首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reddy GB  Kumar PA  Kumar MS 《IUBMB life》2006,58(11):632-641
alpha-Crystallin, a prominent member of small heat shock protein (sHsp) family and a major structural protein of the eye lens is a large polydisperse oligomer of two isoforms, alphaA- and alphaB-crystallins. Numerous studies have demonstrated that alpha-crystallin functions like a molecular chaperone in preventing the aggregation of various proteins under a wide range of stress conditions. The molecular chaperone function of alpha-crystallin is thus considered to be vital in the maintenance of lens transparency and in cataract prevention. alpha-Crystallin selectively interacts with non-native proteins thereby preventing them from aggregation and helps maintain them in a folding competent state. It has been proposed and generally accepted that alpha-crystallin suppresses the aggregation of other proteins through the interaction between hydrophobic patches on its surface and exposed hydrophobic sites of partially unfolded substrate protein. However, a quantifiable relationship between hydrophobicity and chaperone-like activity remains a matter to be concerned about. On an attentive review of studies on alpha-crystallin chaperone-like activity, particularly the studies that have direct or indirect implications to hydrophobicity and chaperone-like activity, we found several instances wherein the correlation between hydrophobicity and its chaperone-like activity is paradoxical. We thus attempted to provide an overview on the role of hydrophobicity in chaperone-like activity of alpha-crystallin, the kind of evaluation done for the first time.  相似文献   

2.
The chaperone-like activity of alpha-crystallin is considered to play an important role in the maintenance of the transparency of the eye lens. However, in the case of aging and in diabetes, the chaperone function of alpha-crystallin is compromized, resulting in cataract formation. Several post-translational modifications, including non-enzymatic glycation, have been shown to affect the chaperone function of alpha-crystallin in aging and in diabetes. A variety of agents have been identified as the predominant sources for the formation of AGEs (advanced glycation end-products) in various tissues, including the lens. Nevertheless, glycation of alpha-crystallin with various sugars has resulted in divergent results. In the present in vitro study, we have investigated the effect of glucose, fructose, G6P (glucose 6-phosphate) and MGO (methylglyoxal), which represent the major classes of glycating agents, on the structure and chaperone function of alpha-crystallin. Modification of alpha-crystallin with all four agents resulted in the formation of glycated protein, increased AGE fluorescence, protein cross-linking and HMM (high-molecular-mass) aggregation. Interestingly, these glycation-related profiles were found to vary with different glycating agents. For instance, CML [N(epsilon)-(carboxymethyl)lysine] was the predominant AGE formed upon glycation of alpha-crystallin with these agents. Although fructose and MGO caused significant conformational changes, there were no significant structural perturbations with glucose and G6P. With the exception of MGO modification, glycation with other sugars resulted in decreased chaperone activity in aggregation assays. However, modification with all four sugars led to the loss of chaperone activity as assessed using an enzyme inactivation assay. Glycation-induced loss of alpha-crystallin chaperone activity was associated with decreased hydrophobicity. Furthermore, alpha-crystallin isolated from glycated TSP (total lens soluble protein) had also increased AGE fluorescence, CML formation and diminished chaperone activity. These results indicate the susceptibility of alpha-crystallin to non-enzymatic glycation by various sugars and their derivatives, whose levels are elevated in diabetes. We also describe the effects of glycation on the structure and chaperone-like activity of alpha-crystallin.  相似文献   

