首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Moulin B  Aubin T  Jallon JM 《Genetica》2004,120(1-3):285-292
In the Drosophila melanogaster complex, females D. melanogaster mate relatively easily with males Drosophila simulans but the reciprocal cross is rare. The species sexual isolation is mainly based on chemical and acoustic signal exchanges between partners. The male side of this communication is investigated in this paper in order to understand the asymmetry. In D. melanogaster the acoustic signature is highly significant, and is synergistically reinforced by the chemical signal. In D. simulans the importance of the two signaling channels seems to be reversed. This could explain why D. simulans males produce less precise interpulse interval (IPI) mean value in the courtship song, which can readily overlap those of D. melanogaster. As the males of the two species use the same chemical key, D. simulans males could be recognized by D. melanogaster females as a conspecific.  相似文献   

2.
Cooperation between Drosophila flies in searching behavior   总被引:1,自引:0,他引:1  
In Drosophila melanogaster food search behaviour, groups of flies swarm around and aggregate on patches of food. We wondered whether flies explore their environment in a cooperative way as interactions between individual flies within a population might influence the flies' ability to locate food sources. We have shown that the food search behavior in the fruit fly Drosophila is a two-step process. Firstly, 'primer' flies search the environment and randomly land on different food patches. Secondly, the remaining group of flies move to the most favorable food source and aggregate there. We call this a 'search–aggregation' cycle. Our data demonstrate that flies do not individually assess all available food resources. Rather, social interactions between flies appear to affect their choice of a specific food patch. A genetic analysis of this 'search–aggregation' behavior shows that flies carrying mutations in specific genes (for example, the dunce ( dnc ) gene which codes for a phosphodiesterase) were defective in this search–aggregation behavior when compared to normal flies. Future investigations of the neuronal signaling involved in this behavior will help us to understand the complexities of this aspect of Drosophila social behaviour.  相似文献   

3.
Substrate-borne vibrational communication is a common mode of information transfer in many invertebrate groups, with vibration serving as both primary and secondary signal channels in Orthopterans. The Cook Strait giant weta, Deinacrida rugosa (Orthoptera: Anostostomatidae), is an endangered New Zealand insect whose communication system has not been previously described. After field observations of intraspecific interactions in D. rugosa provided preliminary evidence for substrate-borne vibrational communication in the species, we sought to identify the following: vibrational signal structure, the mechanism of signal production, whether signal production is a sexually dimorphic trait, whether substrate-borne signals encode information regarding sender size, the primary social context in which vibration is utilized and finally, the function of vibrational signaling in the species. We used laser Doppler vibrometry to show that D. rugosa males produce low frequency (DF?=?37.00?±?1.63 Hz) substrate-borne vibrations through dorso-ventral tremulation. Rarely produced by females, male signals appear to target rivals while both are in the direct physical presence of a female. Tremulatory responses to playbacks were only produced by males in male-male-female trial contexts, and neither sex exhibited walking vibrotaxis to playback signals, indicating that substrate-borne vibrational signals are not likely a component of the courtship repertoire. While we found that vibrational signal structure was not closely related to signaler size, males that initiated male-male signaling bouts held a significant advantage in contests.  相似文献   

4.
Ellis LL  Carney GE 《Genetics》2011,187(1):157-169
Behavior is influenced by an organism's genes and environment, including its interactions with same or opposite sex individuals. Drosophila melanogaster perform innate, yet socially modifiable, courtship behaviors that are sex specific and require rapid integration and response to multiple sensory cues. Furthermore, males must recognize and distinguish other males from female courtship objects. It is likely that perception, integration, and response to sex-specific cues is partially mediated by changes in gene expression. Reasoning that social interactions with members of either sex would impact gene expression, we compared expression profiles in heads of males that courted females, males that interacted with other males, or males that did not interact with another fly. Expression of 281 loci changes when males interact with females, whereas 505 changes occur in response to male-male interactions. Of these genes, 265 are responsive to encounters with either sex and 240 respond specifically to male-male interactions. Interestingly, 16 genes change expression only when a male courts a female, suggesting that these changes are a specific response to male-female courtship interactions. We supported our hypothesis that socially-responsive genes can function in behavior by showing that egghead (egh) expression, which increases during social interactions, is required for robust male-to-female courtship. We predict that analyzing additional socially-responsive genes will give us insight into genes and neural signaling pathways that influence reproductive and other behavioral interactions.  相似文献   

