首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
A stereoselective high-performance liquid chromatography assay method was developed for the quantitation of R-(+)- and S_-(−)-mepivacaine in human serum. The assay uses a Pirkle brush-type. ((S)-tert.-leucine, (R)-(-naphthyl)ethylamine stationary phase (Sumichiral OA-4700, 250×4 mm I.D.) at ambient temperature with a mobile phase of hexane-ethylenedichloride-absolutte methanol (85:10:5, v/v) for the separation of R-(+) and (S)-(−)-mepivacaine. The eluents were monitored using UV detection at 220 nm. Isolation of the analytes from serum was performed using a 1-ml C18 solid-phase extraction cartridge with high recovery and selectivity. The detection limits were 100 ng/ml for each enantiomer and the limits of quantitation were 150 ng/ml for both enantiomers. Linear calibration curves in the 150–2400 ng/ml range showed good correlation coefficients (r>0.9994, N=3). Precision and accuracy of the method were within 2.1–5.3 and 2.0–3.6%, respectively, for (R)-(+)-mepivacaine and 2.7–5.7% and 1.7–4.2%, respectively, for S-(−)-mepivacaine.  相似文献   

2.
A sensitive and stereospecific method for the quantitation of trimipramine enantiomers in human serum was developed. The assay involves the use of a novel mixed-mode disc solid-phase extraction for serum sample clean-up prior to HPLC analysis and is also free of interference from the enantiomers of desmethyltrimipramine, 2-hydroxytrimipramine, and 2-hydroxydesmethyltrimipramine, the three major metabolites of trimipramine. Chromatographic resolution of trimipramine enantiomers was performed on a reversed-phase cellulose-based chiral column (Chiralcel OD-R) under isocratic conditions using a mobile phase consisting of 0.3 M aqueous sodium perchlorate-acetonitrile (58:42, v/v) at a flow-rate of 0.5 ml/min. Recoveries for R- and S-trimipramine enantiomers were in the range of 93–96% at 25–185 ng/ml levels. Intra-day and inter-day precisions calculated as R.S.D. were in the ranges of 0.30-8.00% and 1.60-10.20% for both enantiomers, respectively. Intra-day and inter-day accuracies calculated as percent error were in the 0.01–2.10% and 1.00–3.00% ranges for both enantiomers, respectively. Linear calibration curves were in the concentration range 15–250 ng/ml for each enantiomer in serum. The limit of quantification of each enantiomer was 15 ng/ml. The detection limit for each enantiomer in serum using a UV detector set at 210 nm was 10 ng/ml (S/N =2). In addition, separation of the enantiomers of desmethyltrimipramine, 2-hydroxytrimipramine, and 2-hydroxydesmethyltrimipramine were investigated. The desmethyltrimipramine enantiomers could be resolved on the Chiralcel OD-R column under the same chromatographic conditions as the trimipramine enantiomers, but the other two metabolite enantiomers required different mobile phases on the Chiralcel OD-R column to achieve satisfactory resolution with Rs values of 1.00.  相似文献   

3.
In order to be able to measure low concentrations of tranylcypromine enantiomers in biological material, chiral fluorescent derivatization and high-performance liquid chromatography (HPLC) were employed. The internal standard S-(+)-amphetamine and borate—sodium hydroxide buffer pH 11 were added to plasma or urine sample aliquots. o-Phthaldialdehyde was used for precolumn derivatization in combination with the chiral mercaptan N-acetylcysteine. HPLC resolution of the diastereoisomeric derivatives was possible on an octadecylsilane column. The mobile phase consisted of sodium phosphate buffer solution pH 6.5, methanol and tetrahydrofuran. The fluorescence of the eluate was monitored at 344/442 nm. The intra-day coefficients of variation were below 10%, the limit of determination was 0.5 ng/ml. The assay was found to be applicable for routine analyses in a preliminary pharmacokinetic study, in which an oral dose of 20 mg racemic tranylcypromine sulfate was administered to three healthy volunteers. The plasma concentrations were generally low, and those of S-(−)-tranylcypromine significantly exceeded those of the R-(+)-enantiomer. Average maximum concentrations were 57.5 and 6.3 ng/ml for S- and R-tranylcypromine, respectively. While S-tranylcypromine was well detectable within the whole study period (8 h), R-tranylcypromine concentrations fell below the detection limit after 4 h in two out of the three studied volunteers.  相似文献   