3.
Non-enzymatic glycation is a complex series of reactions between reducing sugars and amino groups of proteins. Accumulation of AGEs (advanced glycation end-products) due to non-enzymatic glycation has been related to several diseases associated with aging and diabetes. The formation of AGEs is accelerated in hyperglycaemic conditions, which alters the structure and function of long-lived proteins, thereby contributing to long-term diabetic complications. The present study describes AGE inhibition and the mechanism of action of a new antiglycating agent, EA (ellagic acid), a flavonoid present in many dietary sources. Inhibition of AGE formation by EA was demonstrated with different proteins, namely eye lens TSP (total soluble protein), Hb (haemoglobin), lysozyme and BSA, using different glycating agents such as fructose, ribose and methylglyoxal by a set of complementary methods. These results suggest that the antiglycating action of EA seems to involve, apart from inhibition of a few fluorescent AGEs, predominantly inhibition of CEL [N?-(carboxyethyl)lysine] through scavenging of the dicarbonyl compounds. Furthermore, MALDI-TOF-MS (matrix-assisted laser-desorption ionisation-time-of-flight MS) analysis confirms inhibition of the formation of CEL on lysozyme on in vitro glycation by EA. Prevention of glycation-mediated β-sheet formation in Hb and lysozyme by EA confirm its antiglycating ability. Inhibition of glycosylated Hb formation in human blood under ex vivo high-glucose conditions signifies the physiological antiglycating potential of EA. We have also determined the effectiveness of EA against loss of eye lens transparency through inhibition of AGEs in the lens organ culture system. These findings establish the antiglycating potential of EA and its in vivo utility in controlling AGE-mediated diabetic pathologies.  相似文献   

4.
alpha-Crystallin, the major protein component of the vertebrate lens, is thought to play a critical role in the maintenance of transparency through its ability to inhibit stress-induced protein aggregation. However, during aging and cataract formation the amount of membrane-bound alpha-crystallin increases significantly while high molecular weight complexes (HMWCs) comprised of alpha-crystallin and other lens crystallins accumulate. These and other recent data suggest a possible link between cataract formation, the formation of high molecular weight alpha-crystallin aggregates, and the progressive increase in membrane association of alpha-crystallin. To better understand these processes, we characterized the chaperone-like activity (CLA) and subunit exchange of membrane bound alpha-crystallin. In addition, we measured the membrane binding properties of in vitro constituted HMWCs to understand the mechanism by which increased alpha-crystallin is bound to the membrane of old and cataractous lens cells in vivo. Membrane-associated alpha-crystallin complexes have measurably reduced CLA compared to complexes in solution; however, membrane binding does not alter the time required for alpha-crystallin complexes to reach subunit exchange equilibrium. In addition, HMWCs prepared in vitro have a profoundly increased membrane binding capacity as compared to native alpha-crystallin. These results are consistent with a model in which increased membrane binding of alpha-crystallin is an integral step in the pathogenesis of many forms of cataracts.  相似文献   

5.
This study focussed on the effect of diabetes on the chaperone function of alpha-crystallin. The authors relied on diabetic rats with a wide range of plasma glucose levels and non-diabetic control rats to establish a possible relationship between severity of diabetes and alpha-crystallin chaperone activity. In addition, 52-56 and 63-69 year-old diabetic and non-diabetic human lenses were used to show whether diabetes affects alpha-crystallin chaperone activity in human lenses. Correlation between plasma glucose levels and loss of chaperone activity of the alphaL-crystallin fraction in diabetic rats indicated good correlation. The glycemic threshold, reported before for cataract development in diabetic rats, seems to be valid for the chaperone activity loss as well. Analysis of the human lens alphaL-crystallin showed lower chaperone activity in all the diabetic lenses than in the age-matched control lenses. In the 63-69 age group, the loss in chaperone activity due to diabetes was significantly larger than in the 52-56 age group suggesting a dominant effect of duration of diabetes.  相似文献   

6.
Alpha-crystallin, a molecular chaperone and lens structural protein protects soluble enzymes against heat-induced aggregation and inactivation by a variety of molecules. In this study we investigated the chaperone function of alpha-crystallin in a more physiological system in which alpha-crystallin was incorporated into red cell 'ghosts'. Its ability to protect the intrinsic membrane protein Na/K-ATPase from external stresses was studied. Red cell ghosts were created by lysing the red cells and removing cytoplasmic contents by size-exclusion chromatography. The resulting ghost cells retain Na/K-ATPase activity. alpha-Crystallin was incorporated in the cells on resealing and the activity of Na/K-ATPase assessed by ouabain-sensitive 86Rb uptake. Incubation with fructose, hydrogen peroxide and methylglyoxal (compounds that have been implicated in diabetes and cataract formation) were used to test inactivation of the Na/K pump. Intracellular alpha-crystallin protected against the decrease in ouabain sensitive 86Rb uptake, and therefore against inactivation induced by all external modifiers, in a dose-dependent manner.  相似文献   

