共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Tomonori Ogata Yasuharu Oishi Isao Muraoka 《Biochemical and biophysical research communications》2010,394(1):136-140
This study investigated regulation of autophagy in slow-twitch soleus and fast-twitch plantaris muscles in fasting-related atrophy. Male Fischer-344 rats were subjected to fasting for 1, 2, or 3 days. Greater weight loss was observed in plantaris muscle than in soleus muscle in response to fasting. Western blot analysis demonstrated that LC3-II, a marker protein for macroautophagy, was expressed at a notably higher level in plantaris than in soleus muscle, and that the expression level was fasting duration-dependent. To identify factors related to LC3-II enhancement, autophagy-related signals were examined in both types of muscle. Phosphorylated mTOR was reduced in plantaris but not in soleus muscle. FOXO3a and ER stress signals were unchanged in both muscle types during fasting. These findings suggest that preferential atrophy of fast-twitch muscle is associated with induction of autophagy during fasting and that differences in autophagy regulation are attributable to differential signal regulation in soleus and plantaris muscle. 相似文献
3.
P Frémont C Lazure R R Tremblay M Chrétien P A Rogers 《Biochimie et biologie cellulaire》1987,65(9):790-797
This laboratory previously reported that a major 30 kilodalton (kDa) protein of the soluble cytoplasmic fraction of the rat slow-twitch soleus muscle is modulated by thyroid hormone. This protein has been purified and a portion of the primary structure has been determined. The sequence analysis suggested that the 30-kDa protein is carbonic anhydrase III (CA III; EC 4.2.1.1). The reaction of the protein with a CA III specific antibody and the similar modulation of CA III by thyroid hormone also support this conclusion. Immunochemical quantification of CA III and measurement of CA activity were performed in skeletal muscles of defined fiber-type composition from rats that were rendered hyperthyroid by treatment with 3,3',5-triiodo-L-thyronine. These experiments revealed that CA activity and CA III content are deinduced in the soleus muscle (primarily type I fibers) and induced in the superficial vastus lateralis muscle (primarily type IIb), whereas no changes were detected in the tibialis anterior muscle (primary type IIa). These results show that the modulation of CA III by thyroid hormone in rat skeletal muscle is not limited to the slow-twitch soleus muscle and that the amplitude and direction of this modulation are directly related to the initial fiber-type composition of the skeletal muscle. 相似文献
4.
The purpose of this study was to investigate the effects of thyroid state on rates and sites of H(2)O(2) production in rat muscle mitochondria. With Complex I- and Complex II-linked substrates, hypothyroidism decreased and hyperthyroidism increased the rates of O(2) consumption during State 4 and State 3 respiration and the rates of H(2)O(2) release during State 4 respiration. During State 3, the rates of H(2)O(2) release were not affected by thyroid state. However, the mitochondrial capacity to remove H(2)O(2) increased in the transition from hypothyroid to hyperthyroid state, thus suggesting that an increase in H(2)O(2) production rate also occurred in such a transition during State 3 respiration. The observation that mitochondrial coenzyme Q levels and cytochrome oxidase activities are higher in the hyperthyroid and lower in the hypothyroid groups suggests that the modifications of H(2)O(2) production are due to a modulation by thyroid hormone of the mitochondrial content of autoxidizable electron carriers. This idea is supported by measurements of H(2)O(2) release in the presence of respiratory inhibitors. In fact, such measurements indicate that the thyroid state-linked changes in H(2)O(2) production occur at both generator sites of the respiratory chain. 相似文献
5.
