton polypeptide from mouse brain was incorporated into the tumor Na+K+-ATPase after mild proteolytic digestion, a marked increase in efficiency was observed after reconstitution of the Na+ pump.  相似文献   

9.
The activity of thymidylate synthetase in the liver of the ddY strain male mouse increased transitorily according to the increase in tumor cell number at maximum 7-9 days after ip transplantation of Ehrlich ascites tumor. The enzyme was able to be purified from the tumor host mouse liver or from the normal mouse liver in the same manner as from tumor cells using Affi-Gel blue and methotrexate-Sepharose 4B affinity column chromatography. The three enzyme preparations obtained were purified at 27,000-38,000-, and 8,000-fold, and yielded total activities of 11, 3, and 16% of these homogenates, respectively. These preparations were similar in molecular weight to the whole enzyme (67,000) and its subunit (34,000), optimum pH, and Km values either for deoxyuridine 5'-monophosphate or tetrahydrofolate in the presence of formaldehyde. Furthermore, the amount of 5-fluoro-2'-deoxyuridine 5'-monophosphate forming the ternary complex with the enzyme and tetrahydrofolate paralleled the enzyme activities in the cytosol fractions of the three tissues. The characteristics of the tumor host liver enzyme were similar to those of the proliferating tissues, the Ehrlich ascites tumor.  相似文献   

10.
DNA ligase from mouse Ehrlich ascites tumor cells   总被引:1,自引:0,他引:1  
The molecular (Mr = 120,000; s20, w = 5S) and catalytic properties (Km (ATP) = 3 microM; Km (nicked DNA) = 0.2 microM; Km (Mg2+) = 3 mM) of DNA ligase from mouse Ehrlich ascites tumor cells are similar to those of the enzymes from calf thymus and rodent liver. The activity level of DNA ligase from the tumor cells is about 10-fold higher than that from mouse liver. Immunochemical titration of DNA ligase with antibodies against the calf thymus enzyme showed that the higher level of DNA ligase activity in the tumor cells is due to an increase in enzyme quantity and not to elevation of the catalytic efficiency of the enzyme molecule. These results suggest that there is little apparent difference between the qualities of DNA ligases from the tumor cells and normal tissues of rodents and calf.  相似文献   

11.
A factor inducing differentiation of mouse myeloid leukemic cells (MI) into macrophages was purified to apparent homogeneity from 168 1 of CM of Ehrlich ascites tumor cells. The purified factor was half-maximally active at 2 X 10(-11) M. The factor was analyzed by radioiodination, SDS-polyacrylamide gel electrophoresis and autoradiography. Its Mr was 40 000-50 000. On reduction, the factor lost activity, but showed no subunit structure. Treatment of the factor with endo-beta-N-acetylglucosaminidase F, but not endo-beta-N-acetylglucosaminidase H, gave rise to a molecule of Mr 20 000-28 000. The activity of the factor from Ehrlich cells was completely neutralized by antiserum to the factor of Mr 50 000-70 000 from mouse fibroblast L929 cells.  相似文献   

12.
The dephosphorylation of the mouse small heat shock protein hsp25 within an extract obtained from Ehrlich ascites tumor cells is inhibited by the calcium chelator EGTA and at concentrations of microcystin-LR which are characteristic for inhibition of calcium/calmodulin-dependent (2B type) protein phosphatases. Furthermore, the dephosphorylation of hsp25 in the cell-free system derived from Ehrlich ascites tumor could be increased specifically by addition of the calcium/calmodulin-dependent (2B type) protein phosphatase calcineurin. Dephosphorylation of the heat shock protein hsp25 is also obtained in an in vitro system containing phosphorylated recombinant hsp25, 1 mM Ca2+, calmodulin, and calcineurin specifying hsp25 as the direct substrate for this enzyme. The expression of two isoforms of the catalytic subunit of the mouse calcium/calmodulin-dependent (2B type) protein phosphatases in Ehrlich ascites tumor cells is demonstrated by polymerase chain reaction using specific oligonucleotide primers to the catalytic and calmodulin-binding domain, respectively. Northern blot analysis using the amplified fragments as probes shows that the mRNA of one isoform of the mouse calcium/calmodulin-dependent protein phosphatase is of medium abundance in EAT cells. These data suggest a calcium/calmodulin-dependent dephosphorylation of the small stress protein in EAT cells also in vivo. Since it is known that heat shock increases the intracellular calcium level and that thermotolerance is influenced by calcium chelators, ionophores, and anti-calmodulin drugs, the changes in the degree of hsp25 phosphorylation induced by thermal stress resulting in an altered thermoresistance could be explained at least partially by the calcium/calmodulin-dependent dephosphorylation through protein phosphatases 2B.  相似文献   