7.
Alpha-crystallin, one of the major proteins in the vertebrate eye lens, acts as a molecular chaperone, like the small heat-shock proteins, by protecting other proteins from denaturing under stress or high temperature conditions. alpha-Crystallin aggregation is involved in lens opacification, and high [Ca(2+)] has been associated with cataract formation, suggesting a role for this cation in the pathological process. We have investigated the effect of Ca(2+) on the thermal stability of alpha-crystallin by UV and Fourier-transform infrared (FTIR) spectroscopies. In both cases, a Ca(2+)-induced decrease in the midpoint of the thermal transition is detected. The presence of high [Ca(2+)] results also in a marked decrease of its chaperone activity in an insulin-aggregation assay. Furthermore, high Ca(2+) concentration decreases Cys reactivity towards a sulfhydryl reagent. The results obtained from the spectroscopic analysis, and confirmed by circular dichroism (CD) measurements, indicate that Ca(2+) decreases both secondary and tertiary-quaternary structure stability of alpha-crystallin. This process is accompanied by partial unfolding of the protein and a clear decrease in its chaperone activity. It is concluded that Ca(2+) alters the structural stability of alpha-crystallin, resulting in impaired chaperone function and a lower protective ability towards other lens proteins. Thus, alpha-crystallin aggregation facilitated by Ca(2+) would play a role in the progressive loss of transparency of the eye lens in the cataractogenic process.  相似文献   

8.
alpha-Crystallin, a heteromultimeric protein made up of alphaA- and alphaB-crystallins, functions as a molecular chaperone in preventing the aggregation of proteins. We have shown earlier that structural perturbation of alpha-crystallin can enhance its chaperone-like activity severalfold. The two subunits of alpha-crystallin have extensive sequence homology and individually display chaperone-like activity. We have investigated the chaperone-like activity of alphaA- and alphaB-crystallin homoaggregates against thermal and nonthermal modes of aggregation. We find that, against a nonthermal mode of aggregation, alphaB-crystallin shows significant protective ability even at subphysiological temperatures, at which alphaA-crystallin or heteromultimeric alpha-crystallin exhibit very little chaperone-like activity. Interestingly, differences in the protective ability of these homoaggregates against the thermal aggregation of beta(L)-crystallin is negligible. To investigate this differential behavior, we have monitored the temperature-dependent structural changes in both the proteins using fluorescence and circular dichroism spectroscopy. Intrinsic tryptophan fluorescence quench-ing by acrylamide shows that the tryptophans in alphaB-crystallin are more accessible than the lone tryptophan in alphaA-crystallin even at 25 degrees C. Protein-bound 8-anilinonaphthalene-1-sulfonate fluorescence demonstrates the higher solvent accessibility of hydrophobic surfaces on alphaB-crystallin. Circular dichroism studies show some tertiary structural changes in alphaA-crystallin above 50 degrees C. alphaB-crystallin, on the other hand, shows significant alteration of tertiary structure by 45 degrees C. Our study demonstrates that despite a high degree of sequence homology and their generally accepted structural similarity, alphaB-crystallin is much more sensitive to temperature-dependent structural perturbation than alphaA- or alpha-crystallin and shows differences in its chaperone-like properties. These differences appear to be relevant to temperature-dependent enhancement of chaperone-like activity of alpha-crystallin and indicate different roles for the two proteins both in alpha-crystallin heteroaggregate and as separate proteins under stress conditions.  相似文献   

