首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The search for a nitric oxide synthase (NOS) sequence in the plant kingdom yielded two sequences from the recently published genomes of two green algae species of the Ostreococcus genus, O. tauri and O. lucimarinus. In this study, we characterized the sequence, protein structure, phylogeny, biochemistry, and expression of NOS from O. tauri. The amino acid sequence of O. tauri NOS was found to be 45% similar to that of human NOS. Folding assignment methods showed that O. tauri NOS can fold as the human endothelial NOS isoform. Phylogenetic analysis revealed that O. tauri NOS clusters together with putative NOS sequences of a Synechoccocus sp strain and Physarum polycephalum. This cluster appears as an outgroup of NOS representatives from metazoa. Purified recombinant O. tauri NOS has a K(m) for the substrate l-Arg of 12 ± 5 μM. Escherichia coli cells expressing recombinant O. tauri NOS have increased levels of NO and cell viability. O. tauri cultures in the exponential growth phase produce 3-fold more NOS-dependent NO than do those in the stationary phase. In O. tauri, NO production increases in high intensity light irradiation and upon addition of l-Arg, suggesting a link between NOS activity and microalgal physiology.  相似文献   

2.
The complete nucleotide sequence of the mt (mitochondrial) and cp (chloroplast) genomes of the unicellular green alga Ostreococcus tauri has been determined. The mt genome assembles as a circle of 44,237 bp and contains 65 genes. With an overall average length of only 42 bp for the intergenic regions, this is the most gene-dense mt genome of all Chlorophyta. Furthermore, it is characterized by a unique segmental duplication, encompassing 22 genes and covering 44% of the genome. Such a duplication has not been observed before in green algae, although it is also present in the mt genomes of higher plants. The quadripartite cp genome forms a circle of 71,666 bp, containing 86 genes divided over a larger and a smaller single-copy region, separated by 2 inverted repeat sequences. Based on genome size and number of genes, the Ostreococcus cp genome is the smallest known among the green algae. Phylogenetic analyses based on a concatenated alignment of cp, mt, and nuclear genes confirm the position of O. tauri within the Prasinophyceae, an early branch of the Chlorophyta.  相似文献   

3.
Ostreococcus tauri virus (OtV-1) is a large double-stranded DNA virus and a prospective member of the family Phycodnaviridae , genus Prasinovirus . OtV-1 infects the unicellular marine green alga O. tauri , the smallest known free-living eukaryote. Here we present the 191 761 base pair genome sequence of OtV-1, which has 232 putative protein-encoding and 4 tRNA-encoding genes. Approximately 31% of the viral gene products exhibit a similarity to proteins of known functions in public databases. These include a variety of unexpected genes, for example, a PhoH-like protein, a N -myristoyltransferase, a 3-dehydroquinate synthase, a number of glycosyltransferases and methyltransferases, a prolyl 4-hydroxylase, 6-phosphofructokinase and a total of 8 capsid proteins. A total of 11 predicted genes share homology with genes found in the Ostreococcus host genome. In addition, an intein was identified in the DNA polymerase gene of OtV-1. This is the first report of an intein in the genome of a virus that infects O. tauri. Fifteen core genes common to nuclear-cytoplasmic large dsDNA virus (NCLDV) genomes were identified in the OtV-1 genome. This new sequence data may help to redefine the classification of the core genes of these viruses and shed new light on their evolutionary history.  相似文献   

4.
Prasinoviruses infecting unicellular green algae in the order Mamiellales (class Mamiellophyceae) are commonly found in coastal marine waters where their host species frequently abound. We tested 40 Ostreococcus tauri viruses on 13 independently isolated wild-type O. tauri strains, 4 wild-type O. lucimarinus strains, 1 Ostreococcus sp. ("Ostreococcus mediterraneus") clade D strain, and 1 representative species of each of two other related species of Mamiellales, Bathycoccus prasinos and Micromonas pusilla. Thirty-four out of 40 viruses infected only O. tauri, 5 could infect one other species of the Ostreococcus genus, and 1 infected two other Ostreococcus spp., but none of them infected the other genera. We observed that the overall susceptibility pattern of Ostreococcus strains to viruses was related to the size of two host chromosomes known to show intraspecific size variations, that genetically related viruses tended to infect the same host strains, and that viruses carrying inteins were strictly strain specific. Comparison of two complete O. tauri virus proteomes revealed at least three predicted proteins to be candidate viral specificity determinants.  相似文献   