4.
A sensitive and stereospecific HPLC method was developed for the analysis of (−)- and (+)-pentazocine in human serum. The assay involves the use of a phenyl solid-phase extraction column for serum sample clean-up prior to HPLC analysis. Chromatographic resolution of the pentazocine enantiomers was performed on a octadecylsilane column with sulfated-β-cyclodextrin (S-β-CD) as the chiral mobile phase additive. The composition of the mobile phase was aqueous 10 mM potassium dihydrogenphosphate buffer pH 5.8 (adjusted with phosphoric acid)–absolute ethanol (80:20, v/v) containing 10 mM S-β-CD at a flow-rate of 0.7 ml/min. Recoveries of (−)- and (+)-pentazocine were in the range of 91–93%. Linear calibration curves were obtained in the 20–400 ng/ml range for each enantiomer in serum. The detection limit based on S/N=3 was 15 ng/ml for each pentazocine enantiomer in serum with UV detection at 220 nm. The limit of quantitation for each enantiomer was 20 ng/ml. Precision calculated as R.S.D. and accuracy calculated as error were in the range 0.9–7.0% and 1.2–6.2%, respectively, for the (−)-enantiomer and 0.8– 7.6% and 1.2–4.6%, respectively, for the (+)-enantiomer (n=3).  相似文献   

5.
A specific and reproducible HPLC method using a Chiral-AGP column and UV detection was developed for the evaluation of the pharmacokinetic profile of oxodipine enantiomers in dog and man. Each enantiomer was determined in plasma in the concentration range 1–400 ng/ml using the internal standard calibration method with linear regression analysis. After extraction of oxodipine and the internal standard at alkaline pH with diethyl ether—n-hexane (50:50, v/v), this method permitted the determination of each enantiomer at levels down to 10 ng/ml in dog plasma and 25 ng/ml in human plasma with sufficient accuracy (relative error <11%, n = 6) and precision (coefficient of variation <16%, n = 6). The extracted plasma volume was 500 μl and after evaporation of the organic phase, the dry residue was dissolved in 100 μl of water—2-propanol; an aliquot of 80 μl was injected into the HPLC system.  相似文献   

6.
A stereoselective high-performance liquid chromatographic (HPLC) method is described for the selective and sensitive quantitation in human plasma of R-(+)- and S-(−)-enantiomers of remoxipride. Remoxipride was extracted from basified plasma into hexane-methyl-tert.-butyl ether (20:80, v/v), washed with sodium hydroxide (1.0 M), then back-extracted into phosphoric acid (0.1 M). A structural analog of remoxipride was used as an internal standard. The sample extracts were chromatographed using a silica-based derivatized cellulose chiral column, Chiralcel OD-R, and a reversed-phase eluent containing 30–32% acetonitrile in 0.1 M potassium hexafluorophosphate. Ultraviolet (UV) absorbance detection was performed at 214 nm. Using 0.5-ml plasma aliquots, the method was validated in the concentration range 0.02-2.0 μg/ml and was applied in the investigation of systemic inversion of remoxipride enantiomers in man.  相似文献   

7.
A direct chiral-phase high-performance liquid chromatographic method for measuring the ratio of S-warfarin/R-warfarin in patient plasma is described. Plasma samples are first extracted using solid-phase C18 extraction columns, and the concentrated extracts analyzed using an (R,R) Whelk-O 1 column with a mobile phase of 0.5% glacial acetic acid in acetonitrile. The resulting chromatography provides baseline resolution of the warfarin enantiomers and internal standard (racemic ethylwarfarin), and is free from interference from other plasma components. Calibration curves were linear (mean r2 of 0.999 for both enantiomers) over the concentration range 0.25–1.5 μg/ml. The intra-day and inter-day coefficients of variation for analysis of plasma spiked with 0.33 μg/ml S-warfarin and 0.67 μg/ml R-warfarin (S/R=0.5:1) was less than 7% for each enantiomer, with an accuracy of more than 93%. Plasma extracts from thirty-one patients homozygous for wild-type CYP2C9*1 provided an S/R ratio of 0.51±0.15. Two warfarin patients homozygous for the mutant CYP2C9*2 and CYP2C9*3 alleles exhibited elevated S/R ratios relative to the mean for individuals homozygous for the wild-type CYP2C9*1 allele. This method is suitable for population studies aimed at establishing the effect of polymorphic expression of CYP2C9 alleles on S-warfarin elimination in humans.  相似文献   

