首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
The aim of this paper is to investigate the structures and properties of epoxidized linseed and Pongamia glabra oils (LOE/POE), their derived products—epoxy-polyols (HLOE/HPOE), epoxy-polyurethanes (EU = LOPU/POPU) and EU coatings. Changes in epoxy equivalent, iodine value, hydroxyl value and percent saturation of oil backbone in due course of epoxidation and hydroxylation reactions, were plotted as a function of time. Spectral (IR, 1H NMR and 13C NMR), physico-chemical and thermal (TGA and DSC) analyses of aforementioned resins were performed by standard methods. Physico-mechanical and chemical resistance tests reveal that coatings of LOPUs perform better than those of POPUs. It was found that properties of oil epoxy-polyurethane coatings are mainly governed by: (i) fatty acid composition and nature of starting oils, (ii) extent of epoxidation, (iii) number and location of hydroxyls and residual double bonds in the final product and (iv) the presence of long dangling chains. PO, HLOE and LOPUs exhibit good antibacterial activity against Escherichia coli at very small MIC. These EU systems can be safely employed unto 220 °C.  相似文献   

2.
A 4-O-methylglucuronoxylan was converted into a hexenuronoxylan at high temperature and alkalinity similar to the conditions used during kraft pulping. The hexenuronoxylan was hydrolysed with enzymes, and acidic xylooligosaccharides were separated from the hydrolysate by anion-exchange and size-exclusion chromatography. The primary structure of the two main hexenuronic acid-substituted xylooligosaccharides (a tetramer and a pentamer) was determined by two-dimensional 1H and 13C NMR spectroscopy. The 4-deoxy-hexenutronic acid is not stable under the acid hydrolysis step of conventional carbohydrate analysis. Here, we have identified the acidic degradation products of 4-deoxy-hexenuronic acid by NMR spectroscopy. Two degradation pathways were observed, both resulting in a furan derivative.  相似文献   

3.
The activities of cytochrome P450-derived epoxide metabolites of omega-6 polyunsaturated fatty acids (PUFAs) in cellular homeostasis have generated considerable topical interest, but there is less information on the effects of omega-3 PUFA epoxides. Mass spectroscopic data on the epoxides of the omega-3 PUFA eicosapentaenoic acid (EPA) have been reported but the absence of corresponding NMR data currently hinders their biological assessment. In the present study five monoepoxy derivatives of EPA methyl ester were synthesized by treating EPA methyl ester with m-chloroperbenzoic acid. The individual regioisomers were purified by normal-phase chromatography and characterized by LC-MS/MS and a combination of NMR approaches including 1H-, 13C-, 1H-1H-COSY, 1H-13C-HSQC, and 1H-13C-HMBC. The chromatographic properties for these monoepoxides were studied in normal-phase and reversephase-HPLC systems and the MS/MS fragmentation patterns using electrospray ionization were established. This paper also focuses on the NMR characterization of epoxide, olefinic and methylenic moieties and the complete assignments of the isomers.  相似文献   

4.
General methods for the synthesis of glycopyranosyluronic acid azides   总被引:1,自引:0,他引:1  
Per-O-acetylated D-glycopyranoses derived from both mono- and disaccharides were first converted to glycosyl iodides and subsequently reacted with an azide source to achieve the stereoselective synthesis of beta-D-glycosyl azides after deacetylation. Low-temperature (4 degrees C) TEMPO oxidation of the monosaccharides provided the corresponding uronic acids, which were purified as the free acids. Oxidation of the lactosyl- and cellobiosyl azides resulted in diacid formation. However, 4',6'-O-benzylidene protection enabled selective oxidation of the C-6 hydroxyl. 2-Acetamido-2-deoxy-D-glycopyranosyl azides were also prepared and converted to uronic acids completing the library synthesis.  相似文献   

