首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ultrastructure of the feeding apparatus in Ploeotia costata Farmer and Triemer was determined and compared to other euglenoid feeding apparatuses. The feeding apparatus opened subapically onto the ventral surface and extended nearly the entire length of the cell. It consisted of four parts at the anterior surface: a comb, cytostome/pocket, vanes, and supporting rods. The comb was a multilayered structure of three horizontal microtubular rows encased in cement and formed the dorsal lip of the apparatus. The cytostome/pocket was located between the comb and the supporting rods, tapered into the cell as the cytopharynx and was surrounded by five vanes. The electron-opaque vanes extended the entire length of the feeding apparatus and were lined with microtubules for most of their length. Finally, two cement supporting rods that were joined by a crosspiece at the anterior end formed the ventral lip. The rods separated briefly before merging with the vanes. As the merged rods and vanes descended into the cell, they gradually narrowed and terminated. Comparisons of the feeding apparatus with Ploeotia vitrea, Diplonema ambulator, Lentomonas applanatum, and other euglenoids have led to the conclusion that the Type II feeding apparatus is found only in Ploeotia species.  相似文献   

2.
Bruno Viertel 《Zoomorphology》1985,105(6):345-355
Summary In larvae of Rana temporaria and Bufo bufo the location of filter apparatus within the larval organization, the arrangement of the morphological parts as branchial food trap, ventral velum, and filter rows, as well as their surface anatomy, are similar to that of other species of Orton's larval type IV. The means by which mucous with its entrapped food particles is transported from the filter rows to the esophagus is finally resolved. The dorsally positioned ciliary cushion extends far ventrally between the filter plates. From their contact with the filter rows, the cilia transport the mucous to Kratochwill's caudally positioned Flimmerrinne and from there to the esophagus. The original chordate principle of mucous entrapment and ciliary transport is thus retained by these anuran larvae. The only modification specific to the latter is the division into a ventral filter apparatus, whose epithelia serve for mucus entrapment, and a dorsal ciliary area.Six different types of cell may be distinguished ultrastructurally: (1) The ubiquitous squamous epithelium with merocrine extrusions; (2) the large supporting cells of the filter rows and of the ventral velum; (3) the ciliary cells of the ciliary cushion; (4) three different types of mucous producing secretory cells: (a) A type of cell similar to the goblet cell is found in the ciliary cushion (merocrine extrusion); (b) The secretory pits of the ventral velum and the secretory ridges have similar bottle-shaped merocrine secretory cells; (c) The merocrine apical cells of the filter rows are the final kind. It is evident that the ciliary cushion epithelium resembles that of both the manicotto glandulare of anuran larvae and the trachea and bronchus of Mammalia.Supported by the Deutsche Forschungsgemeinschaft-DFG  相似文献   

3.
Slipper limpets use different ciliary feeding mechanisms as larvae and adults. Veliger larvae of Crepidula fornicata developed part of the adult feeding apparatus, including ctenidial filaments, neck lobe, and radula, before metamorphosis, but ctenidial feeding did not begin until well after loss of the larval feeding apparatus (velum) at metamorphosis. Earlier initiation of ctenidial feeding by individuals that were older larvae when metamorphosis occurred suggests continued development toward ctenidial feeding during delay of metamorphosis. Early juveniles produced a ciliary current through the mantle cavity and moved the radula in a grasping action before they began to capture algal cells on mucous strands or form a food cord. Either early juveniles could not yet form mucous strands or they delayed their production until development of other necessary structures. The neck canal for transporting food from ctenidium to mouth cannot develop before velar loss. In their first feeding, juveniles fed much like the adults except that the neck canal was less developed and the path of the food cord toward the mouth sometimes varied. As suspension feeders, calyptraeids lack the elaborations of foregut that complicate transition to juvenile feeding for many caenogastropods, but a path for the food cord must develop after velar loss. Why individuals can initiate ctenidial feeding sooner when they are older at metamorphosis is not yet known. The juveniles became sedentary soon after metamorphosis and were not observed to feed by scraping the substratum with the radula, in contrast to the first feeding by juveniles of another calyptraeid species, observed by Montiel et al. ( 2005 ).  相似文献   

