首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The red abdominal skin of the neon tetra Paracheirodon innesi and the cardinal tetra P. axelrodi was found to blanch at night or in the dark. Melatonin added to the bathing medium caused blanching of the red skin. Microscopic observations of the erythrophores indicated that the erythrosomes aggregated in response to norepinephrine, melanin-concentrating hormone (MCH), and melatonin. Of these compounds, melatonin was the most effective. By contrast, many erythrophores were refractory to MCH. Alpha-melanophore-stimulating hormone, isoproterenol, adenosine, and ATP each caused dispersal of the pigment to some extent. Isoproterenol dispersed the pigment only when an alpha-adrenergic blocker, tolazoline, was present. It appears that the change in color of the abdominal skin is primarily due to increased secretion during the night of the pineal hormone melatonin, while other hormonal and nervous factors may modify the distribution of the pigment in the erythrophores.  相似文献   

2.
1. The aggregation of erythrosomes within erythrophores of the squirrel fish (Myripristis occidentalis; belonging to the family Holocentridae) was, on pharmacological grounds, shown to be mediated by alpha 2-adrenoceptors. 2. The erythrophores were shown to be controlled by adrenergic nerves activating the alpha 2-adrenoceptors. 3. The erythrophores themselves were found to possess a K+-sensitive mechanism of aggregation. 4. Some similarities and differences of the alpha 2-adrenoceptor-mediated chromatosome aggregation in melanophores and erythrophores are also discussed.  相似文献   

3.
This study investigated regulation of uniform positioning of melanosomes and erythrosomes in chromatophores from spotted triplefin Grahamina capito from New Zealand, by modulating levels of intracellular cAMP. Elevated cAMP levels, caused by forskolin treatment, inhibited aggregation and induced rapid dispersion of melanosomes and erythrosomes. The dispersing organelles moved to and accumulated at the cell periphery, leading to an abnormal hyperdispersed state with a melanosome- or erythrosome-depleted cell center. Minutes after hyperdispersion, these organelles reversed direction and moved towards the center again to finally distribute throughout the cells. When chromatophores with initially dispersed melanosomes or erythrosomes were treated with forskolin, no hyperdispersion was seen, but the erythrosomes aggregated slowly. Disassembly of actin by latrunculin resulted in a similar but constant hyperdispersed melanosome and erythrosome distribution. The results show that cAMP not only disperses but also aggregates melanosomes and erythrosomes, and that it is the intracellular position of these organelles that determine the directionality of the cAMP-induced movement. To ascertain the even distribution in the dispersed state, regulatory components associated with the actin cytoskeleton in the cell periphery might modify activity of cytoplasmic dynein or kinesin upon contact with dispersing melanosomes or erythrosomes.  相似文献   

4.
To determine whether or not the erythrophore originates from xanthophores in the dorsal skin of the brown frog, Rana ornativentris, we morphologically examined the differentiation and migration of the two chromatophore types and their pigmentary organelle formation. At an early tadpole stage, three kinds of chromatophores, xanthophores, iridophores, and melanophores, appeared in the subdermis, whereas the erythrophore did so just before the foreleg protrusion stage. By the middle of metamorphosis, most chromatophores other than erythrophores had migrated to the subepidermal space. Erythrophores, which appeared late in the subdermis, proliferated actively there during metamorphosis and finished moving into the subepidermal space by the completion of metamorphosis. Carotenoid vesicles and pterinosomes within the erythrophores and xanthophores showed several significant differences in structure. In xanthophores, carotenoid vesicles were abundant throughout life, whereas those in erythrophores decreased in number with the growth of the frogs. The fibrous materials contained in the pterinosomes were initially scattered but soon formed a concentric lamellar structure. In erythrophores, the lamellar structure began to form at the periphery of the organelles but at the center in xanthophores. In addition, the pterinosomes of erythrophores were uniform in size throughout development, while those of xanthophores showed a tendency to become smaller after metamorphosis. The pterinosomes of xanthophores were significantly larger than those of erythrophores. These findings suggest that an erythrophore is not a transformed xanthophore, although they resemble each other closely in many respects.  相似文献   

