首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Patterning mechanisms in the body trunk and the appendages of Drosophila.   总被引:2,自引:0,他引:2  
During evolution, many animal groups have developed specialised outgrowths of the body wall, limbs or appendages. The type of appendage depends on the identity of the segment where they appear, indicating that the Hox genes contribute to appendage specification. Moreover, work carried out principally in Drosophila has identified the gene products and the mechanisms involved in pattern formation in the appendages. In this essay, we compare the morphogenetic processes in the appendages and the body wall; the function of the Hox genes and the response to the signalling molecules involved in local patterning. We speculate that, although the basic mechanisms are similar, there are significant differences in the manner the body trunk and appendages respond to them.  相似文献   

2.
Recent comparative studies on expression patterns of homeobox genes in the development between ascidians and vertebrates have come to suggest a possibility that a common basic mechanism may exist in the patterning of the central nervous system (CNS). The ems/emx genes have been demonstrated to be involved in the formation and patterning of the anterior CNS in Drosophila and vertebrate embryos. In the present study, we have isolated and analyzed expression of Hremx, the ascidian homologue of ems/emx with particular attention to whether it is expressed in the larval ascidian CNS. Expression of Hremx was detected in the anterior trunk and lateral tail epidermis but not in the anterior CNS. The two expression domains of the epidermis responded in different ways upon treatment with retinoic acid: the anterior expression domain was unaltered, while the posterior expression domain extended to the anterior. The present result suggests that Hremx may have a function in anterior patterning but not in the patterning of the CNS in the ascidian embryo. We suggest the possibility that the function of ems/emx genes in the patterning of the anterior CNS in Drosophila and vertebrate embryos might have been acquired independently in the lineages to Drosophila and vertebrates.  相似文献   

3.
Recent molecular genetic analyses of Drosophila melanogaster and mouse central nervous system (CNS) development revealed strikingly similar genetic patterning mechanisms in the formation of the insect and vertebrate brain. Thus, in both insects and vertebrates, the correct regionalization and neuronal identity of the anterior brain anlage is controlled by the cephalic gap genes otd/Otx and ems/Emx, whereas members of the Hox genes are involved in patterning of the posterior brain. A third intermediate domain on the anteroposterior axis of the vertebrate and insect brain is characterized by the expression of the Pax2/5/8 orthologues, suggesting that the tripartite ground plans of the protostome and deuterostome brains share a common evolutionary origin. Furthermore, cross-phylum rescue experiments demonstrate that insect and mammalian members of the otd/Otx and ems/Emx gene families can functionally replace each other in embryonic brain patterning. Homologous genes involved in dorsoventral regionalization of the CNS in vertebrates and insects show remarkably similar patterning and orientation with respect to the neurogenic region (ventral in insects and dorsal in vertebrates). This supports the notion that a dorsoventral body axis inversion occurred after the separation of protostome and deuterostome lineages in evolution. Taken together, these findings demonstrate conserved genetic patterning mechanisms in insect and vertebrate brain development and suggest a monophyletic origin of the brain in protostome and deuterostome bilaterians.  相似文献   

4.
SUMMARY In Drosophila it is well established that signaling between the germline and surrounding follicle cells establishes the axes of the future embryo and is required for patterning of the eggshell. However, little is known about how this is achieved in other insects. Genome sequencing studies imply that maternal axis determination may be rapidly evolving, as a number of Drosophila maternal patterning genes are absent from the genomes of other insects. We have examined the distribution and function of six developmental signaling pathways present, and active, in honeybee ovarioles. We have confirmed an evolutionarily conserved role for transforming growth factor-α-epidermal growth factor receptor signaling in dorsal-ventral (DV) patterning. We also found evidence for the involvement of Dpp/Mad and JNK-MAPK pathways in DV patterning, unlike Drosophila. Several of these pathways are also active in the germarium, implicating them in germ and somatic stem cell maintenance and proliferation, similar to their activities in Drosophila ovaries.  相似文献   