4.
5.
The feeding anatomy, behavior and diet of the whale shark Rhincodon typus were studied off Cabo Catoche, Yucatan Peninsula, Mexico. The filtering apparatus is composed of 20 unique filtering pads that completely occlude the pharyngeal cavity. A reticulated mesh lies on the proximal surface of the pads, with openings averaging 1.2 mm in diameter. Superficial to this, a series of primary and secondary cartilaginous vanes support the pads and direct the water across the primary gill filaments. During surface ram filter feeding, sharks swam at an average velocity of 1.1 m/s with 85% of the open mouth below the water's surface. Sharks on average spent approximately 7.5 h/day feeding at the surface on dense plankton dominated by sergestids, calanoid copepods, chaetognaths and fish larvae. Based on calculated flow speed and underwater mouth area, it was estimated that a whale shark of 443 cm total length (TL) filters 326 m3/h, and a 622 cm TL shark 614 m3/h. With an average plankton biomass of 4.5 g/m3 at the feeding site, the two sizes of sharks on average would ingest 1467 and 2763 g of plankton per hour, and their daily ration would be approximately 14,931 and 28,121 kJ, respectively. These values are consistent with independently derived feeding rations of captive, growing whale sharks in an aquarium. A feeding mechanism utilizing cross-flow filtration of plankton is described, allowing the sharks to ingest plankton that is smaller than the mesh while reducing clogging of the filtering apparatus.  相似文献   

6.
7.
Disproportionately large feeding structures have been used to infer food limitation in some marine invertebrate larvae, but few studies have investigated whether other factors alter larval morphology in similar ways. In this study, larvae of Crepidula fornicata were reared either at five different food concentrations of Isochrysis galbana (clone T-ISO) at a single temperature (22 degrees C) (Experiments I and II); or on three different phytoplankton species (Isochrysis galbana, Dunaliella tertiolecta, and Pavlova lutheri) at both high and low concentrations at a single temperature (22 degrees C) (Experiment III); or at high and low concentrations of Isochrysis galbana at four different temperatures between 16 and 25 degrees C (Experiment IV). Shell lengths and velar lobe dimensions were determined for individual larvae at intervals to monitor relative rates of velar and shell growth. In addition (Experiment V), fast growing and slow growing larvae in Experiment I were examined separately to determine whether velar lobes developed at similar rates (relative to shell growth) for fast and slow growing larvae within individual cultures. In general, velar lobes grew significantly larger, relative to shell length, when larvae were reared at low food concentrations (P<0.0001); for larvae of similar shell length, the velar lobes of those fed 1x10(4) cells ml(-1) were on average 17.7% larger than those of larvae fed 18x10(4) cells ml(-1) of T-ISO. In contrast, larvae fed different phytoplankton species at equivalently high food concentrations did not differ in relative velum size (P=0.2666), even though shell growth rates differed significantly for larvae raised on the different diets, indicating substantial variation in food quality. We also found that relative rates of velum and shell growth differed among fast and slow growing individuals within treatments. Temperature had no significant effect on relative rates of velar and shell growth within the 16-25 degrees C range tested (P=0.121), but may have altered the relationship between food concentration and relative velar growth. These results indicate that dramatically reduced food concentration induces disproportionate growth in the velar lobes of C. fornicata, but that interpretation of data from field-collected individuals of this species will be made difficult by the potentially confounding effects of temperature, food quality, and differences in individual growth potential. Assessments of food limitation using morphological measurements for field-collected larvae will need to be supplemented with other indicators before convincing conclusions about the extent of food limitation in C. fornicata can be drawn.  相似文献   

8.
Several surfperches (Embiotocidae), including the black surfperch, Embiotoca jacksoni, exhibit a specialized prey handling behavior known as winnowing, in which ingested food and non-nutritive debris are separated within the oropharyngeal cavity. Prey items are swallowed, and unpalatable material is ejected from the mouth. Winnowing is believed to play an important role in the partitioning of food resources among sympatric embiotocids. We present a mechanistic model for this separative prey processing based on high-speed video analysis, cineradiography, electromyography, and buccal and opercular cavity pressure transducer recording. Winnowing by embiotocids is characterized by premaxillary protrusions repeated cyclically with reduced oral gape. Protrusion is accompanied by depression of the hyoid apparatus and adduction of the opercula. Alternating expansion and contraction of the buccal and opercular cavities generate regular pressure waveforms that indicate bidirectional water flow during processing. Separation of food from debris by Embiotoca jacksoni occurs in three phases. The prey-debris bolus is transported anteriorly and posteriorly within the oropharyngeal cavity and is then sheared by the pharyngeal jaws. Mechanical processing is complemented by the rinsing action of water currents during hydraulic prey transport. The feeding apparatus of Embiotoca jacksoni is functionally versatile, although not obviously specialized relative to that of nonwinnowing surfperches. Protrusion of the premaxillae and depression of the hyoid apparatus are critical to both prey capture and subsequent prey processing. The pharyngeal jaws exhibit kinematic patterns during separation of food from debris distinct from those observed during mastication of uncontaminated prey. This behavioral flexibility facilitates resource partitioning and the coexistence of E. jacksoni in sympatric embiotocid assemblages.  相似文献   