Xu Xiaoping; Forrer Janet; Bechtel Peter J.; Best Philip M. 《American journal of physiology. Cell physiology》1998,274(4):C861
To determine theeffect of plasma growth hormone (GH) on skeletal muscle function, wemeasured the free Ca2+concentration-tension relationship of slow-twitch (soleus) and fast-twitch (peroneus longus) muscles isolated from rats undergoing acromegaly in response to implanted, GH-secreting tumors. Muscles fromadult (9 mo) and aged rats (24 mo) were studied after the tumor-bearingrats weighed over 50% more than their age-matched controls.Ca2+-activated isometric tensionwas recorded from skinned muscle fibers. For soleus muscles, the freeCa2+ concentration producing 50%of maximal tension([Ca2+]50)was 2.0 µM for rats with tumors and 3.4-3.6 µM for controls. For peroneus longus fibers,[Ca2+]50shifted from 6.1-6.7 µM in controls to 3.5 µM after tumors were introduced into either adult or aged rats. Soleus muscle fibersfrom neonatal rats (14 days) were less sensitive toCa2+ than those isolated fromadult rats, having a[Ca2+]50of 7.3 µM. The Ca2+ sensitivityof peroneus longus fibers did not change with age. We conclude thatsignificant increases in myofibrillarCa2+ sensitivity occur in skeletalmuscles undergoing rapid growth induced by GH-secreting tumors. 相似文献
6.
7.
Properties of slow- and fast-twitch skeletal muscle from mice with an inherited capacity for hypoxic exercise 总被引:2,自引:0,他引:2
Luedeke JD McCall RD Dillaman RM Kinsey ST 《Comparative biochemistry and physiology. Part A, Molecular & integrative physiology》2004,138(3):373-382
Muscle fiber type, myosin heavy chain (MHC) isoform composition, capillary density (CD) and citrate synthase (CS) activity were investigated in predominantly slow-twitch (soleus or SOL) and fast-twitch (extensor digitorum longus or EDL) skeletal muscle from mice with inherited differences in hypoxic exercise tolerance. Striking differences in hypoxic exercise tolerance previously have been found in two inbred strains of mice, Balb/cByJ (C) and C57BL/6J (B6), and their F1 hybrid following exposure to hypobaric hypoxia. Mice from the three strains were exposed for 8 weeks to either normobaric normoxia or hypobaric hypoxia (1/2 atm). Hypoxia exposure led to a slightly higher 2b fiber composition and a lower fiber area of types 1 and 2a in SOL of all mice. In the EDL, muscle fiber and MHC isoform composition remained unaffected by chronic hypoxia. Chronic hypoxia did not significantly affect CD in either muscle from any of the three strains. There were relatively larger differences in CS activity among strains and treatment, and in SOL the highest CS activity was found in the F1 mice that had been acclimated to hypoxia. In general, however, neither differences among strains nor treatment in these properties of muscle vary in a way that clearly relates to inherited hypoxic exercise tolerance. 相似文献
8.
Antagonistic effects of chronic low frequency stimulation and thyroid hormone on myosin expression in rat fast-twitch muscle 总被引:2,自引:0,他引:2
B J Kirschbaum H B Kucher A Termin A M Kelly D Pette 《The Journal of biological chemistry》1990,265(23):13974-13980
This study investigates effects of chronic low frequency stimulation (CLFS) on myosin heavy (MHC) and light chain (MLC) expression in fast-twitch muscles in hypothyroid, euthyroid, and hyperthyroid rats. The changes at both the mRNA and protein level indicated antagonistic effects of thyroid hormone and CLFS: under euthyroid conditions, CLFS mainly elicited a MHCIIb----MCHIId----MHCIIa transition. Whereas CLFS did not induce the slow MHCI in the euthyroid state, this isoform was present in the hypothyroid state and was further enhanced with CLFS indicating the suppressive effect of thyroid hormone to be stronger than the inductive influence of CLFS. Hyperthyroidism alone suppressed the expression MHCIIa and enhanced a MHCIId to MHCIIb transition. This shift to the faster MHC isoforms was only partially counteracted by CLFS. Thus, it appeared that thyroid hormone had a graded suppressive effect on the expression of MHC isoforms in the order MHCIId less than MHCIIa less than MHCI. Elevated neuromuscular activity partially counteracted these hormone effects. Changes in MLC mRNAs were consistent with those in the MHC pattern, i.e. increases or decreases in MHCIIb led to corresponding changes in the expression of MLC3f. A similar relationship existed for the slow MHCI and the slow MLC isoforms. 相似文献
9.