13.
NAD-dependent methylenetetrahydrofolate dehydrogenase is expressed in transformed or established mammalian cell lines in vitro but only in the developmental tissues of normal adult animals (Mejia, N. R. and MacKenzie, R. E. (1985) J. Biol. Chem. 260, 14616-14620). The enzyme, which contains methenyltetrahydrofolate cyclohydrolase activity as well, has been purified 6000-fold from Ehrlich ascites tumor cells. The preparation is homogeneous by sodium dodecyl sulfate gel electrophoresis (Mr = 34,000), and results from cross-linking with bis(sulfosuccinimidyl)suberate are consistent with a dimeric structure (Mr = 68,000) for the native bifunctional enzyme. The dehydrogenase is specific for NAD and requires both a divalent cation, Mg2+ or Mn2+, for activity and as well is stimulated by inorganic phosphate. When compared to the usual NADP-dependent methylenetetrahydrofolate dehydrogenase from mouse liver, the NAD-dependent dehydrogenase activity of the murine tumor enzyme shows a greater affinity for the polyglutamate forms of folate.  相似文献   

14.
F Sato  N Kitahara  N Ohmura  K Tsukada 《FEBS letters》1983,151(1):148-152
Total RNA was isolated from adult mouse liver tissues. The alpha- and beta-form isozymes of S-adenosylmethionine synthetase existing in liver were synthesized in a reticulocyte lysate cell-free system under the direction of total RNA and were immunoprecipitated with antibody to the beta-form. The newly synthesized and the in vivo labeled S-adenosylmethionine synthetase subunits were compared by SDS-polyacrylamide gel electrophoresis. Both the alpha- and beta-forms consist of the same size Mr 48 000 subunit. The level of the beta-form mRNA activity in mouse liver was shown to increase following intraperitoneal transplantation of Ehrlich ascites tumor cells and the changes in the mRNA activity parallel those in the cellular level of S-adenosylmethionine synthetase beta.  相似文献   

15.
We have previously reported that many tumor cell lines express a 5'-nucleotide phosphodiesterase (phosphodiesterase I, EC 3.1.4.1) with properties clearly distinguishable from enzymes of normal tissues (Biochim. Biophys. Acta (1988) 966, 99-106). Such an enzyme with 5'-nucleotide phosphodiesterase activity was purified from Ehrlich ascites carcinoma by measuring the cleavage of thymidine 5'-monophosphate p-nitrophenyl ester (TMP-NP). The enzyme is a soluble protein, has a pH optimum of 7.5, and the molecular mass estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis is 67 kDa. The enzyme does not hydrolyze other chromogenic substrates for phosphodiesterases, nor pyrophosphate bond of various nucleotides which are cleaved by 5'-nucleotide phosphodiesterases of normal tissues. But, it hydrolyzes dinucleotides to form 5'-phosphates, and is more active on 2',5'- than on 3',5'-phosphodiester bonds. These results indicate that the TMP-NP splitting enzyme in Ehrlich ascites carcinoma cells is a 2',5'-phosphodiesterase.  相似文献   

16.
Native phosphorylated mouse small heat shock protein hsp25 from Ehrlich ascites tumor cells was isolated and the in vivo phosphorylation sites of the protein were determined. Furthermore, native hsp25 was phosphorylated by the endogenous kinase(s) in a cell-free system as well as recombinant hsp25 was phosphorylated in vitro by protein kinase C and catalytic subunit of cAMP-dependent protein kinase. The two major phosphorylation sites of native and recombinant hsp25 were determined as Ser-15 and Ser-86. There are no differences in the hsp25 phosphorylation sites phosphorylated by the protein kinase C, the catalytic subunit of cAMP-dependent protein kinase and the unknown intracellular kinase(s). The serine residues identified exist in all known small mammalian stress proteins and are located in the conserved kinase recognition sequence Arg-X-X-Ser.  相似文献   