5.
Dermal specialized pigment cells (chromatophores) are thought to be one type of extraretinal photoreceptors responsible for a wide variety of sensory tasks, including adjusting body coloration. Unlike the well-studied image-forming function in retinal photoreceptors, direct evidence characterizing the mechanism of chromatophore photoresponses is less understood, particularly at the molecular and cellular levels. In the present study, cone opsin expression was detected in tilapia caudal fin where photosensitive chromatophores exist. Single-cell RT-PCR revealed co-existence of different cone opsins within melanophores and erythrophores. By stimulating cells with six wavelengths ranging from 380 to 580 nm, we found melanophores and erythrophores showed distinct photoresponses. After exposed to light, regardless of wavelength presentation, melanophores dispersed and maintained cell shape in an expansion stage by shuttling pigment granules. Conversely, erythrophores aggregated or dispersed pigment granules when exposed to short- or middle/long-wavelength light, respectively. These results suggest that diverse molecular mechanisms and light-detecting strategies may be employed by different types of tilapia chromatophores, which are instrumental in pigment pattern formation.  相似文献   

6.
  • 1.1. The aggregation of erythrosomes within erythrophores of the squirrel fish (Myripristis occidentalis; belonging to the family Holocentridae) was, on pharmacological grounds, shown to be mediated by alpha2-adrenoceptors.
  • 2.2. The erythrophores were shown to be controlled by adrenergic nerves activating the alpha2-adrenoceptors.
  • 3.3. The erythrophores themselves were found to possess a K+-sensitive mechanism of aggregation.
  • 4.4. Some similarities and differences of the alpha2-adrenoceptor-mediated chromatosome aggregation in melanophores and erythrophores are also discussed.
  相似文献   

7.
With the intention of simplifying construction and operation, improvements have now been made to a photoelectric system for measuring the motile responses of chromatophores. Introduction of chop-per-stabilized operational amplifiers with a complimentary metal-oxide semiconductor (C-MOS) input has brought about a much improved stability of the electronics. Such a feature has been found to be especially suitable for measurements requiring higher amplification and longer periods of time, e.g., the detection of the effects of various factors on bright-colored chromatophores. The use of appropriate color filters that limit the spectral range of light used for measurement has also proven to be important. By installing a small filter close to the photosensor, we can now record the responses of particular types of chromatophores more selectively, while visually monitoring the states of all kinds of chromatophores in natural color. To minimize the influence of motile activities of xanthophores and/or erythrophores, the use of an orange-to-red long-pass filter is appropriate to optimize recording the melanophore responses. By contrast, the responses of xanthophores or erythrophores can be recorded more easily by employing a violet-to-blue band-pass filter, because that increases the contrast of images of these cells against the background. Using an orange-red variety of the medaka Oryzias, we have also recorded photometrically the responses of leucophores, whose organelles are light-scattering. A long-pass filter was efficient in excluding the influences of co-existing xanthophores.  相似文献   

8.
We have documented the presence of intermediate filaments (IF) in cultured erythrophores of the squirrelfish Holocentrus ascensionus (Rufus). SDS-PAGE and Western blots with monoclonal antibodies T11 and R12 demonstrated that isolated IF consisted of a pair of polypeptides of 54 and 52 kDa. Immunofluorescent studies revealed that the two proteins formed prominent radially oriented IF networks in erythrophores. Immunoelectron microscopic studies showed that the IF were distributed in a "spider-web"-like network of filaments which occasionally intersected with the microtubule surfaces. The IF proteins also were found in fish iridiphores but not in fish epithelial cells which cocultured with the chromatophores.  相似文献   

9.
Using Ham's F-12 medium, an in vitro culture system permitting cellular survival for over 6 months has been developed for the chromatophores of the guppy. In this culture system, the various types of chromatophores (melanophores, erythrophores and xanthophores) migrated out of the explanted tail fin tissue, retained their pigmentation, and displayed both mitotic and pigment-translocating activities. The mitotic activity was evident during the first 3 or 4 weeks in culture, whereas the pigment-translocating ability persisted for 16 weeks. The cultured chromatophores of male fish displayed pigment aggregation in response to adrenergic agents (epinephrine and norepinephrine) and pigment dispersion in response to alpha-melanocyte stimulating hormone (alpha-MSH), cyclic AMP and dibutyryl cyclic AMP. Cyclic GMP did not elicit pigment-translocating responses in any of the chromatophores.  相似文献   