Rekalov V Juránek I Gurkovskaya A Shuba M Bauer V 《General physiology and biophysics》2003,22(2):151-166
The effects of H2O2 on electrical and mechanical activity of the longitudinal layer from the guinea-pig ileum were studied using sucrose-gap technique and the influence of H2O2 on ionic current was investigated in single smooth muscle cells by the patch-clamp method. In most of the preparations tested, the spontaneous activity observed was composed of slow waves with superimposed action potentials (APs). Both were resistant to tetrodotoxin and atropine. H2O2 (1 mmol/l) evoked sustained 3-5 mV membrane depolarisation, doubled the amplitude of the slow waves and increased their frequency, augmented the APs and reduced their splitting. These changes were accompanied with significant contraction, which had an amplitude comparable to that of the tonic component of 50 mmol/l K+-induced contraction. Calcium-free solution caused membrane depolarisation, reduction of the slow wave amplitude and frequency, disappearance of APs and decreased the mechanical tension of the preparations. Application of H2O2 (1 mmol/l) into the zero-calcium bath solution recovered the APs, which was accompanied by a low amplitude contraction. H2O2 (up to 1 mmol/l) increased the L-type calcium current (I(Ca)) both under conventional whole-cell patch-clamp configuration and under amphotericin-perforated patches by 16 +/- 3%. These data demonstrated that contractile response of the ileum longitudinal smooth muscle preparation evoked by H2O2 was mainly due to the enhanced electrical activity. 相似文献
10.
Pre- and post-natal growth and protein turnover in smooth muscle, heart and slow- and fast-twitch skeletal muscles of the rat. 总被引:1,自引:5,他引:1
The growth of one smooth and three individual striated muscles was studied from birth to old age (105 weeks), and where possible during the later stages of foetal life also. Developmental changes in protein turnover (measured in vivo) were related to the changing patterns of growth within each muscle, and the body as a whole. Developmental growth (i.e. protein accumulation) in all muscles involved an increasing proportion of protein per unit wet weight, as well as cellular hypertrophy. The contribution of the heart towards whole-body protein and nucleic acid contents progressively decreased from 18 days of gestation to senility. In contrast, post-natal changes in both slow-twitch (soleus) and fast-twitch (tibialis anterior) skeletal muscles remained reasonably constant with respect to whole-body values. Such age-related growth in all four muscle types was accompanied by a progressive decline in both the fractional rates of protein synthesis and breakdown, the changes in synthesis being more pronounced. Age for age, the fractional rates of synthesis were highest in the oesophageal smooth muscle, similar in both cardiac and the slow-twitch muscles, and lowest in the fast-twitch tibialis muscle. Despite these differences, the developmental fall in synthetic rates was remarkably similar in all four muscles, e.g. the rates at 105 weeks were 30-35% of their values at weaning. Such developmental changes in synthesis were largely related to diminishing ribosomal capacities within each muscle. When measured under near-steady-state conditions (i.e. 105 weeks of age), the half-lives of mixed muscle proteins were 5.1, 10.4, 12.1 and 18.3 days for the smooth, cardiac, soleus and tibialis muscles respectively. Old-age atrophy was evident in the senile animals, this being more marked in each of the four muscle types than in the animal as a whole. In each muscle of the senile rats the protein content and composition per unit wet weight, and both the fractional and total rates of synthesis, were significantly lower than in the muscles of younger, mature, animals (i.e. 44 weeks). In the soleus the decreased synthesis rate appeared to be related to a further fall in the ribosomal capacity. In contrast, the changes in synthesis in the three remaining muscles correlated with significant decreases in the synthetic rate per ribosome.(ABSTRACT TRUNCATED AT 400 WORDS) 相似文献
11.
Carbonic anhydrase III (CA III) is influenced by neuronal factors in skeletal muscles of the rat. CA III protein and its mRNA levels were assessed in slow- and fast-twitch muscles after short-term denervation by ligature of the sciatic nerve and reinnervation following removal of the sheath tightly fixed around the nerve. Significant elevations in the CA III mRNA content of fast-twitch muscles were recorded after denervation, but they were cancelled following spontaneous muscle reinnervation. No such variations were observed in the slow-twitch soleus muscle. CA III specific activity or cytosolic CA III protein content increased in both types of muscles after denervation, while a decrease was solely observed in the soleus after reinnervation. These results suggest that neuronal mediators may be responsible for up and down variations in CA III gene expression and (or) mRNA stability in slow- and fast-twitch muscles exposed to identical stimuli. Variations of the mRNA and the protein probably reflect, in a time-related manner, the well-programmed changes in fiber type of the muscles in the context of the denervation-reinnervation model. 相似文献
12.
