首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present study investigated the impact of ifosfamide (IFO) on renal thioredoxin reductase (TrxR) activity. In mice treated with IFO for 6 h, TrxR activity significantly decreased in a dose-dependent manner. Subsequently, acute renal failure (ARF) occurred dose-dependently. Like IFO, the well-established TrxR-specific inhibitor auranofin suppresfssed renal TrxR activity and generated ARF too. TrxR was inactivated by IFO preferentially over other antioxidant parameters at 6 h; however, it recovered nearly to normal levels within 12 h. When auranofin was administered at 6 h after IFO treatment, the recovery at 12 h was sharply attenuated. Consequently, ARF was pronouncedly exacerbated. IFO within its maximum tolerated dose did not considerably deplete renal glutathione. However, escalating IFO dose strikingly attacked both the thioredoxin and the glutathione systems, resulting in lethality, which implies that glutathione depletion sensitizes IFO-induced nephrotoxicity and cosuppression of both systems causes more severe toxicological consequences than suppressing the thioredoxin system alone. Indeed, combining IFO with buthionine sulfoximine, an inhibitor of glutathione synthesis, induced much more severe ARF than IFO alone did. Taken together, inhibition of renal TrxR activity can be considered as a pivotal mechanism of IFO-induced ARF, and individuals with lower levels of renal glutathione are at high risk of incurring ARF after IFO treatment.  相似文献   

2.
Mammalian thioredoxin reductase (TrxR) is important for cell proliferation, antioxidant defense, and redox signaling. Together with glutathione reductase (GR) it is the main enzyme providing reducing equivalents to many cellular processes. GR and TrxR are flavoproteins of the same enzyme family, but only the latter is a selenoprotein. With the active site containing selenocysteine, TrxR may catalyze reduction of a wide range of substrates, but can at the same time easily be targeted by electrophilic compounds due to the extraordinarily high reactivity of a selenolate moiety. Here we addressed the inhibition of the enzyme by major anticancer alkylating agents and platinum-containing compounds and we compared it to that of GR. We confirmed prior studies suggesting that the nitrosourea carmustine can inhibit both GR and TrxR. We next found, however, that nitrogen mustards (chlorambucil and melphalan) and alkyl sulfonates (busulfan) efficiently inhibited TrxR while these compounds, surprisingly, did not inhibit GR. Inhibitions were concentration and time dependent and apparently irreversible. Anticancer anthracyclines (daunorubicin and doxorubicin) were, in contrast to the alkylating agents, not inhibitors but poor substrates of TrxR. We also found that TrxR, but not GR, was efficiently inhibited by both cisplatin, its monohydrated complex, and oxaliplatin. Carboplatin, in contrast, could not inhibit any of the two enzymes. These findings lead us to conclude that representative compounds of the major classes of clinically used anticancer alkylating agents and most platinum compounds may easily target TrxR, but not GR. The TrxR inhibition should thereby be considered as a factor that may contribute to the cytotoxicity seen upon clinical use of these drugs.  相似文献   

3.
Urig S  Lieske J  Fritz-Wolf K  Irmler A  Becker K 《FEBS letters》2006,580(15):3595-3600
The substrate spectrum of human thioredoxin reductase (hTrxR) is attributed to its C-terminal extension of 16 amino acids carrying a selenocysteine residue. The concept of an evolutionary link between thioredoxin reductase and glutathione reductase (GR) is presently discussed and supported by the fact that almost all residues at catalytic and substrate recognition sites are identical. Here, we addressed the question if a deletion of the C-terminal part of TrxR leads to recognition of glutathione disulfide (GSSG), the substrate of GR. We introduced mutations at the putative substrate binding site to enhance GSSG binding and turnover. However, none of these enzyme species accepted GSSG as substrate better than the full length cysteine mutant of TrxR, excluding a role of the C-terminal extension in preventing GSSG binding. Furthermore, we show that GSSG binding at the N-terminal active site of TrxR is electrostatically disfavoured.  相似文献   