5.
6.
Substantial insights into basic strategies for embryonic body patterning have been obtained from genetic analyses of Drosophila melanogaster. This knowledge has been used in evolutionary comparisons to ask if genes and functions are conserved. To begin to ask how highly conserved are the mechanisms of mRNA localization, a process crucial to Drosophila body patterning, we have focused on the localization of bcd mRNA to the anterior pole of the embryo. Here we consider two components involved in that process: the exuperantia (exu) gene, required for an early step in localization; and the cis-acting signal that directs bcd mRNA localization. First, we use the cloned D. melanogaster exu gene to identify the exu genes from Drosophila virilis and Drosophila pseudoobscura and to isolate them for comparisons at the structural and functional levels. Surprisingly, D. pseudoobscura has two closely related exu genes, while D. melanogaster and D. virilis have only one each. When expressed in D. melanogaster ovaries, the D. virilis exu gene and one of the D. pseudoobscura exu genes can substitute for the endogenous exu gene in supporting localization of bcd mRNA, demonstrating that function is conserved. Second, we reevaluate the ability of the D. pseudoobscura bcd mRNA localization signal to function in D. melanogaster. In contrast to a previous report, we find that function is retained. Thus, among these Drosophila species there is substantial conservation of components acting in mRNA localization, and presumably the mechanisms underlying this process.  相似文献   

7.
The limbs have an essential function in all vertebrates. In animals, the key genes that are involved in the growth and patterning of the limb buds, and of the development of the complex extremities, have been identified and their interactions recognized. Aided by these discoveries, human genetics has also been able to identify, or at least localize, certain genes responsible for anomalies of the limbs. These malformations are isolated or associated with anomalies of other developmental fields, according to the expression domain of the gene involved. Increasing knowledge of the embryology and genes involved has lead to a regrouping of malformation manifestations in genetics terms. Clear genotype-phenotype correlations are difficult to establish owing to the interlinking network of genetic signals underlying limb development.  相似文献   

8.
9.
Otx genes have been identified in a variety of organisms and are commonly associated with the patterning of anterior structures. In some vertebrates, Otx genes are also expressed in the prechordal mesoderm, where they may have a role in cell movement. Here we report the characterization of CnOtx, an Otx gene in hydra, thereby providing evidence that Otx genes appeared early in metazoan evolution. CnOtx is expressed at high levels in developing buds and aggregates, where it appears to have a role in the cell movements that are involved in the formation of new axes. Further, the gene is expressed at a low level throughout the body column of hydra. This latter pattern may reflect a role for CnOtx in specifying tissue as competent to be anterior, although the gene does not have a direct role in the formation of the head.  相似文献   

10.
The linear cardiac tube of Drosophila, the dorsal vessel, is an important model organ for the study of cardiac specification and patterning in vertebrates. In Drosophila, the Hox segmentation gene abdominal-A (abd-A) is required for the specification of a functionally distinct heart region at the posterior of the dorsal vessel, from which blood is pumped anteriorly through a tube termed the aorta. Since we have previously shown that the posterior part of the aorta is specified during embryogenesis to form the adult heart during metamorphosis, we determined if the embryonic aorta is also patterned by the function of Hox segmentation genes. Using gain- and loss-of-function experiments, we demonstrate that the three Hox genes expressed in the posterior aorta and heart are sufficient to confer heart or posterior aorta fate throughout the dorsal vessel. Additionally, we demonstrate that Ultrabithorax and abd-A, but not Antennapedia, function to control cell number in the dorsal vessel. These studies add robustness to the model that homeotic selector genes pattern the Drosophila dorsal vessel, and further extend our understanding of how the cardiac tube is patterned in animal models.  相似文献   

11.
12.
13.
Morphogens have been linked to numerous developmental processes, including organ patterning and the control of organ size. Here we review how different experimental approaches have led to an unprecedented level of molecular knowledge about the patterning role of the Drosophila melanogaster morphogen Decapentaplegic (DPP, the homologue of vertebrate bone morphogenetic protein, or BMP), the first validated secreted morphogen. In addition, we discuss how little is known about the role of the DPP morphogen in the control of organ growth and organ size. Continued efforts to elucidate the role of DPP in D. melanogaster is likely to shed light on this fundamental question in the near future.  相似文献   