5.
Although it is advantageous for males to express costly sexually selected signals when females are present, they may also benefit from suppressing these signals to avoid costly interactions with rival males. Cuticular chemical profiles frequently function as insect sexual signals; however, few studies have asked whether males alter these signals in response to their social environment. In Drosophila serrata, an Australian fly, there is sexual selection for a multivariate combination of male cuticular hydrocarbons (CHCs). Here, we show that the ratio of females to males that an adult male experiences has a strong effect on his CHC expression, with female‐biased adult sex ratios eliciting greater expression of CHC profiles associated with higher male mating success. Classical models predict that male reproductive investment should be highest when there is a small but nonzero number of rivals, but we found that males expressed the most attractive combination of CHCs when there were no rivals. We found that male CHCs were highly sensitive to adult sex ratio, with males expressing higher values of CHC profiles associated with greater mating success as the ratio of females to males increased. Moreover, sex ratio has a stronger effect on male CHC expression than adult density. Finally, we explore whether sex ratio affects the variance among a group of males in their CHC expression, as might be expected if individuals respond differently to a given social environment, but find little effect. Our results reveal that subtle differences in social environment can induce plasticity in male chemical signal expression.  相似文献   

6.
During courtship, the male Drosophila melanogaster sends signals to the female through two major sensory channels: chemical and acoustic. These signals are involved in the stimulation of the female to accept copulation. In order to determine the respective importance in the courtship of these signals, their production was controlled using genetical and surgical techniques. Males deprived of the ability to emit both signals are unable to mate, demonstrating that other (e.g. visual or tactile) signals are not sufficient to stimulate the female. If either acoustic or chemical signals are lacking, the courtship success is strongly reduced, the lack of the former having significantly more drastic effects. However, the accelerated matings of males observed with males bearing wild-type hydrocarbons compared with defective ones, whichever the modality of acoustic performance (wing vibration or playback), strongly support the role of cuticular compounds to stimulate females. We can conclude that among the possible factors involved in communication during courtship, acoustic and chemical signals may act in a synergistic way and not separately in D. melanogaster.  相似文献   

7.
Sexual coevolution occurs when changes in the phenotype of one sex select for changes in the other sex. We can identify the "footprint" of this coevolution by mating males and females from different populations and testing for a male-female genotype interaction for a trait associated with male (or female) performance. Here we mated male Drosophila melanogaster from five different continents with females from their own and different continents to test for a male-female interaction for mating speed, a pre-copulatory trait, and female reproductive investment, a post-copulatory trait. We found a strong male-female interaction for mating speed, consistent with previous studies using different populations, suggesting that the potential for sexual coevolution for this trait is present in this species. In contrast, we did not detect a male-female interaction for female reproductive investment. Although a male-female interaction for mating speed is compatible with the hypothesis of ongoing sexual coevolution, the nature of our experimental design is unable to exclude alternate explanations. Thus, the evolutionary mechanisms promoting male-female genotype interactions for pre-copulatory mating traits in D. melanogaster warrant further investigation.  相似文献   

8.
In a single population of a livebearing fish, the green swordtail (Xiphophorus hellerii), a trait considered a static badge of status in males of other populations, the color of a stripe covering the lateral line, has been found to be dynamic relative to their social environment, potentially rendering this signal meaningless. Males change the color expression of their lateral stripe dynamically based on social environment. We investigated if males (n = 26) respond to visual and chemical information about other males with a color change and aggressive behavior. We found that visual information is indeed causing color change, whereas chemical information is less effective. Aggressive responses and frequency of response did not change significantly with the mode of communication. We also studied female preferences for color, but found no significant preference (n = 32). Our results lead to questions as to how interpopulation variation can affect preferences and how dynamic signaling—in this case signal transmission presumably dependent on sex and/or status—influences the behavioral interactions we might expect between X. hellerii in the field.  相似文献   