10.
Ichthyologists, natural‐history artists, and tropical‐fish aquarists have described, illustrated, or photographed colour patterns in adult marine fishes for centuries, but colour patterns in marine fish larvae have largely been neglected. Yet the pelagic larval stages of many marine fishes exhibit subtle to striking, ephemeral patterns of chromatophores that warrant investigation into their potential taxonomic and phylogenetic significance. Colour patterns in larvae of over 200 species of marine teleosts, primarily from the western Caribbean, were examined from digital colour photographs, and their potential utility in elucidating evolutionary relationships at various taxonomic levels was assessed. Larvae of relatively few basal marine teleosts exhibit erythrophores, xanthophores, or iridophores (i.e. nonmelanistic chromatophores), but one or more of those types of chromatophores are visible in larvae of many basal marine neoteleosts and nearly all marine percomorphs. Whether or not the presence of nonmelanistic chromatophores in pelagic marine larvae diagnoses any major teleost taxonomic group cannot be determined based on the preliminary survey conducted, but there is a trend toward increased colour from elopomorphs to percomorphs. Within percomorphs, patterns of nonmelanistic chromatophores may help resolve or contribute evidence to existing hypotheses of relationships at multiple levels of classification. Mugilid and some beloniform larvae share a unique ontogenetic transformation of colour pattern that lends support to the hypothesis of a close relationship between them. Larvae of some tetraodontiforms and lophiiforms are strikingly similar in having the trunk enclosed in an inflated sac covered with xanthophores, a character that may help resolve the relationships of these enigmatic taxa. Colour patterns in percomorph larvae also appear to diagnose certain groups at the interfamilial, familial, intergeneric, and generic levels. Slight differences in generic colour patterns, including whether the pattern comprises xanthophores or erythrophores, often distinguish species. The homology, ontogeny, and possible functional significance of colour patterns in larvae are discussed. Considerably more investigation of larval colour patterns in marine teleosts is needed to assess fully their value in phylogenetic reconstruction. © 2013 The Authors. Zoological Journal of the Linnean Society published by John Wiley & Sons Ltd on behalf of The Linnean Society of London  相似文献   

11.
This is a biographical sketch of my research and its related personal episodes with respect to brightly colored pigmentation in lower vertebrates. It includes a brief story of the studies on; (a) pterinosomes as a specific site of pteridine deposition in xanthophores or erythrophores of fish and amphibians, (b) a mosaic phenotype of chromatophores occurring in the reptiles and its implication for their developmental origin and differentiation mechanisms, (c) erythrophoroma as a tumor of erythrophores in goldfish, (d) the pluripotentials of erythrophoroma cells for expression of neural crest-derived characters in vitro, (e) pigment disorders occurring in hatchery-raised flounders and (f) recognition of pigment cell types by murine tyrosinase genes transfected into an orange-colored variant of medaka fish. Some of the personal affairs associated with the history of the Japanese community for pigment cell research were described to illustrate the background of these studies.  相似文献   

12.
The regulation of motile activity in fish chromatophores   总被引:10,自引:0,他引:10  
Chromatophores, including melanophores, xanthophores, erythrophores, leucophores and iridophores, are responsible for the revelation of integumentary coloration in fish. Recently, blue chromatophores, also called cyanophores, were added to the list of chromatophores. Many of them are also known to possess cellular motility, by which fish are able to change their integumentary hues and patterns, thus enabling them to execute remarkable or subtle chromatic adaptation to environmental hues and patterns, and to cope with various ethological encounters. Such physiological color changes are indeed crucial for them to survive, either by protecting themselves from predators or by increasing their chances of feeding. Sometimes, they are also useful in courtship and mutual communications among individuals of the same species, leading to an increased rate of species survival. Such strategies are realized by complex mechanisms existing in the endocrine and/or nervous systems. Current studies further indicate that some paracrine factors such as endothelins (ETs) are involved in these processes. In this review, the elaborate mechanisms regulating chromatophores in these lovely aquatic animals are described.  相似文献   