9.
Entosiphon sulcatum is a phagotrophic euglenoid. The tubular ingestion apparatus, called a siphon, is composed of three microtubular rods extending the length of the cell. Within the tube are four large striated vanes arranged much like the blades in a pinwheel. The vanes arise from the microtubular rods and curve towards the center of the feeding apparatus. Sheets of endoplasmic reticulum are positioned adjacent to each of the vanes and surround the perimeter of the apparatus. A cap, supported by a scaffold and anchored into the cytoplasm, covers the opening of the siphon. An elongate invagination of the plasma membrane is positioned adjacent to the edge of the cap and extends downward into the siphon forming the opening. The vanes converge at the anterior end of the siphon and surround the invagination. During feeding, the siphon protrudes from the cell. As the apparatus protrudes the cap is withdrawn to the side, opening the siphon. The vanes spread apart expanding the invagination of the plasma membrane into a large cavity into which ingested food particles are taken.  相似文献   

10.
The structure and fate of transitory larval organs (velum, shell, operculum, retractor muscles, part of the epidermis) of Phestilla sibogae Bergh were studied before, during, and after metamorphosis with both light and electron microscopy to elucidate the morphology of these organs and the mechanisms by which they are lost.Loss of the velar lobes is the first morphological sign of metamorphosis, and involves selective dissociation and subsequent ingestion of the ciliated velar cells; the remaining aggregate of supportive cells is apparently incorporated into cephalic epidermis. Attachment of the larval body to shell and operculum is primarily at sites of retractor muscle insertions; once the velum is gone, the attachment between shell and larval body is lost and the shell is cast off as the visceral organs exit through the shell aperture. Merger of visceral and cephalopedal elements results in flattening of the postlarval body and reorientation of internal organs. Simultaneously, a rapid spreading of epipodial epidermis over the lateral, dorsal, and posterior sides of the body produces the definitive integument. The squamous cells which comprise the larval perivisceral epidermis are pushed ahead of the definitive epidermis and are seen shortly after the shell is cast as a constricted aggregate of cells on the posterior end of the body. Autolysis of the left and right retractor muscles begins during metamorphosis and no trace of them is left after 24 to 48 h. The metapodial mucous glands which hypertrophy before metamorphosis are also lost within 48 h following exit of the post larva from the shell. Metamorphosis produces a detorsion caused in part by muscular action and in part by continuing growth and development.  相似文献   

11.
The flagellar apparatus and presumptive vestigial feeding apparatuses of a cold-water, photosynthetic, quadriflagellate euglenoid is described. The organism possesses two similar sets of flagella each consisting of one short and one long flagellum. Each pair of flagella is associated with three microtubular roots for a total of six roots in the basal apparatus. At the level of the ventral basal bodies, each intermediate root is nine-membered, while the ventral roots are composed of eight to nine microtubules. Only one of the ventral roots lines the single microtubule reinforced pocket. A four-membered dorsal root attaches to each dorsal basal body, and at the level of the reservoir each gives rise to a dorsal band. An additional bundle of microtubules, not arising from the microtubular roots of the basal apparatus, begins posterior to the basal apparatus as a small group of a few microtubules and extends anteriorly on the right ventral side of the reservoir ending at the canal. At the level of the stigma, the microtubules are organized into a multi-layered bundle that continues to increase in size and eventually splits to form two bundles at the level of the canal. We postulate that these bundles may represent the remnants of a rod-and-vane-type feeding apparatus like that found in many phagotrophic euglenoids.  相似文献   

12.
13.
The structure of the mouth opening and pharyngeal apparatus was studied, and its relation to the feeding pattern in three coastal species of Baikal Cottidae fish was analyzed. Analysis of data demonstrated that the general pattern of structure of the mouth opening and pharyngeal apparatus is similar in the species under study since their food is represented by bottom organisms, mainly by amphipods. Interspecies differences are manifested in an increase in relative values of morphological features and the size of consumed prey.  相似文献   

14.
The pharyngeal and oral teeth of the fish Tilapia mossambica (Peters) were examined with a scanning microscope. It appeared that the dorsal pharyngeal teeth form a peculiar hooklike extension at the tip, whereas the ventral pharyngeal teeth tend to curve in a posterior direction. The two lateral flanges at the tip of the ventral teeth are probably the areas of contact with the dorsal teeth when the latter are pressed down during sound production or feeding. However, the oral teeth develop along a different line. A part from villiform teeth the upper and lower jaws also develop tricuspid and bicuspid oral teeth, with the bicuspids concentrated mainly along the outer edge of the jaw.  相似文献   