5.
Ostreococcus tauri, a unicellular marine green alga, is the smallest known free-living eukaryote and is ubiquitous in the surface oceans. The ecological success of this organism has been attributed to distinct low- and high-light-adapted ecotypes existing in different niches at a range of depths in the ocean. Viruses have already been characterized that infect the high-light-adapted strains. Ostreococcus tauri virus (OtV) isolate OtV-2 is a large double-stranded DNA algal virus that infects a low-light-adapted strain of O. tauri and was assigned to the algal virus family Phycodnaviridae, genus Prasinovirus. Our working hypothesis for this study was that different viruses infecting high- versus low-light-adapted O. tauri strains would provide clues to propagation strategies that would give them selective advantages within their particular light niche. Sequence analysis of the 184,409-bp linear OtV-2 genome revealed a range of core functional genes exclusive to this low-light genotype and included a variety of unexpected genes, such as those encoding an RNA polymerase sigma factor, at least four DNA methyltransferases, a cytochrome b(5), and a high-affinity phosphate transporter. It is clear that OtV-2 has acquired a range of potentially functional genes from its host, other eukaryotes, and even bacteria over evolutionary time. Such piecemeal accretion of genes is a trademark of large double-stranded DNA viruses that has allowed them to adapt their propagation strategies to keep up with host niche separation in the sunlit layers of the oceanic environment.  相似文献   

6.
Piganeau G  Moreau H 《Gene》2007,406(1-2):184-190
The Sargasso Sea water shotgun sequencing unveiled an unprecedented glimpse of marine prokaryotic diversity and gene content. The sequence data was gathered from 0.8 microm filtered surface water extracts, and revealed picoeukaryotic (cell size<2 microm) sequences alongside the prokaryotic data. We used the available genome sequence of the picoeukaryote Ostreococcus tauri (Prasinophyceae, Chlorophyta) as a benchmark for the eukaryotic sequence content of the Sargasso Sea metagenome. Sequence data from at least two new Ostreococcus strains were identified and analyzed, and showed a bias towards higher coverage of the AT-rich organellar genomes. The Ostreococcus nuclear sequence data retrieved from the Sargasso metagenome is divided onto 731 scaffolds of average size 3917 bp, and covers 23% of the complete nuclear genome and 14% of the total number of protein coding genes in O. tauri. We used this environmental Ostreococcus sequence data to estimate the level of constraint on intronic and intergenic sequences in this compact genome.  相似文献   

7.
Ostreococcus tauri is a unicellular green alga and amongst the smallest and simplest free-living eukaryotes. The O. tauri genome sequence was determined in 2006. Molecular, physiological and taxonomic data that has been generated since then highlight its potential as a simple model species for algae and plants. However, its proteome remains largely unexplored. This paper describes the global proteomic study of O. tauri, using mass spectrometry-based approaches: phosphopeptide enrichment, cellular fractionation, label-free quantification and (15)N metabolic labeling. The O. tauri proteome was analyzed under the following conditions: sampling at different times during the circadian cycle, after 24h of illumination, after 24h of darkness and under various nitrogen source supply levels. Cell cycle related proteins such as dynamin and kinesin were significantly up-regulated during the daylight-to-darkness transition. This is reflected by their higher intensity at ZT13 and this transition phase coincides with the end of mitosis. Proteins involved in several metabolic mechanisms were found to be up-regulated under low nitrogen conditions, including carbon storage pathways, glycolysis, phosphate transport, and the synthesis of inorganic polyphosphates. Ostreococcus tauri responds to low nitrogen conditions by reducing its nitrogen assimilation machinery which suggests an atypical adaptation mechanism for coping with a nutrient-limited environment.  相似文献   