5.
Here we report the synthesis, the characterization and a theoretical study on new glycosylated phenyl substituted beta-diketones; two classes of compounds are obtained according to the condensation reaction: central and side derivatives. Their iron(III) chelating ability is tested by means of UV-visible (UV-vis), potentiometric and NMR techniques. The conformation of central derivatives does not allow any metal chelation, while side derivatives bind iron(III) through the beta-dioxo moiety. The glycosyl moiety does not interact with metal ion but it helps to stabilize metal/ligand (1/3) complexes by means of hydrophylic interactions. The pK(a) of the ligands and the stability constants of their Fe(III) complexes are evaluated by means of UV-vis spectroscopy and potentiometry. A comparison with other iron-chelating agents, on the basis of lipophilicity and the pFe(III), is finally reported.  相似文献   

6.
Two chlorodiorganotin(IV) complexes of 4-(2-methoxyphenyl)piperazine-1-carbodithioate (MPPDA) have been synthesized by 1:1 mole-ratio reactions of the parent acid (MPPDAH) with Me2SnCl2 or Et2SnCl2 in dry methanol. The products have been characterized by Raman and multinuclear NMR (1H, 13C and 119Sn) spectroscopy, elemental analysis, and mass spectrometry. Single-crystal X-ray diffraction studies indicate that both complexes have distorted trigonal bipyramidal geometries around the central Sn atom.  相似文献   

7.
The single crystal structure of LaPS4, (1), is reported. The space group is tetragonal, I4(1)/acd. Unit cell dimensions are a = 10.9641(3) Å and c = 19.4828(9) Å. The far infrared absorption and Raman spectra (100-600 cm−1) are consistent with the groups being in a distorted tetrahedral geometry. The room temperature emission spectrum of LaPS4 doped with Er3+ is also presented. Emission peaks at 529, 534, 549, and 554 nm were observed when the sample was excited at 492 nm. The compound reported here is isomorphous and isostructural to several other lanthanide orthothiophosphates.  相似文献   

8.
Hyaluronan oligosaccharides display physiological activities not associated with the polymer and are widely used to characterize hyaluronan-binding proteins. They can also be used as biocompatible starting blocks for chemical derivatization. Here we present methods for generating milligram quantities of unusual odd- and even-numbered oligosaccharides, greatly increasing the diversity of reagents for use in such studies. These methods are based upon protocols from the 1960s, at which time it was very difficult to assess the stereochemical purity of the products. To address this, products were analyzed with modern high-field nuclear magnetic resonance spectroscopy. Alkaline beta-elimination conditions previously used to remove reducing-terminal N-acetylglucosamine residues in fact introduce a significant ( approximately 30%) level of stereoisomerism in the products by alkali-catalyzed keto-enol tautomerizations. Milder alkaline conditions were used to overcome this problem, reducing the contamination to <5%. The elimination by-products from this reaction were isolated and characterized, allowing the mechanism of alkaline degradation of hyaluronan to be investigated for the first time. beta-Glucuronidase was used to remove nonreducing-terminal glucuronic acid residues from oligosaccharides. Odd-numbered oligosaccharides with terminal glucuronic acid residues isolated from hyaluronidase digests are shown to originate from acid-catalyzed acetal hydrolysis during boiling denaturation and also have significant levels of stereochemical impurities.  相似文献   

9.
Alternating copolymer of maleic anhydride (MA) with N-isopropylacrylamide (NIPA) has been synthesized. Spectral characterization of this copolymer has been achieved by FTIR, Raman, 1H, 13C NMR spectroscopic methods. Besides hydrodynamic behavior of the copolymer has been also investigated by viscometric method for comparison with that obtained from the solubility profile through algorithmic calculations. As a consequence of the algorithmic calculations DMSO has been determined as the best solvent for the copolymer, poly(MA-alt-NIPA), which is also supported by the viscometric results.  相似文献   