Garait B Couturier K Servais S Letexier D Perrin D Batandier C Rouanet JL Sibille B Rey B Leverve X Favier R 《Free radical biology & medicine》2005,39(9):1249-1261
Food restriction is the most effective modulator of oxidative stress and it is believed that a reduction in caloric intake per se is responsible for the reduced generation of reactive oxygen species (ROS) by mitochondria. Hydrogen peroxide (H(2)O(2)) generation and oxygen consumption (O(2)) by skeletal muscle mitochondria were determined in a peculiar strain of rats (Lou/C) characterized by a self-low-caloric intake and a dietary preference for fat. These rats were fed either with a standard high-carbohydrate (HC) or a high-fat (HF) diet and the results were compared to those measured in Wistar rats fed a HC diet. H(2)O(2) production was significantly reduced in Lou/C rats fed a HC diet; this effect was not due to a lower O(2) consumption but rather to a decrease in rotenone-sensitive NADH-ubiquinone oxidoreductase activity and increased expression of uncoupling proteins 2 and 3. The reduced H(2)O(2) generation displayed by Lou/C rats was accompanied by a significant inhibition of permeability transition pore (PTP) opening. H(2)O(2) production was restored and PTP inhibition was relieved when Lou/C rats were allowed to eat a HF diet, suggesting that the reduced oxidative stress provided by low caloric intake is lost when fat proportion in the diet is increased. 相似文献
13.
Hydrogen peroxide (H2O2), which is required for thyroid hormone synthesis, has been believed to be produced at the apical cell surface of thyroid follicular cells. However, we recently found that plasma membrane from porcine thyroid exclusively generated superoxide anion (O2-) by employing a novel method for simultaneous determination of H2O2 and O2- with diacetyldeuterioheme-substituted horseradish peroxidase (diacetyl-HRP) as the trapping reagent [Nakamura, Y., Ohtaki, S., Makino, R., Tanaka, T., & Ishimura, Y. (1989) J. Biol. Chem. 264, 4759-4761]. The present study describes the mechanism of H2O2 production as analyzed by this new method. Incubation of cultured porcine follicular cells with ionomycin, a Ca-ionophore, caused an increase in oxygen uptake of about 80%. During enhanced respiration, the cells released H2O2 in an amount equivalent to the amount of oxygen consumed as judged by the formation of compound II of diacetyl-HRP, and H2O2 adduct of the peroxidase. No formation of compound III of the peroxidase, an O2- adduct, was detected during burst respiration. Thus, the intact cells exclusively released H2O2 to the outside of the cells. On the other hand, when the cell fragments from follicular cells were incubated with NADPH or NADH in the presence of Ca2+, the production of O2- was observed only during NADPH-dependent burst respiration, supporting our previous results that the plasma membrane exhibited NADPH-dependent O2(-)-generating activity. O2- production by the plasma membrane was further confirmed by analyses of the effects of superoxide dismutase (SOD) and catalase on the reaction. These results suggested that H2O2 is secondarily produced through the dismutation of O2-.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
14.
Effects of aging and denervation on the expression of uncoupling proteins in slow- and fast-twitch muscles of rats 总被引:3,自引:0,他引:3
We investigated the effects of aging and denervation on the gene expression of uncoupling proteins (UCPs) in slow-twitch soleus and fast-twitch gastrocnemius muscles. In a comparison between the control limbs of 6- and 24-month-old rats, the mRNA levels of UCP3, heart-type fatty acid binding protein (HFABP), and glucose transporter-4 (GLUT4) were considerably lower in the gastrocnemius muscles of the older rats, whereas no significant differences in the mRNA levels of those genes as well as UCP2 and cytochrome oxidase subunit IV (COX-IV) were observed in the soleus muscles of young and old rats. The UCP3 and COX-IV protein levels were also reduced considerably in the aged gastrocnemius muscles with atrophy. Denervation of the sciatic nerve caused an increase in UCP3 mRNA levels in both muscles, but the regulation of other genes contrasted between the two types of skeletal muscles. In spite of the increased mRNA level, a remarkable reduction in UCP3 protein was found in the denervated gastrocnemius muscles. These results indicate that the effects of aging and denervation on the gene expression of UCPs, HFABP, GLUT4, and COX-IV are different between the muscle types. The reduction in the mitochondrial UCP3 and COX proteins in aged fast-twitch muscles may have a negative effect on energy metabolism and thermogenesis in old animals. 相似文献
15.