8.
The basal position of the Mamiellales (Prasinophyceae) within the green lineage makes these unicellular organisms key to elucidating early stages in the evolution of chlorophyll a/b-binding light-harvesting complexes (LHCs). Here, we unveil the complete and unexpected diversity of Lhc proteins in Ostreococcus tauri, a member of the Mamiellales order, based on results from complete genome sequencing. Like Mantoniella squamata, O. tauri possesses a number of genes encoding an unusual prasinophyte-specific Lhc protein type herein designated "Lhcp". Biochemical characterization of the complexes revealed that these polypeptides, which bind chlorophylls a, b, and a chlorophyll c-like pigment (Mg-2,4-divinyl-phaeoporphyrin a5 monomethyl ester) as well as a number of unusual carotenoids, are likely predominant. They are retrieved to some extent in both reaction center I (RCI)- and RCII-enriched fractions, suggesting a possible association to both photosystems. However, in sharp contrast to previous reports on LHCs of M. squamata, O. tauri also possesses other LHC subpopulations, including LHCI proteins (encoded by five distinct Lhca genes) and the minor LHCII polypeptides, CP26 and CP29. Using an antibody against plant Lhca2, we unambiguously show that LHCI proteins are present not only in O. tauri, in which they are likely associated to RCI, but also in other Mamiellales, including M. squamata. With the exception of Lhcp genes, all the identified Lhc genes are present in single copy only. Overall, the discovery of LHCI proteins in these prasinophytes, combined with the lack of the major LHCII polypeptides found in higher plants or other green algae, supports the hypothesis that the latter proteins appeared subsequent to LHCI proteins. The major LHC of prasinophytes might have arisen prior to the LHCII of other chlorophyll a/b-containing organisms, possibly by divergence of a LHCI gene precursor. However, the discovery in O. tauri of CP26-like proteins, phylogenetically placed at the base of the major LHCII protein clades, yields new insight to the origin of these antenna proteins, which have evolved separately in higher plants and green algae. Its diverse but numerically limited suite of Lhc genes renders O. tauri an exceptional model system for future research on the evolution and function of LHC components.  相似文献   

9.
RNase P catalyzes 5'-maturation of tRNAs. While bacterial RNase P comprises an RNA catalyst and a protein cofactor, the eukaryotic (nuclear) variant contains an RNA and up to ten proteins, all unrelated to the bacterial protein. Unexpectedly, a nuclear-encoded bacterial RNase P protein (RPP) homolog is found in several prasinophyte algae including Ostreococcus tauri. We demonstrate that recombinant O. tauri RPP can functionally reconstitute with bacterial RNase P RNAs (RPRs) but not with O. tauri organellar RPRs, despite the latter's presumed bacterial origins. We also show that O. tauri PRORP, a homolog of Arabidopsis PRORP-1, displays tRNA 5'-processing activity in vitro. We discuss the implications of the striking diversity of RNase P in O. tauri, the smallest known free-living eukaryote.  相似文献   

10.
Ostreococcus tauri Courties et Chrétiennot-Dinet is the smallest described autotrophic eukaryote dominating the phytoplanktonic assemblage of the marine Mediterranean Thau lagoon (France). Its taxonomic position was partly elucidated from ultrastructure and high-pressure liquid chromatography (HLPC) pigment analysis. The sequence analysis of the 18S rDNA gene of O. tauri measured here is available in EMBL Nucleotide Sequence Database (accession number: Y15814) and allowed to clarify its phylogenetic position. O. tauri belongs to the Prasinophyceae and appears very close to Mantoniella, a typical scaly Prasinophyceae, morphologically very different from the naked and coccoid Ostreococcus. An electrophoretic analysis of O. tauri shows that the nucleus contains 10.20 mbp. This small genome, fragmented into 14 chromosomes ranging in size from 300 to 1500 kbp, confirms the minimalist characteristics of Ostreococcus tauri.  相似文献   

11.
The green picoalga Ostreococcus is emerging as a simple plant model organism, and two species, O. lucimarinus and O. tauri, have now been sequenced and annotated manually. To evaluate the completeness of the metabolic annotation of both species, metabolic networks of O. lucimarinus and O. tauri were reconstructed from the KEGG database, thermodynamically constrained, elementally balanced, and functionally evaluated. The draft networks contained extensive gaps and, in the case of O. tauri, no biomass components could be produced due to an incomplete Calvin cycle. To find and remove gaps from the networks, an extensive reference biochemical reaction database was assembled using a stepwise approach that minimized the inclusion of microbial reactions. Gaps were then removed from both Ostreococcus networks using two existing gap-filling methodologies. In the first method, a bottom-up approach, a minimal list of reactions was added to each model to enable the production of all metabolites included in our biomass equation. In the second method, a top-down approach, all reactions in the reference database were added to the target networks and subsequently trimmed away based on the sequence alignment scores of identified orthologues. Because current gap-filling methods do not produce unique solutions, a quality metric that includes a weighting for phylogenetic distance and sequence similarity was developed to distinguish between gap-filling results automatically. The draft O. lucimarinus and O. tauri networks required the addition of 56 and 70 reactions, respectively, in order to produce the same biomass precursor metabolites that were produced by our plant reference database.  相似文献   