10.
Zou W  Shao H  Wu SH 《Carbohydrate research》2004,339(15):2475-2485
Whereas C-2- and 4-ulopyranosyl compounds (C-2- and C-4-ulosides) can be converted to cyclopentenones under base conditions through beta-elimination and ring contraction, base-initiated beta-elimination of C-glycosyl 2'-aldehydes and 2'-ketones results in the formation of acyclic alpha,beta-unsaturated aldehydes or ketones. By combining both molecular features we synthesized 1-C-(4-ulopyranosyl)-2-oxoalkanes 6, 13, and 20 and investigated their reactions when they were treated with base. Both alpha- and beta-anomers of C-(4-ulopyranosyl)acetaldehydes 6 and 13 underwent a fast intramolecular aldol reaction between the C-5 enolate and 2'-aldehyde to form optically pure 8-oxabicyclo[3.2.1]octanones, which further transformed to 8-oxabicyclo[3.2.1]octenones 14 and 15 by beta-elimination. However, this aldol reaction did not occur when 1-C-(4-ulopyranosyl)propan-2-one 20 was treated with base because of steric hindrance exerted by the additional methyl group. Instead, an alternate C-3 enolization led to beta-elimination and further electro-ring opening to form an acyclic enol, which was then converted through a disrotatory intramolecular aldol cyclization to a cis-substituted cyclopentenone 21.  相似文献   

11.
Jia RR  Wu CP  Wu S  Yang YX  Chen YR  Jia YQ 《Amino acids》2006,31(1):85-90
Summary. New bioinorganic complexes of the aspartic acid with the antimony or bismuth triiodide were synthesized by a direct solid–solid reaction at room temperature. The formula of the complex is MI3[OOCCH2CH(NH2)CO]2.5 · 2.5H2O (M = Sb, Bi). The complex may be a dimer with bridge structure. The crystal structure of the complexes belongs to a triclinic system. The lattice parameters are a = 0.9883 nm, b = 1.4284 nm, c = 2.0114 nm, α = 94.46°, β = 99.76° and γ = 100.1° for the complex of antimony and a = 0.9756 nm, b = 1.4560 nm, c = 1.9875 nm, α = 94.18°, β = 97.25° and γ = 101.16° for the complex of bismuth. The infrared spectra and thermal analyses can demonstrate the complex formation between the aspartic acid and the antimony or bismuth ion.  相似文献   

12.
Ren JL  Peng F  Sun RC 《Carbohydrate research》2008,343(16):2776-2782
A series of novel water-soluble hemicellulosic derivatives, containing carbamoylethyl and carboxyethyl groups, were heterogeneously synthesized from wheat-straw hemicelluloses with acrylamide (AA) under alkaline conditions. The factors such as reaction temperature, reaction time, molar ratio of catalysis to xylose unit in hemicelluloses and molar ratio of acrylamide to xylose unit in hemicelluloses, were investigated. The average degree of substitution (DS) was calculated by 1H NMR spectroscopy. DS values up to 0.23 in a one-step synthesis of hemicelluloses derivatives were obtained. Under optimum conditions (60 °C, NaOH to xylose unit in hemicelluloses molar ratio of 0.8, AA to xylose unit in hemicelluloses molar ratio of 8.0, reaction time of 1 h) an expected ratio of carbamoylethyl group to carboxyethyl group of 4.8 in the hemicellulosic derivatives was obtained. The structural features of the hemicellulosic derivatives were characterized by FTIR, NMR spectroscopy, and by elemental analysis. The current work provides a facile method for the synthesis of hemicellulose derivatives with bifunctional groups, which could be used as wet-end additives in the papermaking industry.  相似文献   

13.

Background

Retinal dehydrogenases (RALDHs) catalyze the dehydrogenation of retinal into retinoic acids (RAs), which are required for embryogenesis and tissue differentiation. This study sought to determine the detailed kinetic properties of 2 mouse RALDHs, namely RALDH3 and 4, for retinal isomer substrates, to better define their specificities in RA isomer synthesis.

Methods

RALDH3 and 4 were expressed in Escherichia coli as His-tagged proteins and affinity-purified. Enzyme kinetics were performed with retinal isomer substrates. The enzymatic products were analyzed by high pressure liquid chromatography.