9.
alpha-Crystallin, the major protein of the mammalian eye lens, is also found in the major tissues of the body, where one or the other of its two isoforms is characteristically expressed. Both isoform sequences are highly related to others of the small heat shock protein superfamily, leading to speculation about their functions in vivo outside of the lens. Tests of chaperone-like activity at 37 and 66 degrees C indicate that the protein can act to prevent the superaggregation of partially denatured proteins, but both alpha-crystallin aggregate size and shape are significantly altered with increasing temperature. Characterization of these changes indicates that secondary, tertiary, and quaternary structure are modified, with the latter effect especially striking above 50 degrees C. Furthermore, these changes appear to be irreversible when the temperature is returned to 25 or 37 degrees C. Functionally, the protein is effective in chaperone-like activity at all temperatures, but exhibits a somewhat increased capability after a cycle of heating and cooling. The results presented here indicate the heat-induced formation of high-molecular-weight aggregates of alpha-crystallin is a slow progressive process. The increased activity of these aggregates suggests that chaperone-like activity depends in part on the packing parameters of the aggregate and on conformation of the subunit within that aggregate.  相似文献   

10.
alpha-Crystallin in its native state is a large, heterogeneous, low-molecular weight (LMW) aggregate that under certain conditions may progressively became part of insoluble high-molecular weight (HMW) systems. These systems are supposed to play a relevant role in eye lens opacification and vision impairment. In this paper, we report the effects of trehalose on alpha-crystallin aggregates. The role of trehalose in alpha-crystallin stress tolerance, chaperone activity and thermal stability is studied. The results show that trehalose stabilizes the alpha-crystallin native structure, inhibits alpha-crystallin aggregation, and disaggregates preformed LMW systems not affecting its chaperone activity.  相似文献   

11.
Age-related cataract is a result of crystallins, the predominant lens proteins, forming light-scattering aggregates. In the low protein turnover environment of the eye lens, the crystallins are susceptible to modifications that can reduce stability, increasing the probability of unfolding and aggregation events occurring. It is hypothesized that the alpha-crystallin molecular chaperone system recognizes and binds these proteins before they can form the light-scattering centres that result in cataract, thus maintaining the long-term transparency of the lens. In the present study, we investigated the unfolding and aggregation of (wild-type) human and calf betaB2-crystallins and the formation of a complex between alpha-crystallin and betaB2-crystallins under destabilizing conditions. Human and calf betaB2-crystallin unfold through a structurally similar pathway, but the increased stability of the C-terminal domain of human betaB2-crystallin relative to calf betaB2-crystallin results in the increased population of a partially folded intermediate during unfolding. This intermediate is aggregation-prone and prevents constructive refolding of human betaB2-crystallin, while calf betaB2-crystallin can refold with high efficiency. alpha-Crystallin can effectively chaperone both human and calf betaB2-crystallins from thermal aggregation, although chaperone-bound betaB2-crystallins are unable to refold once returned to native conditions. Ordered secondary structure is seen to increase in alpha-crystallin with elevated temperatures up to 60 degrees C; structure is rapidly lost at temperatures of 70 degrees C and above. Our experimental results combined with previously reported observations of alpha-crystallin quaternary structure have led us to propose a structural model of how activated alpha-crystallin chaperones unfolded betaB2-crystallin.  相似文献   

12.
Structural perturbation of alpha-crystallin is shown to enhance its molecular chaperone-like activity in preventing aggregation of target proteins. We demonstrate that arginine, a biologically compatible molecule that is known to bind to the peptide backbone and negatively charged side-chains, increases the chaperone-like activity of calf eye lens alpha-crystallin as well as recombinant human alphaA- and alphaB-crystallins. Arginine-induced increase in the chaperone activity is more pronounced for alphaB-crystallin than for alphaA-crystallin. Other guanidinium compounds such as aminoguanidine hydrochloride and guanidine hydrochloride also show a similar effect, but to different extents. A point mutation, R120G, in alphaB-crystallin that is associated with desmin-related myopathy, results in a significant loss of chaperone-like activity. Arginine restores the activity of mutant protein to a considerable extent. We have investigated the effect of arginine on the structural changes of alpha-crystallin by circular dichroism, fluorescence, and glycerol gradient sedimentation. Far-UV CD spectra show no significant changes in secondary structure, whereas near-UV CD spectra show subtle changes in the presence of arginine. Glycerol gradient sedimentation shows a significant decrease in the size of alpha-crystallin oligomer in the presence of arginine. Increased exposure of hydrophobic surfaces of alpha-crystallin, as monitored by pyrene-solubilization and ANS-fluorescence, is observed in the presence of arginine. These results show that arginine brings about subtle changes in the tertiary structure and significant changes in the quaternary structure of alpha-crystallin and enhances its chaperone-like activity significantly. This study should prove useful in designing strategies to improve chaperone function for therapeutic applications.  相似文献   