4.
Oxidation of methionine leads to the formation of the S and R diastereomers of methionine sulfoxide (MetO), which can be reversed by the actions of two structurally unrelated classes of methionine sulfoxide reductase (Msr), MsrA and MsrB, respectively. Although MsrAs have long been demonstrated in numerous bacteria, their physiological and biochemical functions remain largely unknown in Actinomycetes. Here, we report that a Corynebacterium glutamicum methionine sulfoxide reductase A (CgMsrA) that belongs to the 3-Cys family of MsrAs plays important roles in oxidative stress resistance. Deletion of the msrA gene in C. glutamicum resulted in decrease of cell viability, increase of ROS production, and increase of protein carbonylation levels under various stress conditions. The physiological roles of CgMsrA in resistance to oxidative stresses were corroborated by its induced expression under various stresses, regulated directly by the stress-responsive extracytoplasmic-function (ECF) sigma factor SigH. Activity assays performed with various regeneration pathways showed that CgMsrA can reduce MetO via both the thioredoxin/thioredoxin reductase (Trx/TrxR) and mycoredoxin 1/mycothione reductase/mycothiol (Mrx1/Mtr/MSH) pathways. Site-directed mutagenesis confirmed that Cys56 is the peroxidatic cysteine that is oxidized to sulfenic acid, while Cys204 and Cys213 are the resolving Cys residues that form an intramolecular disulfide bond. Mrx1 reduces the sulfenic acid intermediate via the formation of an S-mycothiolated MsrA intermediate (MsrA-SSM) which is then recycled by mycoredoxin and the second molecule of mycothiol, similarly to the glutathione/glutaredoxin/glutathione reductase (GSH/Grx/GR) system. However, Trx reduces the Cys204-Cys213 disulfide bond in CgMsrA produced during MetO reduction via the formation of a transient intermolecular disulfide bond between Trx and CgMsrA. While both the Trx/TrxR and Mrx1/Mtr/MSH pathways are operative in reducing CgMsrA under stress conditions in vivo, the Trx/TrxR pathway alone is sufficient to reduce CgMsrA under normal conditions. Based on these results, a catalytic model for the reduction of CgMsrA by Mrx1 and Trx is proposed.  相似文献   

5.
Mammalian thioredoxin reductase 1 (TrxR1) is considered to be an important anticancer drug target and to be involved in both carcinogenesis and cancer progression. Here, we report that ethaselen, a novel organoselenium compound with anticancer activity, specifically binds to the unique selenocysteine-cysteine redox pair in the C-terminal active site of mammalian TrxR1. Ethaselen was found to be a potent inhibitor rather than an efficient substrate of mammalian TrxR1. It effectively inhibits wild-type mammalian TrxR1 at submicromolar concentrations with an initial mixed-type inhibition pattern. By using recombinant human TrxR1 variants and human glutathione reductase, we prove that ethaselen specifically targets the C-terminal but not the N-terminal active site of mammalian TrxR1. In A549 human lung cancer cells, ethaselen significantly suppresses cell viability in parallel with direct inhibition of TrxR1 activity. It does not, however, alter either the disulfide-reduction capability of thioredoxin or the activity of glutathione reductase. As a downstream effect of TrxR1 inactivation, ethaselen causes a dose-dependent thioredoxin oxidation and enhances the levels of cellular reactive oxygen species in A549 cells. Thus, we propose ethaselen as the first selenium-containing inhibitor of mammalian TrxR1 and provide evidence that selenium compounds can act as anticancer agents based on mammalian TrxR1 inhibition.  相似文献   

6.
Molecular oxygen is key to aerobic life but is also converted into cytotoxic byproducts referred to as reactive oxygen species (ROS). Intracellular defense systems that protect cells from ROS-induced damage include glutathione reductase (GR), thioredoxin reductase (TrxR), superoxide dismutase (Sod), and catalase (Cat). Sod and Cat constitute an evolutionary conserved ROS defense system against superoxide; Sod converts superoxide anions to H(2)O(2), and Cat prevents free hydroxyl radical formation by breaking down H(2)O(2) into oxygen and water. As a consequence, they are important effectors in the life span determination of the fly Drosophila. ROS defense by TrxR and GR is more indirect. They transfer reducing equivalents from NADPH to thioredoxin (Trx) and glutathione disulfide (GSSG), respectively, resulting in Trx(SH)(2) and glutathione (GSH), which act as effective intracellular antioxidants. TrxR and GR were found to be molecularly conserved. However, the single GR homolog of Drosophila specifies TrxR activity, which compensates for the absence of a true GR system for recycling GSH. We show that TrxR null mutations reduce the capacity to adequately protect cells from cytotoxic damage, resulting in larval death, whereas mutations causing reduced TrxR activity affect pupal eclosion and cause a severe reduction of the adult life span. We also provide genetic evidence for a functional interaction between TrxR, Sod1, and Cat, indicating that the burden of ROS metabolism in Drosophila is shared by the two defense systems.  相似文献   