8.
A method for the determination of the R-(+) and S-(−) enantiomers of propranolol in blood was developed. After extraction with heptane—isopentanol and derivatization with (+)-1-(9-fluorenyl)ethyl chloroformate, excess reagent was removed using solid-phase extraction. The enantiomers were separated on an achiral, reversed-phase, radially compressed column, and detected by fluorescence with excitation and emission wavelengths of 260 and 340 nm, respectively. The limit of quantification was 0.5 ng/ml. This method was used for pharmacokinetic analysis of propranolol enantiomers after administration of immediate-release (80 mg) or sustained-release (160 mg) racemic propranolol.  相似文献   

9.
Enantiomers of disopyramide (DP), flecainide (FLC) and verapamil (VP) were extracted from rat plasma and tissues (brain, lung, heart, liver, kidney and muscle), followed by quantitative determination using enantioselective high-performance liquid chromatography with chiral stationary-phase columns. The recoveries of S-(+)- and R-(−)-DP from tissues were higher than 69%, and the within- and between-day coefficients of variation were very low (0.5 – 5.7%). The lower limits of detection in each tissue were less than 289 ng/g tissue. The recoveries of S-(+)- and R-(−)-FLC from tissues were higher than 88%, and the within- and between-day coefficients of variation were 1.2–6.0%. The lower limits of detection in each tissue were less than 37 ng/g tissue. The recoveries of S-(−)- and R-(+)-VP from tissues were higher than 80%, and the within- and between-day coefficients of variation were 0.5–6.2%. The lower limits of detection in each tissue were less than 51 ng/g tissue. The analytical methods established in this study will be suitable for determining the concentrations of the enantiomers of these anti-arrhythmic agents in rat plasma and tissues.  相似文献   

10.
A novel and rapid method for the separation and determination of R-(−)- and S-(+)-enantiomers of apomorphine in serum by high-performance liquid chromatography with UV detection is reported. The method involved a solid-phase extraction of the R-(−)- and S-(+)-enantiomers of apomorphine and the internal standard R-(−)-propylnorapomorphine from serum using a C8 Bond-Elut column. The HPLC system consisted of a reversed-phase cellulose-based chiral column (Chiralcel OD-R, 250×4.6 mm I.D.) with a mobile phase of 35:65 (v/v) acetonitrile-0.05 M sodium perchlorate (pH 2.0, adjusted with 60–62% perchloric acid) at a flow-rate of 0.5 ml/min with UV detection at 273 nm. The detection and quantitation limits were 10 ng/ml for each enantiomer using 1 ml of serum. Linear calibration curves from 10 to 1000 ng/ml for both R-(−)- and S-(+)-enantiomers show coefficient of determination of more than 0.9995. Precision calculated as %R.S.D. and accuracy calculated as % error were 0.2–4.7 and 3.1–6.9%, respectively, for the R-(−)-enantiomer and 1.3–4.2 and 0.3–6.8%, respectively, for the S-(+)-enantiomer.  相似文献   

11.
The simultaneous determination of methadone (Mtd) enantiomers and its major metabolite, 2-ethylidene-1,5-dimethyl-3,3-diphenylpyrrolidine (EDDP), in human urine and serum by enantioselective HPLC using a new Cyclobond I-2000 RSP column is described. After alkaline extraction from urine or serum with estazolam as an internal standard, Mtd enantiomers and its metabolite (EDDP) are separated on the previous column with reversed-mobile phase and detected at 210 nm. Peak resolutions are about 2.0 for Mtd enantiomers. The relative standard deviations (R.S.D.) of Mtd and EDDP standards are between 0.5 and 4.5%. Most drugs of abuse are shown not to interfere with this technique. The method has been applied to study levels of each Mtd enantiomer and of its racemic metabolite in urine and serum of patients under maintenance treatment for opiate dependence. In urine, R-(−)-Mtd levels are always higher (about 2±0.5-fold_ than those of S-(+)-Mtd and in most cases, metabolite concentrations are greater than those of global Mtd enantiomers. However, the R-(−) enantiomer levels of residual drug in serum of some patients were lower than those of its antipode. This method is suitable for pharmacokinetic and toxicological studies of Mtd enantiomers and its major metabolite in biological fluids.  相似文献   