Results

RALDH3 oxidized all-trans retinal with high catalytic efficiency (Vmax/Km = 77.9) but did not show activity for either 9-cis or 13-cis retinal substrates. On the other hand, RALDH4 was inactive for all-trans retinal substrate, exhibited high activity for 9-cis retinal oxidation (Vmax/Km = 27.4), and oxidized 13-cis retinal with lower catalytic efficiency (Vmax/Km = 8.24). β-ionone, a potent inhibitor of RALDH4 activity, suppressed 9-cis and 13-cis retinal oxidation competitively with inhibition constants of 0.60 and 0.32, respectively, but had no effect on RALDH3 activity. The divalent cation MgCl2 activated 13-cis retinal oxidation by RALDH4 by 3-fold, did not significantly influence 9-cis retinal oxidation, and slightly activated RALDH3 activity.

Conclusions

These data extend the kinetic characterization of RALDH3 and 4, providing their specificities for retinal isomer substrates.

General significance

The kinetic characterization of RALDHs should give useful information in determining amino acid residues that are involved in the specificity for retinal isomers and on the role of these enzymes in the synthesis of RAs in specific tissues.  相似文献   

14.
Three Schiff bases of racemic gossypol with L-amino acid methyl esters are synthesized and studied by FTIR and (1)H-NMR spectroscopy, and their structures are calculated by the PM3 semiempirical method. The Schiff bases in the study exist in the solid state and in solutions as enamine forms. The existence of diastereoisomers is very visible in the (1)H-NMR spectra. The amount of the diastereoisomers depends on the amount of time the solutions are rested in diffused light. The epimerization from D,L-isomer to L,L-isomer is very slow. The structures of the Schiff bases and the hydrogen bonds within these structures are discussed.  相似文献   

15.
《Process Biochemistry》2014,49(7):1097-1106
A novel laccase was isolated and characterized from a new selective lignin-degrading white-rot fungus Echinodontium taxodii 2538, in which a high yield of laccase was obtained. No laccase isoenzyme was detected in the synthetic liquid media. The purified laccase (designated as EtL2538) had an apparent molecular mass of 56 kDa, pI value of 3.1, and N-terminal amino acid sequence of GIGPVTDLHIVNAAV. EtL2538 showed optimum pH at 3.0 and optimum temperature at 60 °C using ABTS as the substrate. EtL2538 revealed superior thermostability, and retained over 80% of its original activity after incubation for 2 h at 50 °C. The laccase gene, etl2538, was also cloned and sequenced. This gene encoded a mature laccase protein containing 499 amino acids (aa) preceded by a signal peptide of 21 aa, and the deduced protein sequence contained four copper-binding conserved domains of typical laccase protein. EtL2538 was further used in lignin oxidation and dye decolorization. Even without the existence of redox mediators, EtL2538 could cleave the methoxyl groups and β-O-4 ether linkages in lignin from bamboo, and significantly decolorize malachite green and RBBR. These novel properties of EtL2538 may render it as a potential biocatalyst for biotechnological and environmental applications.  相似文献   

16.
The key step in the first chemical synthesis of anthrose (16) and its methyl alpha- (6) and beta-glycoside (22) was inversion of configuration at C-2 in triflates 10, 2, and 18, respectively, obtained from the common intermediate, methyl 4-azido-3-O-benzyl-4,6-dideoxy-alpha-D-mannopyranoside (1). To prepare methyl alpha-anthroside (6), methylation at O-2 of the gluco product 3, obtained from 2, was followed by hydrogenation/hydrogenolysis of the formed 2-methyl ether 4, to simultaneously remove the protecting benzyl group and reduce the azido function. Subsequent N-acylation of the formed amine 5 with 3-hydroxy-3-methylbutyric acid gave the target methyl alpha-glycoside 6. Synthesis of methyl beta-anthroside (22) comprised the same sequence of reactions, starting from the known methyl 4-azido-3-O-benzyl-4,6-dideoxy-beta-D-mannopyranoside (17), which was prepared from 1. In the synthesis of anthrose (16), 1-thio-beta-glucoside 11, obtained from 1 through 10, was methylated at O-2, and the azido function in the resulting benzylated 1-thioglycoside 12 was selectively reduced to give amine 13. After N-acylation with 3-hydroxy-3-methylbutyric acid, 1-thioglycoside 14 was hydrolyzed to give the corresponding reducing sugar, aldol 15, which was debenzylated to afford anthrose.  相似文献   