13.
Pigment dispersion in chromatophores as a response to UV radiation was investigated in two species of crustaceans, the crab Chasmagnathus granulata and the shrimp Palaemonetes argentinus. Eyestalkless crabs and shrimps maintained on either a black or a white background were irradiated with different UV bands. In eyestalkless crabs the significant minimal effective dose inducing pigment dispersion was 0.42 J/cm2 for UVA and 2.15 J/cm2 for UVB. Maximal response was achieved with 10.0 J/cm2 UVA and 8.6 J/cm2 UVB. UVA was more effective than UVB in inducing pigment dispersion. Soon after UV exposure, melanophores once again reached the initial stage of pigment aggregation after 45 min. Aggregated erythrophores of shrimps adapted to a white background showed significant pigment dispersion with 2.5 J/cm2 UVA and 0.29 J/cm2 UVC. Dispersed erythrophores of shrimps adapted to a black background did not show any significant response to UVA, UVB or UVC radiation. UVB did not induce any significant pigment dispersion in shrimps adapted to either a white or a black background. As opposed to the tanning response, which only protects against future UV exposure, the pigment dispersion response could be an important agent protecting against the harmful effects of UV radiation exposure.  相似文献   

14.
Homeotherms are generally considered to lack classical active dermal pigment cells (chromatophores) in their integument, attributable to the development of an outer covering coat of hair or feathers. However, bright colored dermal pigment cells, comparable to chromatophores of lower vertebrates, are found in the irides of many birds. We propose that, because of its exposed location, the iris is an area in which color from pigment cells has sustained a selective advantage and appears to have evolved independently of the general integument. In birds, the iris appears to have retained the potential for the complete expression of all dermal chromatophore types. Differences in cell morphology and the presence of unusual pigments in birds are suggested to be the result of evolutionary changes that followed the divergence of birds from reptiles. By comparison, mammals appear to have lost the potential for producing iridophores, xanthophores, or erythrophores comparable to those of lower vertebrates, even though some species possess brightly colored irides. It is proposed that at least one species of mammal (the domestic cat) has recruited a novel iridial reflecting pigment organelle originally developed in the choroidal tapetum lucidum. The potential presence of classical chromatophores in mammals remains open, as few species with bright irides have been examined.  相似文献   

15.
Homeotherms are generally considered to lack classical active dermal pigment cells (chromatophores) in their integument, attributable to the development of an outer covering coat of hair or feathers. However, bright colored dermal pigment cells, comparable to chromatophores of lower vertebrates, are found in the irides of many birds. We propose that, because of its exposed location, the iris is an area in which color from pigment cells has sustained a selective advantage and appears to have evolved independently of the general integument. In birds, the iris appears to have retained the potential for the complete expression of all dermal chromatophore types. Differences in cell morphology and the presence of unusual pigments in birds are suggested to be the result of evolutionary changes that followed the divergence of birds from reptiles. By comparison, mammals appear to have lost the potential for producing iridophores, xanthophores, or erythrophores comparable to those of lower vertebrates, even though some species possess brightly colored irides. It is proposed that at least one species of mammal (the domestic cat) has recruited a novel iridial reflecting pigment organelle originally developed in the choroidal tapetum lucidum. The potential presence of classical chromatophores in mammals remains open, as few species with bright irides have been examined.  相似文献   