13.
alpha-Crystallin, the major eye lens protein and a member of the small heat-shock protein family, has been shown to protect the aggregation of several proteins and enzymes under denaturing conditions. The region(s) in the denaturing proteins that interact with alpha-crystallin during chaperone action has not been identified. Determination of these sites would explain the wide chaperoning action (promiscuity) of alpha-crystallin. In the present study, using two different methods, we have identified a sequence in yeast alcohol dehydrogenase (ADH) that binds to alpha-crystallin during chaperone-like action. The first method involved the incubation of alpha-crystallin with ADH peptides at 48 degrees C for 1 h followed by separation and analysis of bound peptides. In the second method, alpha-crystallin was first derivatized with a photoactive trifunctional cross-linker, sulfosuccinimidyl-2[6-(biotinamido)-2-(p-azidobenzamido)-hexanoamido]ethyl-1,3di-thiopropionate (sulfo-SBED), and then complexed with ADH at 48 degrees C for 1 h in the dark. The complex was photolyzed and digested with protease, and the biotinylated peptide fragments were isolated using an avidin column and then analyzed. The amino acid sequencing and mass spectral analysis revealed the sequence YSGVCHTDLHAWHGDWPLPVK (yeast ADH(40-60)) as the alpha-crystallin binding site in ADH. The interaction was further confirmed by demonstrating complex formation between alpha-crystallin and a synthetic peptide representing the binding site of ADH.  相似文献   

14.
The chaperone-like activity of human lens alpha-crystallin in inhibiting the aggregation of denatured proteins suggests a role for alpha-crystallin in cataract prevention. Although a variety of techniques have generated structural information relevant to its chaperone-like activity, the size and heterogeneity of alpha-crystallin have prevented determination of its crystal structure. Even though synthetic cross-linkers have provided considerable information about protein structures, they have not previously been used to study the proximity and orientation of subunits within human alpha-crystallin. Cross-linkers provide structural insight into proteins by binding the side chains of amino acids within close proximity. To identify the cross-linked residues, the modified protein is digested and the resulting peptides are analyzed by mass spectrometry. Analysis of products from the reaction of alpha-crystallin with 3,3'dithiobis(sulfosuccinimidyl propionate), DTSSP, identified several modifications to both alphaA and alphaB. The most structurally informative of these modifications was a cross-link between lysine 166 of alphaA and lysine 175 of alphaB. This cross-link provides experimental evidence supporting theoretical structural models that place the C termini of alphaA and alphaB within close proximity in the native aggregate.  相似文献   

15.
alpha-Crystallin, a major eye lens protein, has been shown to function like a molecular chaperone by suppressing the aggregation of other proteins induced by various stress conditions. Ultraviolet (UV) radiation is known to cause structural and functional alterations in the lens macromolecules. Earlier we observed that exposure of rat lens to in vitro UV radiation led to inactivation of many lens enzymes including glucose-6-phosphate dehydrogenase (G6PD). In the present paper, we show that alpha-crystallin (alphaA and alphaB) protects G6PD from UVB irradiation induced inactivation. While, at 25 degrees C, there was a time-dependent decrease in G6PD activity upon irradiation at 300 nm, at 40 degrees C there was a complete loss of activity within 30 min even without irradiation. The loss of activity of G6PD was prevented significantly, if alphaA- or alphaB-crystallin was present during irradiation. At 25 degrees C, alphaB-crystallin was slightly a better chaperone in protecting G6PD against UVB inactivation. Interestingly, at 40 degrees C, alphaA- and alphaB-crystallins not only prevent the loss of G6PD activity but also protect against UVB inactivation. However, alphaA- and alphaB-crystallins were equally efficient at 40 degrees C in protecting G6PD.  相似文献   