Penheiter AR Bogoger M Ellison PA Oswald B Perkins WJ Jones KA Cremo CR 《The Journal of biological chemistry》2007,282(7):4336-4344
The effect of H(2)O(2) on smooth muscle heavy meromyosin (HMM) and subfragment 1 (S1) was examined. The number of molecules that retained the ability to bind ATP and the actinactivated rate of P(i) release were measured by single-turnover kinetics. H(2)O(2) treatment caused a decrease in HMM regulation from 800- to 27-fold. For unphosphorylated and phosphorylated heavy meromyosin and for S1, approximately 50% of the molecules lost the ability to bind to ATP. H(2)O(2) treatment in the presence of EDTA protected against ATPase inactivation and against the loss of total ATP binding. Inactivation of S1 versus time correlated to a loss of reactive thiols. Treatment of H(2)O(2)-inactivated phosphorylated HMM or S1 with dithiothreitol partially reactivated the ATPase but had no effect on total ATP binding. H(2)O(2)-inactivated S1 contained a prominent cross-link between the N-terminal 65-kDa and C-terminal 26-kDa heavy chain regions. Mass spectral studies revealed that at least seven thiols in the heavy chain and the essential light chain were oxidized to cysteic acid. In thiophosphorylated porcine tracheal muscle strips at pCa 9 + 2.1 mM ATP, H(2)O(2) caused a approximately 50% decrease in the amplitude but did not alter the rate of force generation, suggesting that H(2)O(2) directly affects the force generating complex. Dithiothreitol treatment reversed the H(2)O(2) inhibition of the maximal force by approximately 50%. These data, when compared with the in vitro kinetic data, are consistent with a H(2)O(2)-induced loss of functional myosin heads in the muscle. 相似文献
16.
Effects of chronic AICAR administration on the metabolic and contractile phenotypes of rat slow- and fast-twitch skeletal muscles 总被引:2,自引:0,他引:2
Bamford JA Lopaschuk GD MacLean IM Reinhart ML Dixon WT Putman CT 《Canadian journal of physiology and pharmacology》2003,81(11):1072-1082
The present study examined the effects of chronic activation of 5'-AMP-activated protein kinase (AMPK) on the oxidative capacity and myosin heavy chain (MHC) based fibre phenotype of rodent fast- and slow-twitch muscles. Sprague-Dawley rats received daily injections for 4 weeks of the known AMPK activator 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside (AICAR) or vehicle (control). The AICAR group displayed increases in hexokinase-II (HXK-II) activity, expression, and phosphorylation in fast-twitch muscles (P<0.001) but not in the slow-twitch soleus (SOL). In the AICAR group, citrate synthase (EC 4.1.3.7) and 3-hydroxyacyl-CoA-dehydrogenase (EC 1.1.1.35) were elevated 1.6- and 2.1-fold (P<0.05), respectively, in fast-twitch medial gastrocnemius (MG), and by 1.2- and 1.4-fold (P<0.05) in the slower-twitch plantaris (PLANT). No changes were observed in the slow-twitch SOL. In contrast, the activity of glyceraldehyde phosphate dehydrogenase (EC 1.2.1.12) remained unchanged in all muscles. AICAR treatment did not alter the MHC-based fibre type composition in fast- or slow-twitch muscles, as determined by immunohistochemical and electrophoretic analytical methods or by RT-PCR. We conclude that chronic activation of AMPK mimics the metabolic changes associated with chronic exercise training (increased oxidative capacity) in the fast-twitch MG and PLANT, but does not coordinately alter MHC isoform content or mRNA expression. 相似文献
17.