15.
Abstract The head and branchial regions of larval and adult lampreys and hagfish were studied histologically in serial sections. The most remarkable feature in these extant agnathans was the occurrence of large blood-sinuses. In larval lampreys, blood-sinuses are well developed in the velum, an organ that functions to introduce water and accompanying food particles from the mouth into the gill and alimentary regions. The sinuses in the velum may act to transduce the force of contraction of velar muscles to the stroke-like movement of the velum; without these sinuses muscular contractions might simply cause the velum to collapse. In adult lampreys, blood-sinuses are well developed in the peribranchial space that surrounds the branchial (gill) sac and is surrounded by the branchial pouch. It is possible that the force of contractions of the branchial-pouch muscles is transduced effectively to the branchial sac via the peribranchial blood-sinus and facilitates the expiration of water through the external gill pores. If the peribranchial sinus were absent, the muscular contraction might deform the branchial sac in an inappropriate manner. In the hagfish, the blood-sinus system is also well developed in the velum and peribranchial space, although the peribranchial sinus lies outside the muscular branchial pouch. In agnathans, the blood-sinus system may function, at least in part, as a kind of hydrostatic skeleton that transduces the force generated by muscular contraction.  相似文献   

16.
Many marine invertebrates have planktonic larvae with cilia used for both propulsion and capturing of food particles. Hence, changes in ciliary activity have implications for larval nutrition and ability to navigate the water column, which in turn affect survival and dispersal. Using high-speed high-resolution microvideography, we examined the relationship between swimming speed, velar arrangements, and ciliary beat frequency of freely swimming veliger larvae of the gastropod Crepidula fornicata over the course of larval development. Average swimming speed was greatest 6 days post hatching, suggesting a reduction in swimming speed towards settlement. At a given age, veliger larvae have highly variable speeds (0.8–4 body lengths s−1) that are independent of shell size. Contrary to the hypothesis that an increase in ciliary beat frequency increases work done, and therefore speed, there was no significant correlation between swimming speed and ciliary beat frequency. Instead, there are significant correlations between swimming speed and visible area of the velar lobe, and distance between centroids of velum and larval shell. These observations suggest an alternative hypothesis that, instead of modifying ciliary beat frequency, larval C. fornicata modify swimming through adjustment of velum extension or orientation. The ability to adjust velum position could influence particle capture efficiency and fluid disturbance and help promote survival in the plankton.  相似文献   

17.
18.
The cuticular oesophagus is a simple expansion of the dorsal pharyngeal wall of the mastax. The ciliary oesophagus is the cellular anterior wall of the stomach lumen, but seems to have the same embryological origin as the pharynx.In Brachionus calyciflorus, its cilia are surrounded by cuticular velums which have the same myelin-like structure and the same function as the buccal velum of Philodina roseola. In all cases, the oesophagus prevents the return of food particles from the stomach to the mastax lumen.  相似文献   

19.
Mudskipping gobies (Periophthalminae) are among the most terrestrial of amphibious fishes. Specializations associated with terrestrial prey capture and deglutition have been studied in Periophthalmus koelreuteri by light and X-ray cinematography which permits direct visualization of pharyngeal jaw movement during deglutition. Anatomical specializations of the pharyngeal jaws are described and include depressible teeth, a large ventral process on ceratobranchial five, and muscular modifications.
Multiple terrestrial feedings occur by Periophthalmus without a return to the water, and cineradiography reveals that the buccal cavity is often filled with air during terrestrial excursions in contrast to some previous hypotheses. Transport of the prey into the oesophagus occurs primarily by anteroposterior movement of the upper pharyngeal jaw. The lower pharyngeal jaw plays a limited role in food transport and may serve primarily to hold and position prey. The bite between upper and lower pharyngeal jaws occurs between the anterior teeth, and both jaws are protracted together during raking of food into the oesophagus. Functional specializations correlated with terrestrial feeding include obligatory use of pharyngeal jaws for swallowing even small prey items and positioning of the prey in the pharynx by pharyngeal jaw and hyoid movements alone.
This analysis of terrestrial feeding allows hypotheses of design constraints imposed by the aquatic medium on fishes to be raised and tested.  相似文献   

20.
Corophium volutator Pallas is a small amphipod crustacean which burrows in inter-tidal mud on the British coast, and feeds on organic detritus, mainly vegetable, by selecting particles from the mud.
The alimentary canal consists of foregut, midgut and hindgut. The midgut is produced into a pair of anterior dorsal caeca, a pair of ventral caeca and a pair of posterior dorsal caeca.
The cardiac stomach has a large number of chitinous plates or ridges beset with hooks and spines for the trituration of food.
The pyloric stomach has long fine bristles which form an eifective filter apparatus and allow only fine particles of food to pass into the midgut, where they are digested and absorbed.
The hepato-pancreas secrete digestive enzymes and store reserve food material as oil globules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号