首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
肥胖主要表现为脂肪组织的过度聚集,而内脏脂肪组织的集聚与代谢综合征密切相关。不同部位脂肪组织在解剖学、脂肪细胞生物学、糖脂代谢和内分泌调节上存在显著差异。与皮下脂肪组织相比,内脏脂肪组织具有较强的代谢活性,产生大量游离脂肪酸、脂肪细胞因子、激素、炎症介质等直接进入肝脏及全身组织,这些特征可能是内脏性肥胖导致胰岛素抵抗、2型糖尿病、非酒精性脂肪肝、血脂紊乱等代谢综合征的重要机制,内脏脂肪组织成为临床监测、干预和治疗的靶标。  相似文献   

2.
甘油三酯(TG)是真核细胞中最重要的能量储存形式,尽管它是正常生理所必需,但过量堆积,就会导致肥胖.因此抑制TG的合成可能改善肥胖以及与之相关的症状.脂酰辅酶A:二酰基甘油酰转移酶(DGAT)是以甘油二酯和脂酰辅酶A为底物,催化甘油三酯合成途径的最后一步反应的关键酶.DGAT1基因敲除(Dgat1-/-)小鼠对肥胖有抵抗力,并且增加了对胰岛素和瘦素的敏感性,这种小鼠对饮食诱导的脂肪肝也有抵抗力.此外,DGAT1的缺乏影响脂肪源性因子的表达和分泌,从而调节能量和葡萄糖的代谢.这些研究提示DGAT1有望成为治疗肥胖和2-型糖尿病的新靶点.  相似文献   

3.
目的:筛查在正常人、单纯性肥胖患者及肥胖伴2型糖尿病患者内脏脂肪组织中差异表达的基因。方法:利用自制的高密度cDNA芯片,比较正常人、单纯性肥胖患者及肥胖伴2型糖尿病患者内脏脂肪组织中差异表达的基因,以寻找脂肪组织特异的与肥胖及糖尿病发生有关的基因。结果:和正常人相比,在肥胖患者及肥胖伴2型糖尿病患者中上调的基因分别有119个和257个,下调的基因分别有46和58个。这些基因中有77个在两组中均上调,其中包括与代谢有关的基因,如丙酮酸脱氢酶激酶4(PDK4)以及窖蛋白、金属硫因蛋白等;8个基因在两组中均下调,其中包括脂肪合成途径中的关键酶,如3-羟基-3-甲基戊二酸单酰辅酶A(MGA)合成酶、脂肪酸合成酶及硬脂酰辅酶A脱氢酶。另外,酪氨酸-3单加氧酶-色氨酸-5单加氧酶活化蛋白θ(YWHAZ)仅在肥胖伴2型糖尿病患者中上调,而在单纯性肥胖患者中不变,该基因所编码的蛋白在胰岛素信号转导途径中起着负调控的作用。结论:脂肪组织中脂肪生成下降、脂肪酸氧化增加可能是肥胖及2型糖尿病中胰岛素抵抗发生的共同原因,其它基因功能的改变也可能参与了肥胖及2型糖尿病的发生,而胰岛素信号转导受阻可能是肥胖向糖尿病转化的促进因素。对这些基因的进一步研究将有助于更好地了解肥胖及糖尿病的发生机制。  相似文献   

4.
脂肪代谢的整合调控   总被引:2,自引:0,他引:2  
脂肪组织是人体内甘油三酯的主要储存场所,脂肪分解产生的甘油和游离脂肪酸对机体能量代谢起着至关重要的作用。肝脏在脂类运输和代谢中起重要作用。在餐后、饥饿不同状态机体内脂肪代谢不同。脂肪代谢失调是肥胖发生发展的重要原因,内脏脂肪和胰岛素抵抗等与疾病关系密切。  相似文献   

5.
<正>近日,国际生物学顶尖期刊cell刊登了来自加州大学旧金山分校Ajay Chawla研究小组的一项最新研究成果,他们利用热中性小鼠模型发现激活二型固有淋巴细胞(ILC2)能够调节白色脂肪组织中米色脂肪生成。这一研究成果对于我们了解炎症与肥胖之间的关系,利用促进白色脂肪棕色化治疗肥胖和糖尿病可能有重要意义。研究人员指出,当哺乳动物处于能量过剩状态时,白色脂肪会发生增生和肥大,以储存过剩的能量。相比之下,当进行冷冻刺激,会诱导白色  相似文献   

6.
正果糖为重要单糖,是葡萄糖同分异构体,其以游离态富含于果浆和蜂蜜,为最甜的单糖。食用果糖不易导致高血糖及龋齿;果糖代谢亦不依赖于胰岛素。然而,大量食用果糖,依然会引发肥胖及非酒精性脂肪肝。在体内,果糖可经不可逆的方式合成葡萄糖或糖元。目前认为,果糖激酶可催化果糖以被机体利用,而由于果糖激酶富含于肝脏,因此,肝脏是果糖代谢的主要器官。然而,普林斯顿大学Joshua D.Rabinowitz研究团队最近发现:小肠的空肠段是果糖代谢的主要场所,而非肝脏。  相似文献   