12.
An HPLC method for the quantification of ketoprofen enantiomers in human plasma is described. Following extraction with a disposable C18 solid-phase extraction column, separation of ketoprofen enantiomers and I.S. (3,4-dimethoxy benzoic acid) was achieved using a chiral column [Chirex 3005; (R)-1-naphthylglycine 3,5-dinitrobenzoic acid] with the mobile phase, 0.02 M ammonium acetate in methanol, set at a flow-rate of 1.2 ml/min. Baseline separation of ketoprofen enantiomers and I.S., free from interferences, was achieved in less than 20 min. The calibration curves (n = 14) were linear over the concentration range of 0.16 to 5.00 μg/ml per enantiomer [mean r2 of 0.999 for both enantiomers, root mean square error were 0.015 for R(−) and 0.013 for S(+)]. The inter-day coefficient of variation for duplicate analysis of spiked samples was less than 7% and the accuracy was more than 93% over the concentration range of 0.2 to 4.0 μg/ml for individual enantiomer using 1 ml of plasma sample. This method has been applied to a pharmacokinetic study from healthy human volunteers following the administration of a ketoprofen extended release product (200 mg). This method is simple, fast and should find wide application in monitoring pharmacokinetic studies of ketoprofen.  相似文献   

13.
A sensitive HPLC method for the quantification of praziquantel enantiomers in human serum is described. The method involves the use of a novel disc solid-phase extraction for sample clean-up prior to HPLC analysis and is also free of interference from trans-4-hydroxypraziquantel, the major metabolite of praziquantel. Chromatographic resolution of the enantiomers was performed on a reversed-phase cellulose-based chiral column (Chiralcel OJ-R) under isocratic conditions using a mobile phase consisting of 0.1 M sodium perchlorate–acetonitrile (66:34, v/v) at a flow-rate of 0.5 ml/min. Recoveries for R-(−)- and S-(+)-praziquantel enantiomers were in the range of 84–89% at 50–500 ng/ml levels. Intra-day and inter-day precisions calculated as R.S.D. were in the ranges of 3–8% and 1–8% for both enantiomers, respectively. Intra-day and inter-day accuracies calculated as percent error were in the 0.2–5% and 0.3–8% ranges for both enantiomers, respectively. Linear calibration curves were in the concentration range 10–600 ng/ml for each enantiomer in serum. The limit of quantification of each enantiomer was 10 ng/ml. The detection limit for each enantiomer in serum using a UV detector set at 210 nm was 5 ng/ml (S/N=2).  相似文献   

14.
A sensitive high-performance liquid chromatographic assay has been developed to determine the levels of a new antiretroviral agent, stavudine (2′,3′-didehydro-3′-deoxythymidine, d4T), in human plasma. Didanosine (2′,3′-dideoxyinosine, ddI) was used as the internal standard. The very selective sample pretreatment involved solid-phase extraction using silica gel columns. Chromatography was carried out on a μBondapak phenyl column, using a mobile phase of 0.005 M phosphate buffer (pH 6.8)—methanol (90:10, v/v) and ultraviolet detection at 265 nm. The method has been validated, and stability tests under various conditions have been performed. The detection limit is 10 ng/ml (using 500-μl human plasma samples). The bioanalytical assay has been used in a single pharmacokinetic experiment in a rat to investigate the applicability of the method in vivo.  相似文献   

15.
(S)-(−)- and (R)-(+)-limonene was transformed to carvone via corresponding cis- and trans-carveol using Solanum aviculare and Dioscorea deltoidea plant cells. Both carveols and carvone formed were racemic in all biotransformations.  相似文献   

16.
rac-Isradipine is a dihydropyridine type calcium antagonist. Its calcium entry blocking effect is due primarily to the (+)-(S)-enantiomer. This study describes a sensitive enantioselective method for the determination of isradipine in human serum. Following alkaline extraction into hexane, the enantiomers of isradipine are separated quantitatively by high-performance liquid chromatography on a Chiralcel OJ column at 39°C. The collected fractions were evaporated and assayed using capillary gas chromatography on a HP 50+ column with nitrogen selective detection. Using 2.0 ml of serum, 0.7 nmol/1 (0.26 ng/ml) of each enantiomer could be determined with acceptable precision. The method has successfully been used to measure (+)-(S)- and (−)-(R)-isradipine concentrations in samples from volunteers after intravenous and oral administration of isradipine. Chirality 10:808–812, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