9.
Giant panda courtship behavior includes multimodal signaling assemblages consisting of olfactory, vocal, and postural elements. While signaling is generally conspicuous, successful copulation is inconsistently achieved in captivity, even when female behavioral and physiological data indicate that ovulation is imminent. We set out to characterize these complex patterns of social behavior by observing interactions between 26 unique pairs of giant pandas housed in adjoining pens throughout the females' reproductive cycle. We categorized social behaviors from a transactional perspective and examined social exchanges via analyses of the relative frequency of social behaviors, and via the sequential relationship between male and female social behavior. From non‐estrus to peak‐estrus, we found that the relative frequency of female affiliative and sexual behavior increased and that the relative frequency of ambivalent and aggressive behavior decreased. Male behavior was fairly constant, except for sexual behavior, which increased during peak‐estrus, when it was facilitated by female sexual behavior. Sequential analysis of social interactions showed that preceding behavior had a significant influence over the other panda's response behavior primarily during peak‐estrus, suggesting that pandas are most responsive to conspecific signaling during the peri‐ovulatory period. However, behavioral momentum was a dominant feature of the intra‐individual transitions. Females maintained sexual, ambivalent, and neutral behavior during interactions significantly more than would be expected by chance, with male behavior bearing little influence once the behavior was initiated. A similar pattern was also observed in males, who maintained affiliative, interested, and neutral behaviors. Overall, our data suggest that the multimodal signals used by giant pandas during courtship do not consistently evoke a discrete, immediate response from receivers. Instead, signals appear to advertise reproductive condition and influence potential mates over longer timeframes, suggesting the potential tonic role of communication.  相似文献   

10.
《Fly》2013,7(3):230-235
  相似文献   

11.
Cardiac development is reliant upon the spatial and temporal regulation of both genetic and chemical signals. Central to the communication of these signals are direct interactions between cells and their surrounding environment. The extracellular matrix (ECM) plays an integral role in cell communication and tissue growth throughout development by providing both structural support and chemical signaling factors. The present review discusses elements of cell–cell and cell–ECM interactions involved in cardiogenesis, and how disruption of these interactions can result in numerous heart defects. Examining the relationships between cells and their immediate environment has implications for novel and existing therapeutic strategies to combating congenital disorders. Birth Defects Research (Part C) 90:1–7, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

12.
Fry AJ  Palmer MR  Rand DM 《Heredity》2004,93(4):379-389
Maternally inherited Wolbachia bacteria are extremely widespread among insects and their presence is usually associated with parasitic modifications of host fitness. Wolbachia pipientis infects Drosophila melanogaster populations from all continents, but their persistence in this species occurs despite any strong parasitic effects. Here, we have investigated the symbiosis between Wolbachia and D. melanogaster and found that Wolbachia infection can have significant survival and fecundity effects. Relative to uninfected flies, infected females from three fly strains showed enhanced survival or fecundity associated with Wolbachia infection, one strain showed both and one strain responded positively to Wolbachia removal. We found no difference in egg hatch rates (cytoplasmic incompatibility) for crosses between infected males and uninfected females, although there were fecundity differences. Females from this cross consistently produced fewer eggs than infected females and these fecundity differences could promote the spread of infection just like cytoplasmic incompatibility. More surprising, we found that infected females often had the greatest fecundity when mated to uninfected males. This could also promote the spread of Wolbachia infection, though here the fitness benefits would also help to spread infection when Wolbachia are rare. We suggest that variable fitness effects, in both sexes, and which interact strongly with the genetic background of the host, could increase cytoplasmic drive rates in some genotypes and help explain the widespread persistence of Wolbachia bacteria in D. melanogaster populations. These interactions may further explain why many D. melanogaster populations are polymorphic for Wolbachia infection. We discuss our results in the context of host-symbiont co-evolution.  相似文献   

13.
Sexually-selected communication signals can be used by competing males to settle contests without incurring the costs of fighting. Steroid regulation of these signals can render them as reliable indicators of a male's physiological state. We investigated how plasticity in electrocommunication signals is driven by social competition for mates, mediated by steroid hormones, and subject to the effects of past social experience. We measured the electric waveform's amplitude and duration and steroid hormone levels of male gymnotiform electric fish (Brachyhypopomus gauderio) following week-long periods of social isolation, and low or high social competition. To quantify the effect of social history on the modulation of the electric signal, six groups of six males experienced all three social conditions but in different order. We found that males differentially modulate their electric signals depending on the order they experienced these conditions. Thus, past social interactions affect both present and future social electric signals. Cortisol levels and the amplitude of the electric signal appeared to track the intensity of competition, while androgen levels and the duration of the electric signal only responded to the presence (low and high competition) or absence (isolation) of a social environment (low and high androgens respectively). In addition, cortisol levels were related to the body size of the males at high social competition. Taken together, these findings suggest that the capacity of males to modulate their signals in response to social competition is regulated by steroids.  相似文献   