12.
The Cdc25 protein phosphatase is a key enzyme involved in the regulation of the G(2)/M transition in metazoans and yeast. However, no Cdc25 ortholog has so far been identified in plants, although functional studies have shown that an activating dephosphorylation of the CDK-cyclin complex regulates the G(2)/M transition. In this paper, the first green lineage Cdc25 ortholog is described in the unicellular alga Ostreococcus tauri. It encodes a protein which is able to rescue the yeast S. pombe cdc25-22 conditional mutant. Furthermore, microinjection of GST-tagged O. tauri Cdc25 specifically activates prophase-arrested starfish oocytes. In vitro histone H1 kinase assays and anti-phosphotyrosine Western Blotting confirmed the in vivo activating dephosphorylation of starfish CDK1-cyclinB by recombinant O. tauri Cdc25. We propose that there has been coevolution of the regulatory proteins involved in the control of M-phase entry in the metazoan, yeast and green lineages.  相似文献   

13.
The Cdc25 protein phosphatase is a key enzyme involved in the regulation of the G2/M transition in metazoans and yeast. However, no Cdc25 ortholog has so far been identified in plants, although functional studies have shown that an activating dephosphorylation of the CDK-cyclin complex regulates the G2/M transition. In this paper, the first green lineage Cdc25 ortholog is described in the unicellular alga Ostreococcus tauri. It encodes a protein which is able to rescue the yeast S. pombe cdc25-22 conditional mutant. Furthermore, microinjection of GST-tagged O. tauri Cdc25 specifically activates prophase-arrested starfish oocytes. In vitro histone H1 kinase assays and anti-phosphotyrosine Western Blotting confirmed the in vivo activating dephosphorylation of starfish CDK1-cyclinB by recombinant O. tauri Cdc25. We propose that there has been co-evolution of the regulatory proteins involved in the control of M-phase entry in the metazoan, yeast and green lineages.

Link to supplemental material:

http://www.landesbioscience.com/journals/cc/khadarooCC3-4-sup.pdf  相似文献   

14.
In algae, the biosynthesis of docosahexaenoic acid (22:6omega3; DHA) proceeds via the elongation of eicosapentaenoic acid (20:5omega3; EPA) to 22:5omega3, which is required as a substrate for the final Delta4 desaturation. To isolate the elongase specific for this step, we searched expressed sequence tag and genomic databases from the algae Ostreococcus tauri and Thalassiosira pseudonana, from the fish Oncorhynchus mykiss, from the frog Xenopus laevis, and from the sea squirt Ciona intestinalis using as a query the elongase sequence PpPSE1 from the moss Physcomitrella patens. The open reading frames of the identified elongase candidates were expressed in yeast for functional characterization. By this, we identified two types of elongases from O. tauri and T. pseudonana: one specific for the elongation of (Delta6-)C18-PUFAs and one specific for (Delta5-)C20-PUFAs, showing highest activity with EPA. The clones isolated from O. mykiss, X. laevis, and C. intestinalis accepted both C18- and C20-PUFAs. By coexpression of the Delta6- and Delta5-elongases from T. pseudonana and O. tauri, respectively, with the Delta5- and Delta4-desaturases from two other algae we successfully implemented DHA synthesis in stearidonic acid-fed yeast. This may be considered an encouraging first step in future efforts to implement this biosynthetic sequence into transgenic oilseed crops.  相似文献   

15.
Polyketide synthase (PKS) enzymes are large multi-domain complexes that structurally and functionally resemble the fatty acid synthases involved in lipid metabolism. Polyketide biosynthesis of secondary metabolites and hence functional PKS genes are widespread among bacteria, fungi and streptophytes, but the Type I was formerly known only from bacteria and fungi. Recently Type I PKS genes were also uncovered in the genomes of some alveolate protists. Here we show that the newly sequenced genomes of representatives of other protist groups, specifically the chlorophytes Ostreococcus tauri, O. lucimarinus, and Chlamydomonas reinhardtii, and the haptophyte Emiliania huxleyi also contain putative modular Type I PKS genes. Based on the patchy phylogenetic distribution of this gene type among eukaryotic microorganisms, the question arises whether they originate from recent lateral gene transfer from bacteria. Our phylogenetic analyses do not indicate such an evolutionary history. Whether Type I PKS genes originated several times independently during eukaryotic evolution or were rather lost in many extant lineages cannot yet be answered. In any case, we show that environmental genome sequencing projects are likely to be a valuable resource when mining for genes resembling protistan PKS I genes.  相似文献   