7.
《Process Biochemistry》2010,45(6):914-918
The total protein content and activity of the enzymes glutathione reductase (GR), superoxide dismutase (SOD) and thioredoxin reductase (TrxR) were evaluated in Acidithiobacillus ferrooxidans LR cells maintained in contact with the metal sulfide chalcopyrite for 1 and 10 days. A significant decrease in total protein content was observed in cells maintained for 10 days in the presence of chalcopyrite, suggesting proteolytic breakdown due to exposure to the metal sulfide. Following 10 days of contact with chalcopyrite, increases in GR, SOD and TrxR activities were detected, suggesting the formation of reactive oxygen species. After ten days, there was a fivefold increase in GR activity, of which, isoenzyme IV represented approximately 82% of the total. An increase in Fe-SOD activity following ten days exposure to chalcopyrite was also determined, as measured on non-denaturing polyacrylamide gels. Also, after 10 days, an approximately 31-fold increase was observed for TrxR activity. The presence of oxidative stress when A. ferrooxidans is in the presence of chalcopyrite could have a negative impact on bioleaching.  相似文献   

8.
The thiol-disulfide redox metabolism in platyhelminth parasites depends entirely on a single selenocysteine (Sec) containing flavoenzyme, thioredoxin glutathione reductase (TGR) that links the classical thioredoxin (Trx) and glutathione (GSH) systems. In the present study, we investigated the catalytic and structural properties of different variants of Fasciola gigantica TGR to understand the role of Sec. The recombinant full-length Sec containing TGR (FgTGRsec), TGR without Sec (FgTGR) and TGRsec without the N-terminal glutaredoxin (Grx) domain (?NTD-FgTGRsec) were purified to homogeneity. Biochemical studies revealed that Sec597 is responsible for higher thioredoxin reductase (TrxR) and glutathione reductase (GR) activity of FgTGRsec. The N-terminal Grx domain was found to positively regulate the DTNB-based TrxR activity of FgTGRsec. The FgTGRsec was highly sensitive to inhibition by auranofin (AF). The structure of FgTGR was modeled, and the inhibitor AF was docked, and binding sites were identified. Unfolding studies suggest that all three proteins are highly cooperative molecules since during GdnHCl-induced denaturation, a monophasic unfolding of the proteins without stabilization of any intermediate is observed. The Cm for GdnHCl induced unfolding of FgTGR was higher than FgTGRsec and ?NTD-FgTGRsec suggesting that FgTGR without Sec was more stable in solution than the other protein variants. The free energy of stabilization for the proteins was also determined. To our knowledge, this is also the first report on unfolding and stability analysis of any TGR.  相似文献   

9.
Thioredoxin reductase 1 (TrxR1) in cytosol is the only known reductant of oxidized thioredoxin 1 (Trx1) in vivo so far. We and others found that aurothioglucose (ATG), a well known active-site inhibitor of TrxR1, inhibited TrxR1 activity in HeLa cell cytosol but had no effect on the viability of the cells. Using a redox Western blot analysis, no change was observed in redox state of Trx1, which was mainly fully reduced with five sulfhydryl groups. In contrast, auranofin killed cells and oxidized Trx1, also targeting mitochondrial TrxR2 and Trx2. Combining ATG with ebselen gave a strong synergistic effect, leading to Trx1 oxidation, reactive oxygen species accumulation, and cell death. We hypothesized that there should exist a backup system to reduce Trx1 when only TrxR1 activity was lost. Our results showed that physiological concentrations of glutathione, NADPH, and glutathione reductase reduced Trx1 in vitro and that the reaction was strongly stimulated by glutaredoxin1. Simultaneous depletion of TrxR activity by ATG and glutathione by buthionine sulfoximine led to overoxidation of Trx1 and loss of HeLa cell viability. In conclusion, the glutaredoxin system and glutathione have a backup role to keep Trx1 reduced in cells with loss of TrxR1 activity. Monitoring the redox state of Trx1 shows that cell death occurs when Trx1 is oxidized, followed by general protein oxidation catalyzed by the disulfide form of thioredoxin.  相似文献   