16.
The water-binding properties of bovine lens alpha-crystallin, collagen from calf skin and bovine serum albumin (BSA), were investigated with various techniques. The water absorptive capacity was obtained in high vacuum desorption experiments volumetrically, and also gravimetrically in controlled atmosphere experiments. NMR spin-echo technique was used to study the hydration of protein samples and to determine the spin-spin relaxation times (T2) from the protons of water, absorbed on the proteins. Isolated bovine lenses were sectioned into 11-12 morphological layers (from anterior cortex through nucleus to posterior cortex). Crystallin profiles were obtained for each lens layer using thin-layer isoelectric focusing in polyacrylamide gel (IEF). The water content in relation to dry weight of proteins was measured in individual morphological lens layers. During the water vapor uptake P/P(0)=0.75, alpha-crystallin did not absorb water, suggesting that hydrophobic regions of the protein are exposed to the aqueous solvent. At P/P(0)=1.0, the absorption of water by alpha-crystallin was 17% with a single component decay character of spin-echo (T2=3 ms). Addition of water to alpha-crystallin to about 50% of its w/w in the protein sample showed T2=8 ms with only one single component decay of the spin-echo signal. The single component decay character of the spin-echo indicates at the tightly bound water by alpha-crystallin. Under a relative humidity P/P(0)=1.0, collagen and BSA absorbed correspondingly 19.3% and 28% of water and showed a two-component decay curve with T2 of about 5 and 40 ms. The findings demonstrate the presence of two water fractions in collagen and BSA which are separated in space. The IEF data suggest a tight binding of water with alpha-crystallin with similar distribution patterns in the lens layers. The IEF data demonstrate a possible chaperone-like function for alpha-crystallin in the nucleus and inner cortex of the lens, but not in the outer cortex. To conclude, it was found that alpha-crystallin can immobilize and bind water to a greater extent than other proteins such as collagen and BSA. These results shed new light on structural properties of alpha-crystallin and have important implications for understanding the mechanism of the chaperone-like action of this protein in the lens and non-ocular tissues.  相似文献   

17.
Human lens beta-crystallin solubility   总被引:4,自引:0,他引:4  
The human lens is composed primarily of water and proteins called crystallins. Insolubility of these crystallins is correlated with aging and cataractogenesis. The alpha-crystallins have chaperone-like activity in maintaining the solubility of denatured beta- and gamma-crystallins. One established test of this chaperone activity is the ability of alpha-crystallin to prevent thermal destabilization of beta-crystallins. Several studies have addressed the effects of structural modifications of alpha-crystallin on chaperone activity, but little is known about the solubilities of the various beta-crystallins or the effects of post-translational modifications. Understanding the solubilities of different forms of beta-crystallins is important to elucidating the mechanism of chaperone activity. In this study, the solubilities of beta-crystallins were examined. The beta-crystallins included the gene products of betaB2, betaA1/A3, betaA4, and betaB1 as well as forms modified in vivo. Analysis of the beta-crystallins by high performance liquid chromatography and mass spectrometry before and after heating revealed large differences in the relative solubilities of the beta-crystallins. These results demonstrate a decreased solubility of specific beta-crystallins and post-translational modifications that may play a role in the crystallin insolubility associated with aging and cataract.  相似文献   