17.
Fibroblast growth factors (FGFs) regulate a wide range of important cellular processes. The biological activities of FGFs are mediated by cell surface receptors (FGFRs). In the present study for the first time we report the cloning, expression, and characterization of the ligand (FGF)-binding D2 domain of human FGFR2. D2 domain is expressed in Escherichia coli in high yields (10 mg/L) as inclusion bodies. The protein is recovered by dissolving the inclusion bodies in 8 M urea and subsequently refolding on nickel affinity column. The protein is purified (to approximately 97% purity) to homogeneity using heparin-Sepharose affinity column. Far-UV circular dichroism data and chemical shift index plot based on 1H-alpha, 13C-alpha, 13C-beta, and 13carbonyl group chemical shifts suggest that D2 domain is an all beta-sheet protein consisting of 9 beta-strands. Isothermal titration calorimetry and equilibrium urea unfolding experiments show that recombinant D2 domain is in a biologically active conformation and binds strongly to its ligand (FGF) and to the heparin analog, sucrose octasulfate (SOS). Using a variety of triple resonance NMR experiments, complete assignment of 1H, 15N, and 13C resonances in D2 domain has been accomplished. The findings of the present study not only pave way for an in-depth investigation of the molecular mechanism(s) underlying the activation of FGF signaling but also provide avenues for the rational design of potent inhibitors against FGF-mediated pathogenesis.  相似文献   

18.
Kang HM  Cai YL  Liu PS 《Carbohydrate research》2006,341(17):2851-2857
Novel chitosan-based graft copolymers (CECTS-g-PDMA) were synthesized through homogeneous graft copolymerization of (N,N-dimethylamino)ethyl methacrylate (DMA) onto N-carboxyethylchitosan (CECTS) in aqueous solution by using ammonium persulfate (APS) as the initiator. The effect of polymerization variables, including initiator concentration, monomer concentration, reaction time and temperature, on grafting percentage was studied. XRD, FTIR, DSC and TGA were used to characterize the graft copolymers. Surface-tension measurements, turbidity measurements and temperature-variable (1)H NMR analysis were combined to investigate the thermal sensitivity of CECTS-g-PDMAs in aqueous solution.  相似文献   

19.
Annette Eva Langkilde 《FEBS letters》2009,583(16):2600-13459
Protein fibrillation is first and foremost a structural phenomenon. Adequate structural investigation of the central conformational individuals of the fibrillation process is however exceedingly difficult. This is due to the nature of the process, which may be described as a dynamically evolving equilibrium between a large number of structural species. These are furthermore of highly diverging sizes and present in very uneven amounts and timeframes. Different structural methods have different strengths and limitations. These, and in particular recent advances within solution analysis of the undisturbed equilibrium using small angle X-ray scattering, are reviewed here.  相似文献   

20.
Methyl esters of [5]-ladderanoic acid and [3]-ladderanoic acid were prepared by esterification of the acids isolated from biomass at a wastewater treatment plant. Optical rotations at six different wavelengths (633, 589, 546, 436, 405 and 365 nm) and vibrational circular dichroism (VCD) spectra in the 1800–900 cm−1 region were measured in CDCl3 solvent and compared with quantum chemical (QC) predictions using B3LYP functional and 6-311++G(2d,2p) basis set with polarizing continuum model representing the solvent. QC predictions gave negative optical rotations at all six wavelengths for (R)-methyl [5]-ladderanoate and positive optical rotations for (R)-methyl [3]-ladderanoate, the same signs as previously reported for the corresponding acids. The crystal structure of (−)-methyl [5]-ladderanoate independently confirmed (R) configuration. The QC-predicted VCD spectra using Boltzmann population weighted spectra of individual conformers did not provide satisfactory quantitative agreement with the experimental VCD spectra. An improved quantitative agreement for VCD spectra could be obtained when conformer populations were optimized to maximize the similarity between experimental and predicted VCD spectra, but more improvements in VCD predictions are needed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号