17.
Chemo-enzymatic approaches for the synthesis of the family of aromatase inhibitory drug via lipase-catalyzed kinetic resolution of (±)-4-cyano-4-phenyl-1-hexanol (2) as appropriate precursors were described. Enzymatic transesterification of primary alcohol (±)-2 using Pseudomonas cepacia (Amano PS, PCL) provided the enantiopure alcohol (R)-(−)-2 with 99% ee at conversion of 86%, while that of (±)-2 using Pseudomonas fluorescens (Amano AK, LAK) provided the (S)-(+)-2 with 96% ee at conversion of 86%. Chemical transformation of substrate (R)-(−)-2 gave (R)-(+)-aminoglutethimide (1) in enantioselectively high yield.  相似文献   

18.
A simple, accurate and precise isocratic reversed-phase high-performance liquid chromatographic method was developed and validated for the determination of p-chloronitrobenzene (p-CNB) in rat plasma. A plasma sample was deproteinized with methanol containing the internal standard (p-bromonitrobenzene). The resulting methanol eluate obtained after centrifugation was filtered and injected into a high-performance liquid chromatograph (50 μl each). A column packed with 5 μm octadecylsilane (ODS) spherical particles was used with isocratic elution of methanol—water (45:55, v/v) at a flow-rate of 1.0 ml/min. The compounds were detected by ultraviolet absorbance at 280 nm. The retention times of p-CNB and the internal standard were 12.5 and 15.5 min, respectively, at a column oven temperature of 30°C. The results were linear from 0.05 to 100 μg/ml (r = 0.999), and the detection limit was 0.01 μg/ml. The relative error and the coefficient of variation on replicate assays were less than 7 and 10%, respectively, for all concentrations studied. The overall recoveries of p-CNB were between 97 and 105%. Plasma samples could be stored for up to one month at −20°C.  相似文献   

19.
A high-performance liquid chromatographic method has been developed for the determination of the new podophyllotoxin derivative NK 611 in plasma samples. A solid—liquid extraction procedure with C18 extraction columns was used for extraction of plasma samples containing NK 611. The adsorbed NK 611 was eluted from the extraction columns with methanol—acetonitrile (50:50, v/v). The elution liquid was injected into a reversed-phase system consisting of a Chrompack C18 column. The mobile phase was acetonitrile—20 mM phosphate buffer, pH 7 (30:70, v/v). The UV detection mode allows sensitive determination of NK 611 in plasma within phase I trials. The limit of detection was 10 ng/ml, the limit of quantitation 35 ng/ml (for 1 ml of extracted plasma and 20-μl injection volume). The calibration curve is linear within the concentration range 100–1000 ng/ml. The recovery of NK 611 from spiked plasma samples was approximately 80%.  相似文献   

20.
Methocarbamol enantiomers in rat and human plasma were quantified using a stereospecific high-performance liquid chromatographic method. Racemic methocarbamol and internal standard, (R)-(−)-flecainide, were isolated from plasma by a single-step extraction with ethyl acetate. After derivatization with the enantiomerically pure reagent (S)-(+)-1-(1-naphthyl)ethyl isocyanate, methocarbamol diastereomers and the (R)-flecainide derivative were separated on a normal-phase silica column with a mobile phase consisting of hexane—isopropanol (95:5, v/v) at a flow-rate of 1.6 ml/min. Ultraviolet detection was carried out at a wavelength of 280 nm. The resolution factor between the diastereomers was 2.1 (α = 1.24). An excellent linearity was observed between the methocarbamol diastereomers/internal standard derivative peak-area ratios and plasma concentrations, and the intra- and inter-day coefficients of variation were always <9.8%. The lowest quantifiable concentration was 0.5 μg/ml for each enantiomer (coefficients of variation of 9.8 and 8.8% for (S)- and (R)-methocarbamol, respectively), while the limit of detection (signal-to-noise ratio 3:1) was approximately 10 ng/ml. The assay was used to study the pharmacokinetics of methocarbamol enantiomers in a rat following intravenous administration of a 120 mg/kg dose of racemic methocarbamol and to evaluate plasma and urine concentrations in a human volunteer after oral administration of a 1000-mg dose of the racemate. The method is suitable for stereoselective pharmacokinetic studies in humans as well as in animal models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号