18.
The alpha-crystallins, alphaA and alphaB, are major lens structural proteins with chaperone-like activity and sequence homology to small heat-shock proteins. As yet, their crystal structures have not been determined because of the large size and heterogeneity of the assemblies they form in solution. Because alpha-crystallin chaperone activity increases with temperature, understanding structural changes of alpha-crystallin as it is heated may help elucidate the mechanism of chaperone activity. Although a variety of techniques have been used to probe changes in heat-stressed alpha-crystallin, the results have not yet yielded a clear understanding of chaperone activity. We report examination of native assemblies of human lens alpha-crystallin using hydrogen/deuterium exchange in conjunction with enzymatic digestion and analysis by mass spectrometry. This technique has the advantage of sensing structural changes along much of the protein backbone and being able to detect changes specific to alphaA and alphaB in the native assembly. The reactivity of the amide linkages to hydrogen/deuterium exchange was determined for 92% of the sequence of alphaA and 99% of alphaB. The behavior of alphaA and alphaB is remarkably similar. At low temperatures, there are regions at the beginning of the alpha-crystallin domains in both alphaA and alphaB that have high protection to isotope exchange, whereas the C termini offer little protection. The N terminus of alphaA also has low protection. With increasing temperatures, both proteins show gradual unfolding. The maximum percent change in exposure with increasing temperatures was found in alphaA 72-75 and alphaB 76-79, two regions considered critical for chaperone activity.  相似文献   

19.
Prevention of cataract by pyruvate in experimentally diabetic mice   总被引:1,自引:0,他引:1  
Previous studies have demonstrated that administration of pyruvate prevents cataract formation in diabetic rats. It is known that the induction of cataractous process in this case is initiated by aldose reductase (AR) catalyzed synthesis and accumulation of excessive sorbitol in the lens fibres and epithelium and their consequent osmotic hydration. Synthesis of this and other polyols is competitively inhibited by pyruvate. The objective of the present investigations was hence to determine whether pyruvate would have a similar protective effect in species where cataract formation is relatively independent of sorbitol synthesis such as in humans where the lens AR activity is extremely low, especially with glucose as a substrate. The Km of AR for glucose is known to be very high. The possible protective effect of pyruvate in the low AR models was conceived on the basis of our previous findings suggesting that it can also exert substantial antiglycating as well as antioxidant effects. The present studies have hence been conducted with mice, a species known to be low in lens AR, similar to that in humans. As stipulated, pyruvate administration has indeed been found to offer a significant protection against development of diabetic cataract in this model also. The effect correlated with the inhibition of protein glycation as well as of oxidative stress. The latter was apparent by the prevention of the loss of glutathione known to be associated with diabetes. Although there was a small but noticeable increment in the sorbitol content of the diabetic lenses, this was osmotically insignificant. Even this increase was prevented by pyruvate. The magnitude of the elevation in the contents of glycated proteins and the depression in the level of glutathione were, on the contrary, highly pronounced, suggesting a more prominent role of the latter factors. In addition, the possibility of a direct metabolic support it could offer to the tissue is also imminent by its effect on the maintenance of ATP, as shown earlier. The present studies are therefore considered more relevant to the pathogenesis of cataract in human diabetics and its possible prevention by endogenous compounds with antiglycating and antioxidant properties. Inhibition of cataract formation by pyruvate in an animal model with low lens AR, similar to that in humans, has been shown for the first time.  相似文献   

20.
alpha-Crystallin, a major lens protein of approximately 800 kDa with subunits of approximately 20 kDa has previously been shown to act as a chaperone protecting other proteins from stress-induced aggregation. Here it is demonstrated that alpha-crystallin can bind to partially denatured enzymes at 42-43 degrees C and prevent their irreversible aggregation, but cannot prevent loss of enzyme activity. However, the alpha-crystallin-bound enzymes regain activity on interaction with other chaperones. The data indicate that the re-activated enzymes are no longer associated with the alpha-crystallin, and ATP is required for re-activation. When inactive luciferase bound to alpha-crystallin was treated with reticulocyte lysate, a rich source of chaperones, up to 60% of the original luciferase activity could be recovered. Somewhat less re-activation was observed when the alpha-crystallin-bound enzyme was treated with heat-shock protein (HSP)70, HSP40, HSP60 and an ATP-generating system. Similar results were also obtained with citrate synthase. The overall results suggest that alpha-crystallin acts to stabilize denaturing proteins so that they can later be re-activated by other chaperones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号