16.
In metazoans, plants, and fungi, the spindle checkpoint delays mitosis until each chromosome is attached to one or more of its own kinetochore microtubules (kMTs). Some unicellular eukaryotes, however, have been reported to have fewer kMTs than chromosomes [1-5]. If this is the case, it is unclear how the spindle checkpoint could be satisfied. In the vast majority of the previous studies, mitotic cells were chemically fixed at room temperature, but this does not?always preserve dynamic and/or small structures like spindle MTs and kinetochores [6]. Indeed, later higher-resolution studies have reversed some earlier claims [7-11]. Here we show that in Ostreococcus tauri (the smallest eukaryote known), mitosis does involve fewer spindle microtubules than chromosomes. O.?tauri cultures were enriched for mitotic cells, high-pressure frozen, and then imaged in 3D both in plastic and in a near-native ("frozen-hydrated") state through electron tomography. Mitotic cells have a distinctive intranuclear heterochromatin-free "spindle tunnel" with approximately four short and occasionally one long, incomplete (unclosed) microtubule at each end of the spindle tunnel. Because other aspects of O.?tauri's spindle checkpoint seem typical, these data suggest that O.?tauri's 20 chromosomes are physically linked and segregated as just one or a small number of groups.  相似文献   

17.
Algae play a more important role than land plants in the maintenance of the global environment and productivity. Progress in genome analyses of these organisms means that we can now obtain information on algal genomes, global annotation and gene expression. The full genome information for several algae has already been analyzed. Whole genomes of the red alga Cyanidioshyzon merolae, the green algae Ostreococcus tauri and Chlamydomonas reinhardtii, and the diatom Thalassiosira pseudonana have been sequenced. Genome composition and the features of cells among the four algae were compared. Each alga maintains basic genes as photosynthetic eukaryotes and possesses additional gene groups to represent their particular characteristics. This review discusses and introduces the latest research that makes the best use of the particular features of each organism and the significance of genome analysis to study biological phenomena. In particular, examples of post-genome studies of organelle multiplication in C. merolae based on analyzed genome information are presented.  相似文献   

18.
We report a novel stable-isotope labeling strategy for quantitative proteomics analysis. The method consists of labeling N-termini and lysine ε-amino groups through reductive amination using acetaldehyde. This allows isotope labeling using pairs of either 2H/1H or 13C/12C without mass spectrum overlap. Our labeling procedure, which is significantly different than that developed for dimethylation, can be completed with little trace of partial ethylation; non-labeled peptides represent less than 0.05% of all peptides. Co-elution of both isotopic 13C/12C peptide pairs was observed in all cases, simplifying data analysis, which can be performed using standard commercial software such as Mascot Distiller. A 13C/12C labeled mix in a 1:1 ratio from a complex extract digest of the unicellular algae Ostreococcus tauri, showed a relative standard deviation of less than 14%. This quantitative method was used to characterize O. tauri in the presence of glufosinate, an herbicide which inhibits glutamine synthetase. Blocking glutamine synthetase significantly reduced the expression of several enzymes and transporters involved in nitrogen assimilation and the expression of a number of proteins involved in various stresses including oxidative damage response were up-regulated.  相似文献   

19.
Five species of the genus Microsporum (M. audouinii, M. canis, M. cookei, M. gypseum, M. vanbreuseghemii) were tested for their utilization of 01. pedum tauri (cow foot oil) und Cera lanae (wool-wax) as the main carbon sources in vitro. For this the fungi were cultivated in liquid media containing mineral salts, vitamins, glutamic acid and one of the both kinds of animal lipids. Mycelial weight, enzyme activity in the medium and some other metabolic parameters were measured every week for 2 months. All the species utilized both kinds of lipids, but the amount of mycelium und enzymes produced differed from species to species. Mostly growth rate and mycelial weight were higher with triglycerides (01. pedum tauri) than with waxes (Cera lanae). Wool wax stimulated the excretion of extracellular enzymes more strongly than did 01. pedum tauri. No direct correlations were seen between the pathogenicity of these fungi and their growth rate and lipolytic activity in vitro.  相似文献   

20.
A family of DNA sequences (Sau3A repeat sequences) has been revealed in genomes of two forms of O. nerka. A DNA fragment belonging to this "family" has been cloned in bacterial plasmid. Its copy number (in genomes of normal (570 +/- 33) and dwarf (66 +/- 12) forms) has been counted. The structural organization of sequences of Sau3A family in genomes of males and females of normal form is not the same. The organization of Sau3A sequences is the same in genomes of dwarf males and dwarf females of normal form, but the quantity of Sau3A sequences copies is smaller. It is supposed that the DNA sequences of Sau3A family bear the sex determination of dwarf form of O. nerka. The fragment of rRNA gene of nerka has been cloned and the number of rRNA gene copies in genomes of normal (200 +/- 62) and dwarf (1690 +/- 24) forms has been defined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号