10.
To explore whether glutathione regulates diapause determination and termina tion in the bivoltine silkworm Bombyx mori, we monitored the changes in glutathione redox cycle in the ovary of both diapanse and nondiapauseegg producers, as well as those in dia pause eggs incubated at different temperatures. The activity ofthioredoxin reductase (TrxR) was detected in ovaries but not in eggs, while neither ovaries nor eggs showed activity of glutathione peroxidase. A lower reduced glutathione/oxidized glutathione (GSH/GSSG) ratio was observed in the ovary of diapauseegg producers, due to weaker reduction of oxidized glutathione (GSSG) to the reduced glutathione (GSH) catalyzed by glutathione reductase (GR) and TrxR. This indicates an oxidative shift in the glutathione redox cy cle during diapause determination. Compared with the 25℃treated diapause eggs, the 5℃treated diapause eggs showed lower GSH/GSSG ratio, a result of stronger oxidation of GSH catalyzed by thioredoxin peroxidase and weaker reduction of GSSG catalyzed by GR. Our study demonstrated the important regulatory role of glutathione in diapause determination and termination of the bivoltine silkworm.  相似文献   

11.
INTRODUCTION: Many genes are differentially expressed between androgen-dependent and androgen-independent prostate cancer (CaP). Differential expression analysis and subtractive hybridization previously identified nine genes expressed in intact mice bearing CWR22 tumors and castrated mice bearing recurrent CWR22 tumors but not in regressed tumors. The objectives of this study were to develop an immunostaining method to dual-label foci of proliferating tumor cells [the origin of castration-recurrent CaP (CR-CaP)], to determine which of the nine candidate proteins were differentially expressed in proliferating versus nonproliferating cells at the onset of growth after castration, and to test preclinical findings using clinical specimens of androgen-stimulated benign prostate (AS-BP) and CaP (AS-CaP) and CR-CaP. METHODS: Paraffin-embedded, bromodeoxyuridine-injected CWR22 tumors were hydrated, antigen-retrieved using high heat and high pressure, labeled for each of the nine antigens of interest, visualized using peroxidase, and counterstained with hematoxylin. Mean optical density was calculated for proliferating and nonproliferating areas using automated (nuclear staining) or manual (cytoplasmic staining) image analysis. Prostate tissue microarray sections were immunostained and visually scored. RESULTS: Immunohistochemistry revealed higher nuclear expression of thioredoxin reductase 1 (TrxR1) in proliferating cells than nonproliferating cells (P < .005). There were no statistical differences between cell types in the expression of other proteins. TrxR1 expression was higher (P < .01) in CR-CaP compared with AS-BP or AS-CaP. CONCLUSIONS: Increased TrxR1 expression in CR-CaP was consistent with increased TrxR1 and BrdU expression at the onset of growth in the CWR22 model. Thioredoxin reductase 1 should be targeted in an attempt to delay or prevent CaP recurrence after castration.  相似文献   

12.
Cellular defense systems against reactive oxygen species (ROS) include thioredoxin reductase (TrxR) and glutathione reductase (GR). They generate sulfhydryl-reducing systems which are coupled to antioxidant enzymes, the thioredoxin and glutathione peroxidases (TPx and GPx). The fruit fly Drosophila lacks a functional GR, suggesting that the thioredoxin system is the major source for recycling glutathione. Whole genome in silico analysis identified two non-selenium containing putative GPx genes. We examined the biochemical characteristics of one of these gene products and found that it lacks GPx activity and functions as a TPx. Transgene-dependent overexpression of the newly identified Glutathione peroxidase homolog with thioredoxin peroxidase activity (Gtpx-1) gene increases resistance to experimentally induced oxidative stress, but does not compensate for the loss of catalase, an enzyme which, like GTPx-1, functions to eliminate hydrogen peroxide. The results suggest that GTPx-1 is part of the Drosophila Trx antioxidant defense system but acts in a genetically distinct pathway or in a different cellular compartment than catalase.  相似文献   