14.
15.
Regulation of Smad activity   总被引:47,自引:0,他引:47  
Wrana JL 《Cell》2000,100(2):189-192
Finding that peripodial cells in wing and eye imaginal discs are essential for the growth and patterning of the separate layer of disc cells now opens the study of interacting cell layers to the powerful developmental genetic techniques with which the Drosophila system is blessed. We can anticipate that future work will identify how such interactions contribute to patterning and how the mechanisms and processes that are involved are conserved in vertebrates. We can also look forward to contributions that this work will make to understand-ing the role of interconnecting cell extensions in such signaling processes. In this minireview, we have noted numerous types of signaling cells in which cellular extensions have been observed. At present, neither the functional nor structural relationship of these related structures is known. It is certainly tempting to suggest that these structures are conduits for signals or that they function as sensors. There is, as yet, no direct experimental evidence for such roles.  相似文献   

16.
In spite of their varied appearances, insects share a common body plan whose layout is established by patterning genes during embryogenesis. We understand in great molecular detail how the Drosophila embryo patterns its segments. However, Drosophila has a type of embryogenesis that is highly derived and varies extensively as compared to most insects. Therefore, the study of other insects is invaluable for piecing together how the ancestor of all insects established its segmented body plan, and how this process can be plastic during evolution. In this review, we discuss the evolution of Antero-Posterior (A-P) patterning mechanisms in insects. We first describe two distinct modes of insect development - long and short germ development - and how these two modes of patterning are achieved. We then summarize how A-P patterning occurs in the long-germ Drosophila, where most of our knowledge comes from, and in the well-studied short-germ insect, Tribolium. Finally, using examples from other insects, we highlight differences in patterns of expression, which suggest foci of evolutionary change.  相似文献   

17.
18.
Genetic regulation of arealization of the neocortex   总被引:4,自引:0,他引:4  
  相似文献   

19.
Evx genes are widely used in animal development. In vertebrates they are crucial in gastrulation, neurogenesis, appendage development and tailbud formation, whilst in protostomes they are involved in gastrulation and neurogenesis, as well as segmentation at least in Drosophila. We have cloned the Evx genes of amphioxus (Branchiostoma floridae), and analysed their expression to understand how the functions of Evx have evolved between invertebrates and vertebrates, and in particular at the origin of chordates and during their subsequent evolution. Amphioxus has two Evx genes (AmphiEvxA and AmphiEvxB) which are genomically linked. AmphiEvxA is prototypical to the vertebrate Evx1 and Evx2 genes with respect to its sequence and expression, whilst AmphiEvxB is very divergent. Mapping the expression of AmphiEvxA onto a phylogeny shows that a role in gastrulation, dorsal-ventral patterning and neurogenesis is probably retained throughout bilaterian animals. AmphiEvxA expression during tailbud development implies a role for Evx throughout the chordates in this process, whilst lack of expression at the homologous region to the vertebrate Midbrain-Hindbrain Boundary (MHB) is consistent with the elaboration of the full organiser properties of this region being a vertebrate innovation.  相似文献   

20.
Members of the Sp gene family are involved in a variety of developmental processes in both vertebrates and invertebrates. We identified the ortholog of the Drosophila Sp-1 gene in the red flour beetle Tribolium castaneum, termed T-Sp8 because of its close phylogenetic relationship to the vertebrate Sp8 genes. During early embryogenesis, T-Sp8 is seen in segmental stripes. During later stages, TSp8 is dynamically expressed in the limb buds of the Tribolium embryo. At the beginning of bud formation, TSp8 is uniformly expressed in all body appendages. As the limbs elongate, a ring pattern develops sequentially and the expression profile at the end of embryogenesis correlates with the final length of the appendage. In limbs that do not grow out like the labrum and the labium, T-Sp8 expression remains uniform, whereas a two-ring pattern develops in the longer antennae and the maxillae. In the legs that elongate even further, four rings of T-Sp8 expression can be seen at the end of leg development. The role of T-Sp8 for appendage development was tested using RNAi. Upon injection of double stranded T-Sp8 RNA, larvae develop with dwarfed appendages. Affected T-Sp8(RNAi) legs were tested for the presence of medial and distal positional values using the expression marker genes dachshund and Distal-less, respectively. The results show that a dwarfed TSp8(RNAi) leg consists of proximal, medial and distal parts and argues against T-Sp8 being a leg gap gene. Based on the differential expression pattern of T-Sp8 in the appendages of the head and the thorax and the RNAi phenotype, we hypothesise that T-Sp8 is involved in the regulation of limb-length in relation to body size - a process called allometric growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号