16.
In 1925, Wilson listed, in his classic third edition of Cell in Development and Heredity, four theories for the morphological and physiological characteristics of cytoplasm; each theory provided some sort of explanation as to the mechanism(s) of organelle translocations. During the past twenty years, cell biologists have focused their attentions on the cell's cytoskeleton, microtrabecular lattice, and associated mechanochemical motors which drive organelles along cytoskeletal tracks. A number of cell types have been used to study organelle translocations, but chromatophores, pigment cells, from cold-blooded vertebrates have been one of the more popular models. This article reviews some of the research findings during the past twenty years, particularly those involving cytoplasmic elements: i.e, microfilaments, intermediate filaments, microtubules, and mechanochemical motors. In addition, it contrasts the proposed involvement of these elements in organelle translocations with the endoplasmic reticulum, a tubulovesicular organelle, which we recently demonstrated is responsible, through its elongation or retraction, for the translocations of carotenoid droplets in goldfish xanthophores and swordtail fish erythrophores. Here, the carotenoid droplets are not free in the cytoplasm and do not translocate via cytoskeletal tracks, but instead are attached to or are a part of the endoplasmic reticulum. On the other hand, carotenoid droplets of squirrel fish erythrophores are free in the cytoplasm and appear to translocate via microtubules. Finally, the rates of pigmentary organelle translocations are reviewed in light of the participation of the cytoskeletal elements with the endoplasmic reticulum.  相似文献   

17.
Two structurally related arthropod neuropeptides, red pigment concentrating hormone (RPCH) and adipokinetic hormone (AKH), are potent excitors of the heart of the clam Mercenaria mercenaria. The response is bimodal: whereas the threshold for affected hearts is 1-3 X 10(-9) M, about 40% of the preparations are virtually unresponsive. Aqueous extracts of Mercenaria ganglia contain a substance which concentrates the red pigment in the erythrophores of intact destalked Uca pugilator and even of its isolated legs. This substance is retained on Sephadex G-15 and co-elutes with synthetic shrimp RPCH. The active fractions also concentrate the erythrophores and the leucophores of destalked shrimp (Penaeus). Neither dopamine nor the molluscan neuropeptide FMRFamide had any chromatophorotropic effect in these assays. The activity of the ganglion extracts was abolished by digestion with chymotrypsin. In conclusion, molluscan ganglion extracts contain a peptide factor, possibly an analog of RPCH, that concentrates the pigments of crustacean chromatophores by a direct action on the cells.  相似文献   

18.
SYNOPSIS. The bright colored pigment cells of fishes and amphibiansinclude xanthophores, erythrophores, and iridophores. Theirultrastructure and pigmentary composition are discussed. Therole of the hypophysis in controlling both physiological andmorphological changes of color in both groups is discussed.The nervous system may be involved in physiological responsesof fish iridophores. The physiology of the amphibian iridophoreis discussed from the point of view of its parallelism of responseto that of the melanophore. Intermedin causes iridophores tocontract as do several drugs; the effect of intermedin can bereversed by still other agents. Melatonin has no effect on iridophores.Xanthophores of some fishes and amphibians are induced to expandby intermedin. The morphological effects of intermedin at theorganellar level are presented in terms of ultrastructure andpigmentary composition. The integrated response of amphibiandermal chromatophores to intermedin is described as a basicmechanism for change in color.  相似文献   

19.
This paper reviews evidence for the presence of pteridines in iridophores, leucophores, and xanthophores in a wide variety of vertebrate chromatophores, and argues that the chemical and functional distinction between pterinosomes and reflecting platelets is not as clear-cut as previously believed. Observations indicate that: (1) Pteridines may, either alone or in conjunction with purines, form pigment granules that reflect light, (2) these pigment granules are highly variable ranging from fibrous pterinosomes to typical reflecting platelets and may be colored, reflect white light, or be iridescent, and (3) many “leucophores” probably contain typical pterinosomes and presumed associated colorless pteridines and are therefore more closely related to erythrophores and xanthophores than to iridophores with which they are usually classified. We propose that the classification of pigment cells should be modified to reflect these facts.  相似文献   

20.
In theChrysophyceae as well as in different species ofCryptomonas bilobed chromatophores are present. These chromatophores consist of two large parietal lobes closed to the lateral sides of the cell and joined by a narrow bridge on its dorsal part. A survey of all species with a single bilobed chromatophore is given. Besides, also species with two separate chromatophores have been found. The presence of several chromatophores inCryptomonas cells is doubtful. The morphology of the chromatophores has to be taken into consideration in the taxonomy ofCryptomonas.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号