13.
Malaria parasites adapt to the oxidative stress during their erythrocytic stages with the help of vital thioredoxin redox system and glutathione redox system. Glutathione reductase and thioredoxin reductase are important enzymes of these redox systems that help parasites to maintain an adequate intracellular redox environment. In the present study, activities of glutathione reductase and thioredoxin reductase were investigated in normal and Plasmodium berghei-infected mice red blood cells and their fractions. Activities of glutathione reductase and thioredoxin reductase in P. berghei-infected host erythrocytes were found to be higher than those in normal host cells. These enzymes were mainly confined to the cytosolic part of cell-free P. berghei. Full characterization and understanding of these enzymes may promise advances in chemotherapy of malaria.  相似文献   

14.
Over the last decades, malaria parasites have been rapidly developing resistance against antimalarial drugs, which underlines the need for novel drug targets. Thioredoxin reductase (TrxR) is crucially involved in redox homeostasis and essential for Plasmodium falciparum. Here, we report the first crystal structure of P. falciparum TrxR bound to its substrate thioredoxin 1. Upon complex formation, the flexible C-terminal arm and an insertion loop of PfTrxR are rearranged, suggesting that the C-terminal arm changes its conformation during catalysis similar to human TrxR. Striking differences between P. falciparum and human TrxR are a Plasmodium-specific insertion and the conformation of the C-terminal arm, which lead to considerable differences in thioredoxin binding and disulfide reduction. Moreover, we functionally analyzed amino acid residues involved in substrate binding and in the architecture of the intersubunit cavity, which is a known binding site for disulfide reductase inhibitors. Cell biological experiments indicate that P. falciparum TrxR is indeed targeted in the parasite by specific inhibitors with antimalarial activity. Differences between P. falciparum and human TrxR and details on substrate reduction and inhibitor binding provide the first solid basis for structure-based drug development and lead optimization.  相似文献   

15.
16.
Mercury toxicity mediated by different forms of mercury is a major health problem; however, the molecular mechanisms underlying toxicity remain elusive. We analyzed the effects of mercuric chloride (HgCl(2)) and monomethylmercury (MeHg) on the proteins of the mammalian thioredoxin system, thioredoxin reductase (TrxR) and thioredoxin (Trx), and of the glutaredoxin system, glutathione reductase (GR) and glutaredoxin (Grx). HgCl(2) and MeHg inhibited recombinant rat TrxR with IC(50) values of 7.2 and 19.7 nm, respectively. Fully reduced human Trx1 bound mercury and lost all five free thiols and activity after incubation with HgCl(2) or MeHg, but only HgCl(2) generated dimers. Mass spectra analysis demonstrated binding of 2.5 mol of Hg(2+) and 5 mol of MeHg(+)/mol of Trx1 with the very strong Hg(2+) complexes involving active site and structural disulfides. Inhibition of both TrxR and Trx activity was observed in HeLa and HEK 293 cells treated with HgCl(2) or MeHg. GR was inhibited by HgCl(2) and MeHg in vitro, but no decrease in GR activity was detected in cell extracts treated with mercurials. Human Grx1 showed similar reactivity as Trx1 with both mercurial compounds, with the loss of all free thiols and Grx dimerization in the presence of HgCl(2), but no inhibition of Grx activity was observed in lysates of HeLa cells exposed to mercury. Overall, mercury inhibition was selective toward the thioredoxin system. In particular, the remarkable potency of the mercury compounds to bind to the selenol-thiol in the active site of TrxR should be a major molecular mechanism of mercury toxicity.  相似文献   

17.
The thioredoxin system facilitates proliferative processes in cells and is upregulated in many cancers. The activities of both thioredoxin (Trx) and its reductase (TrxR) are mediated by oxidation/reduction reactions among cysteine residues. A common target in preclinical anticancer research, TrxR is reported here to be significantly inhibited by the anticancer agent laromustine. This agent, which has been in clinical trials for acute myelogenous leukemia and glioblastoma multiforme, is understood to be cytotoxic principally via interstrand DNA crosslinking that originates from a 2-chloroethylating species generated upon activation in situ. The spontaneous decomposition of laromustine also yields methyl isocyanate, which readily carbamoylates thiols and primary amines. Purified rat liver TrxR was inhibited by laromustine with a clinically relevant IC50 value of 4.65 μM. A derivative of laromustine that lacks carbamoylating activity did not appreciably inhibit TrxR while another derivative, lacking only the 2-chloroethylating activity, retained its inhibitory potency. Furthermore, in assays measuring TrxR activity in murine cell lysates, a similar pattern of inhibition among these compounds was observed. These data contrast with previous studies demonstrating that glutathione reductase, another enzyme that relies on cysteine-mediated redox chemistry, was not inhibited by methylcarbamoylating agents when measured in cell lysates. Mass spectrometry of laromustine-treated enzyme revealed significant carbamoylation of TrxR, albeit not on known catalytically active residues. However, there was no evidence of 2-chloroethylation anywhere on the protein. The inhibition of TrxR is likely to contribute to the cytotoxic, anticancer mechanism of action for laromustine.  相似文献   