17.
18.
Methylenetetrahydrofolate dehydrogenase - methenyltetrahydrofolate cyclohydrolase - formyltetrahydrofolate synthetase was purified to homogeneity from mouse liver, taking advantage of its very high affinity for 2',5'-ADP-Sepharose. Antibodies raised to this trifunctional enzyme and to the bifunctional NAD-dependent dehydrogenase-cyclohydrolase from mouse Ehrlich ascites tumour cells were found not to cross-react with the purified proteins on Western blots. Each of these polyclonal antibodies detects the appropriate protein in extracts of Ehrlich ascites tumour cells after sodium dodecyl sulfate - polyacrylamide gel electrophoresis and electrophoretic transfer of the proteins to nitrocellulose. The procedure has also been used to obtain a purified preparation of the trifunctional enzyme from human liver obtained at autopsy.  相似文献   

19.
Recent work has identified a cascade of membrane bound protein kinases in Ehrlich ascites tumor cells. These enzymes, designated PKL, PKS and PKM, are present in both Ehrlich tumor and mouse brain, but the cascade is active only in the tumor tissue. We have now purified a fourth protein kinase, PKF, that is also associated with this cascade. Protein kinase F prosphorylates PKL and is phosphorylated by PKS. The position of this kinase in the cascade is as follows, where the arrows denote phosphorylation: [Formula: see text] The phosphorylation by PKF, like phosphorylation by the other kinases, is at a tyrosine residue and causes the substrate kinase (PKL) to become active. The role of the tyrosine phosphorylation in activating these kinases is described in detail elsewhere. One result of activation of the cascade is the phosphorylation of the beta subunit of the Na+K+-ATPase, which causes inefficient Na+ pumping and is at last in part responsible for the high aerobic glycolysis of Ehrlich ascites tumor cells. By several criteria protein kinase F from Ehrlich cells is homologous to the src gene product (pp60src) from avian sarcoma viruses. Antiserum raised against PKF and sera from rabbits bearing rous sarcoma virus (RSV)-induced tumors quantitatively precipitate the same 60 kd phosphoprotein from cell lysates of three different RSV-transformed cell lines. Both proteins phosphorylate PKL and a 130 kd cytoskeletal protein (vinculin). The tryptic maps of these proteins are closely similar. Both proteins bind specifically to PKL covalently coupled to Sepharose. We used this latter observation to facilitate the purification of pp60 src from RSV-transformed cells.  相似文献   

20.
Uridine kinase from Ehrlich ascites tumor cells has been purified about 60,000-fold to apparent homogeneity and with an overall recovery of about 40%. This purification was achieved using phosphocellulose and adenosine 5'-triphosphate-agarose affinity chromatography. The subunit molecular mass as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis was 31,000 daltons. With two-dimensional electrophoresis, only one spot was observed, indicating the absence of isoenzymes. Multiple peaks of activity are routinely observed on ion exchange chromatography or gel filtration, for both crude preparations or homogeneous uridine kinase, in agreement with our earlier results that this enzyme exists as multiple interconvertible oligomeric forms (Payne, R. C., and Traut, T. W. (1982) J. Biol. Chem. 257, 12485-12488). The purified enzyme has a specific activity of 283 mumol/min/mg of protein at 22 degrees C. Initial velocity studies using uridine and ATP are consistent with a sequential mechanism. Km values for uridine, cytidine, and ATP are 40, 57, and 450 microM, respectively. CTP and UTP are competitive inhibitors with respect to ATP, with Ki values for CTP and UTP of 10 and 61 microM, respectively. The enzyme was active with several nucleoside analogs, the Km values being 69 microM (5-fluorouridine), 200 microM (3-deazauridine), and 340 microM (6-azauridine). The pure enzyme is very sensitive to freezing, but can be maintained at O degrees C for 8 weeks with only 20% loss of activity. For long-term storage, enzyme in 50% glycerol can be maintained at -20 degrees C for many months with no detectable loss of activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号