14.
Acoustic communication in the mandarin vole is described, including sharp and quiet squeals (in males and females) and male songs. All vocal signals show individual variation, which can be used for recognizing individual animals. Female quiet squeals and male songs are emitted not only during sexual behavior but also during friendly interactions, forming a dialogue between the animals. The role of social organization of the species in imparting communicative significance to these vocal signals is discussed.  相似文献   

15.
Chemical structures of several urinary reproductive pheromones in fish have been identified, and their role in the chemical communication of reproductive condition is well characterized. On the contrary, the role of chemical communication in signalling of social/territorial status in fish is poorly understood. Fathead minnows are an example of a fish species whose life history traits appear conducive to evolution of chemical communication systems that confer information about social/territorial status. Male reproduction in this species is dependent upon their ability to acquire and defend a high quality nesting territory, and to attract a female to the nest. We hypothesized that fathead minnow males use visual and urine-derived chemical cues to signal territorial status. To test this hypothesis, effects of territorial acquisition on male-specific secondary sex characteristics (SSCs) and urine volumes were first assessed. Second, frequencies of male urination in varying social contexts were examined. Finally, nuclear magnetic resonance-based metabolomics was used to identify urinary metabolites that were differentially excreted in the urine of territorial versus non-territorial males. The expression of SSCs, sperm, and urine volumes increased with territory acquisition, and either remained unchanged or decreased in non-territorial males. Frequency of male urination increased significantly in the presence of females (but not males), suggesting that females are the main target of the urinary signals. Territorial and non-territorial males had distinct urinary metabolomic profiles. An unforeseen finding was that one could discern future territorial status of males, based on their initial metabolomic profiles. Bile acids and volatile amines were identified as potential chemical signals of social status in the fathead minnow. The finding that trimethylamine (a fishy smelling volatile amine) may be a social cue is particularly interesting, because it is known to bind trace amine-associated receptors, indicating that these receptors may play role in chemical signalling of social status in fish.  相似文献   

16.
Recognition of conspecifics and mates is based on a variety of sensory cues that are specific to the species, sex and social status of each individual. The courtship and mating activity of Drosophila melanogaster flies is thought to depend on the olfactory perception of a male-specific volatile pheromone, cis-vaccenyl acetate (cVA), and the gustatory perception of cuticular hydrocarbons (CHs), some of which are sexually dimorphic. Using two complementary sampling methods (headspace Solid Phase Micro-Extraction [SPME] and solvent extraction) coupled with GC-MS analysis, we measured the dispersion of pheromonal CHs in the air and on the substrate around the fly. We also followed the variations in CHs that were induced by social and sexual interactions. We found that all CHs present on the fly body were deposited as a thin layer on the substrate, whereas only a few of these molecules were also detected in the air. Moreover, social experience during early adult development and in mature flies strongly affected male volatile CHs but not cVA, whereas sexual interaction only had a moderate influence on dispersed CHs. Our study suggests that, in addition to their role as contact cues, CHs can influence fly behavior at a distance and that volatile, deposited and body pheromonal CHs participate in a three-step recognition of the chemical identity and social status of insects.  相似文献   

17.
Circadian clocks use a wide range of environmental cues, including cycles of light, temperature, food, and social interactions, to fine-tune rhythms in behavior and physiology. Although social cues have been shown to influence circadian clocks of a variety of organisms including the fruit fly Drosophila melanogaster, their mechanism of action is still unclear. Here, the authors report the results of their study aimed at investigating if daily cycles of presence and absence (PA) of conspecific male visitors are able to entrain the circadian locomotor activity rhythm of male hosts living under constant darkness (DD). The results suggest that PA cycles may not be able to entrain circadian locomotor activity rhythms of Drosophila. The outcome does not change when male hosts are presented with female visitors, suggesting that PA cycles of either sex may not be effective in bringing about stable entrainment of circadian clocks in D. melanogaster. However, in hosts whose clock phase has already been set by light/dark (LD) cycles, daily PA cycles of visitors can cause measurable change in the phase of subsequent free-running rhythms, provided that their circadian clocks are labile. Thus, the findings of this study suggest that D. melanogaster males may not be using cyclic social cues as their primary zeitgeber (time cue) for entrainment of circadian clocks, although social cues are capable of altering the phase of their circadian rhythms.  相似文献   