《Free radical research》2013,47(9):1004-1012
AbstractThe inhibitory or activating effect of H2O2 on large conductance calcium and voltage-dependent potassium (BKCa) channels has been reported. However, the mechanism by which this occurs is unclear. In this paper, BKCa channels encoded by mouse Slo were expressed in HEK 293 cells and BKCa channel activity was measured by electrophysiology. The results showed that H2O2 inhibited BKCa channel activity in inside-out patches but enhanced BKCa channel activity in cell-attached patches. The inhibition by H2O2 in inside-out patches may be due to oxidative modification of cysteine residues in BKCa channels or other membrane proteins that regulate BKCa channel function. PI3K/AKT signaling modulates the H2O2-induced BKCa channel activation in cell-attached patches. BKCa channels and PI3K signaling pathway were involved in H2O2-induced vasodilation and H2O2-induced vasodilation by PI3K pathway was mainly due to modulation of BKCa channel activity. 相似文献
18.
Ca2+ regulation of thyroid NADPH-dependent H2O2 generation 总被引:1,自引:0,他引:1
A thyroid particulate fraction contains an NADPH-dependent H2O2-generating enzyme which requires Ca2+ for activity. A Chaps solubilized extract of the thyroid particulate fraction partially purified by DEAE chromatography did not show a dependence on Ca2+ for activity. Preincubation of the particulate fraction with Ca2+ yielded a preparation insensitive to Ca2+. The non-particulate fraction obtained after incubation of the particles in the presence of Ca2+ was able to inhibit, in the presence of EGTA, the Ca2+-desensitized particulate fraction and the enzyme isolated on DEAE. It is concluded that the reversible Ca2+ activation of the NADPH-dependent H2O2 generation was modulated in porcine thyroid tissue by (a) calcium-releasable inhibitor protein(s). 相似文献
19.
This work was designed to determine possible effects of altered thyroid states on rates and sites of H 2 O 2 production by rat heart mitochondria. Rates of O 2 consumption and H 2 O 2 release, capacities to remove the peroxide, lipid peroxidation, cytochrome oxidase activities and ubiquinone levels were determined in heart mitochondria from euthyroid, hypothyroid, and hyperthyroid rats. Hypothyroidism decreased, whereas hyperthyroidism increased the rates of O 2 consumption and H 2 O 2 release during both state 4 and state 3 respiration with Complex I- or Complex II-linked substrates. The percentage of O 2 released as H 2 O 2 was not significantly affected by thyroid state. However, the mitochondrial capacity to remove H 2 O 2 increased in the transition from hypothyroid to hyperthyroid state, which indicates that H 2 O 2 production did not modify in proportion to the rate of O 2 consumption. The thyroid-state-linked changes in H 2 O 2 production were well correlated with the levels of hydroperoxides. Rates of H 2 O 2 release in the presence of respiratory inhibitors indicated that changes in the H 2 O 2 production occurred at both sites at which H 2 O 2 was generated in euthyroid state. This result and the observation that ubiquinol levels and cytochrome oxidase activities increase in the transition from hypothyroid to hyperthyroid state suggest that the modifications of H 2 O 2 production are due to a modulation by thyroid hormone of mitochondrial content of autoxidisable electron carriers. 相似文献
20.
Nitric oxide (NO) has been shown to both enhance hydrogen peroxide (H2O2) toxicity and protect cells against H2O2 toxicity. In order to resolve this apparent contradiction, we here studied the effects of NO on H2O2 toxicity in cultured liver endothelial cells over a wide range of NO and H2O2 concentrations. NO was generated by spermine NONOate (SpNO, 0.001–1 mM), H2O2 was generated continuously by glucose/glucose oxidase (GOD, 20–300 U/l), or added as a bolus (200 μM). SpNO concentrations between 0.01 and 0.1 mM provided protection against H2O2-induced cell death. SpNO concentrations >0.1 mM were injurious with low H2O2 concentrations, but protective at high H2O2 concentrations. Protection appeared to be mainly due to inhibition of lipid peroxidation, for which SpNO concentrations as low as 0.01 mM were sufficient. SpNO in high concentration (1 mM) consistently raised H2O2 steady-state levels in line with inhibition of H2O2 degradation. Thus, the overall effect of NO on H2O2 toxicity can be switched within the same cellular model, with protection being predominant at low NO and high H2O2 levels and enhancement being predominant with high NO and low H2O2 levels. 相似文献