18.
Understanding how pathogenic fungi adapt to host plant cells is of major concern to securing global food production. The hemibiotrophic rice blast fungus Magnaporthe oryzae, cause of the most serious disease of cultivated rice, colonizes leaf cells asymptomatically as a biotroph for 4–5 days in susceptible rice cultivars before entering its destructive necrotrophic phase. During the biotrophic growth stage, M. oryzae remains undetected in the plant while acquiring nutrients and growing cell-to-cell. Which fungal processes facilitate in planta growth and development are still being elucidated. Here, we used gene functional analysis to show how components of the NADPH-requiring glutathione and thioredoxin antioxidation systems of M. oryzae contribute to disease. Loss of glutathione reductase, thioredoxin reductase and thioredoxin peroxidase-encoding genes resulted in strains severely attenuated in their ability to grow in rice cells and that failed to produce spreading necrotic lesions on the leaf surface. Glutathione reductase, but not thioredoxin reductase or thioredoxin peroxidase, was shown to be required for neutralizing plant generated reactive oxygen species (ROS). The thioredoxin proteins, but not glutathione reductase, were shown to contribute to cell-wall integrity. Furthermore, glutathione and thioredoxin gene expression, under axenic growth conditions, was dependent on both the presence of glucose and the M. oryzae sugar/ NADPH sensor Tps1, thereby suggesting how glucose availability, NADPH production and antioxidation might be connected. Taken together, this work identifies components of the fungal glutathione and thioredoxin antioxidation systems as determinants of rice blast disease that act to facilitate biotrophic colonization of host cells by M. oryzae.  相似文献   

19.
2-Cys peroxiredoxins (Prxs) play important roles in the protection of chloroplast proteins from oxidative damage. Arabidopsis NADPH-dependent thioredoxin reductase isotype C (AtNTRC) was identified as efficient electron donor for chloroplastic 2-Cys Prx-A. There are three isotypes (A, B, and C) of thioredoxin reductase (TrxR) in Arabidopsis. AtNTRA contains only TrxR domain, but AtNTRC consists of N-terminal TrxR and C-terminal thioredoxin (Trx) domains. AtNTRC has various oligomer structures, and Trx domain is important for chaperone activity. Our previous experimental study has reported that the hybrid protein (AtNTRA-(Trx-D)), which was a fusion of AtNTRA and Trx domain from AtNTRC, has formed variety of structures and shown strong chaperone activity. But, electron transfer mechanism was not detected at all. To find out the reason of this problem with structural basis, we performed two different molecular dynamics (MD) simulations on AtNTRC and AtNTRA-(Trx-D) proteins with same cofactors such as NADPH and flavin adenine dinucleotide (FAD) for 50 ns. Structural difference has found from superimposition of two structures that were taken relatively close to average structure. The main reason that AtNTRA-(Trx-D) cannot transfer the electron from TrxR domain to Trx domain is due to the difference of key catalytic residues in active site. The long distance between TrxR C153 and disulfide bond of Trx C387-C390 has been observed in AtNTRA-(Trx-D) because of following reasons: i) unstable and unfavorable interaction of the linker region, ii) shifted Trx domain, and iii) different or weak interface interaction of Trx domains. This study is one of the good examples for understanding the relationship between structure formation and reaction activity in hybrid protein. In addition, this study would be helpful for further study on the mechanism of electron transfer reaction in NADPH-dependent thioredoxin reductase proteins.  相似文献   

20.
Curcumin analogs were first investigated for their inhibitory effects on thioredoxin reductase (TrxR). Most of them were more potent TrxR inhibitors than natural curcumin. The structure-activity relationship was summarized, and the curcumin analog was found to inhibit TrxR irreversibly in a time-dependent manner. The action was caused by covalent modification of the redox-active residues Cys497 and Sec498 in TrxR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号