18.
Proper assignment of cellular fates relies on correct interpretation of Wnt and Hedgehog (Hh) signals. Members of the Wnt Inhibitory Factor-1 (WIF1) family are secreted modulators of these extracellular signaling pathways. Vertebrate WIF1 binds Wnts and inhibits their signaling, but its Drosophila melanogaster ortholog Shifted (Shf) binds Hh and extends the range of Hh activity in the developing D. melanogaster wing. Shf activity is thought to depend on reinforcing interactions between Hh and glypican HSPGs. Using zebrafish embryos and the heterologous system provided by D. melanogaster wing, we report on the contribution of glypican HSPGs to the Wnt-inhibiting activity of zebrafish Wif1 and on the protein domains responsible for the differences in Wif1 and Shf specificity. We show that Wif1 strengthens interactions between Wnt and glypicans, modulating the biphasic action of glypicans towards Wnt inhibition; conversely, glypicans and the glypican-binding "EGF-like" domains of Wif1 are required for Wif1's full Wnt-inhibiting activity. Chimeric constructs between Wif1 and Shf were used to investigate their specificities for Wnt and Hh signaling. Full Wnt inhibition required the "WIF" domain of Wif1, and the HSPG-binding EGF-like domains of either Wif1 or Shf. Full promotion of Hh signaling requires both the EGF-like domains of Shf and the WIF domains of either Wif1 or Shf. That the Wif1 WIF domain can increase the Hh promoting activity of Shf's EGF domains suggests it is capable of interacting with Hh. In fact, full-length Wif1 affected distribution and signaling of Hh in D. melanogaster, albeit weakly, suggesting a possible role for Wif1 as a modulator of vertebrate Hh signaling.  相似文献   

19.
In antiquity, the Asian elephant,Elephas maximus, gradually spread southward and eastward to become a successfully surviving, ecologically dominant megaherbivore in the tropical environment of south-east Asia. The changing physical environment forced dynamic fluxes in its social structure and altered its metabolism. Such events shaped the production and ultimately the stability of certain chemicals released by body effluvia. Some of these chemicals took on significance as chemical signals and/or pheromones. This article demonstrates by experimental and observational evidence, and hypothesizes based on speculative reasoning, how and why specific chemical signals evolved in the modern Asian elephant. Evidence, including the functional criteria required by elephant social structure and ecology, is presented for the hypothesis that the recently identified female-emitted, male-received sex pheromone, (Z)-7-dodecenyl acetate evolved first as a chemical signal. Subsequently, the cohesiveness and harmony of small, matriarchally-led female groups were strengthened by a female-to-female chemical signal, recently defined behaviourally. The looser societal structure of freer, roaming males also became bounded by chemical signals; for the males, breath and temporal gland emissions, as well as urinary ones function in chemical signalling. Basic knowledge about elephant chemical signals is now linking chemical information to behaviour and beginning to demonstrate how these signals affect elephant social structure and enable the species to cope with environmental changes.  相似文献   

20.
Sexual signals can convey important information about mate quality, such as critical information about a signaler's health status, helping an individual to avoid infected or immunocompromised conspecifics. Chemical signals are especially important in this context, because they represent an honest and dynamic signaling modality that receivers can use to make updated mate choice decisions to avoid compromising their own health. In this study, we investigated the viability of male chemical cues in the wolf spider Schizocosa ocreata as a reliable indicator of health status. Using video playback with images of an average male that is simultaneously paired with male cuticular compounds on filter paper, we show that females are more receptive to videos paired with cues from control males rather than infected males. We also show that these cuticular compounds can be isolated and retain similar female behavioral responses when extracted with a nonpolar solvent, suggesting that these cuticular compounds may not be just complex hydrocarbons, but a combination of cuticular compounds. This is the first evidence for female discrimination and recognition of male chemical cues in this species, which opens up important new avenues of research in a well‐studied species with complex multimodal signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号