7.
葡萄糖既是动物主要的能量来源和脂肪合成的底物,也可通过转录因子碳水化合物反应元件结合蛋白(ChREBP)调控脂肪生成。ChREBP是具有碱性螺旋-环-螺旋亮氨酸拉链(bHLH/ZIP)结构的转录因子,可激活糖酵解和脂肪生成相关基因的转录表达,在机体脂质代谢和葡萄糖稳态的调控中起重要作用。对ChREBP调控机制的认识,可为肥胖及相关代谢综合征的治疗和肉用动物体脂沉积的营养调控提供基础。本文就有关ChREBP表达、反式激活活性的调控,以及与其他调控因子的相互作用等方面的研究新进展作一综述。  相似文献   

8.
大量研究表明,高果糖可引起脂肪肝,但对肾脏脂质代谢的影响尚不清楚。该实验研究给予10%果糖水5周后诱导的脂肪肝大鼠肾脏的脂质代谢情况,并探讨其可能机制。将16只雄性SD大鼠随机分为正常组(con)和果糖组(fru),果糖组给予10%(W/V)果糖水,第5N末称体重、取血、处死,检测血浆GLU、TG、TC和INSULIN含量。取肾脏、肝脏和白色脂肪称重,采用形态学方法观察肝脏和肾脏脂质沉积情况,酶法测其TG、TC含量,以Real time—PCR检测肾脏、肝脏中脂质合成和脂质氧化相关基因水平,以Westemblot检测肾、肝细胞核脂质合成转录因子的蛋白表达。结果显示,果糖组大鼠血浆TG、INSULIN明显升高,并出现肥胖体征,肝脏脂质沉积严重,其调控脂质合成的两个关键的转录因子ChREBP和SREBPlcmRNA和核蛋白表达都明显升高,并且它们靶向的脂质合成相关酶FAS、ACCl、SCDlmRNA表达也显著增加。但是,在肾脏中,高果糖没有引起TG含量的变化,调控脂质重新合成的基因和蛋白的表达也未发生变化。因此,与果糖致脂肪肝不同,高果糖饮食并没有造成肾脏的脂质沉积和脂质合成相关基因、蛋白的变化。  相似文献   

9.
全球性肥胖症及其代谢疾病已经严重影响人类健康。因此,对其进行治疗变得愈加重要。新近研究表明,激活棕色和米色脂肪可能成为对抗肥胖的有效途径。白色脂肪棕色化可使储存能量的白色脂肪转化为具有类似棕色脂肪产热特性的米色脂肪,来增加耗能,对抗肥胖。本文综述了棕色和米色脂肪激活剂及其作用机制的研究进展,并从纳米技术的角度展望了其在肥胖症治疗中的应用前景。  相似文献   

10.
从过去一个世纪以来,果糖的进食量急剧增加,并且与糖尿病、肥胖、肾衰、高血压等的发生密切相关。目前越来越多的证据证明过量的果糖饮食会引起盐敏感性高血压,其发生机制十分复杂,但是肾脏可能在其中扮演着重要的角色。本文主要阐述了果糖诱导盐敏感性高血压的肾相关机制,包括肾素原受体依赖的肾内肾素-血管紧张素系统的活化,肾内Na~+转运体钠氢交换子3 (sodium/hydrogen exchanger 3, NHE3)和Na-K-2Cl共转运体(Na/K/2Cl cotransporter, NKCC2)的活化,肾内尿酸产生的增加,肾内一氧化氮合成的降低,以及肾内活性氧产生的增加,并以此为理论依据提出潜在的治疗盐敏感性高血压的靶点或策略。  相似文献   

11.
肥胖特别是内脏脂肪蓄积与动脉粥样硬化、血管成形术后再狭窄等血管疾病的发病进程密切相关,但有关肥胖与血管疾病之间关系的具体分子机制尚未完全阐明。脂肪因子C1q/肿瘤坏死因子相关蛋白9(C1q/TNF-related protein 9,CTRP9)在肥胖(ob/ob)小鼠血浆中的含量是下降的,静脉注射CTRP9腺病毒(Ad-CTRP9)可降低ob/ob小鼠血糖水平。  相似文献   

12.
诱导白色脂肪组织米色化从而促进能量消耗是预防和治疗肥胖的新策略。近年来,大量研究表明免疫细胞在调节白色脂肪米色化中发挥重要的作用。巨噬细胞、嗜酸性粒细胞、固有淋巴细胞、T细胞等都参与调节米色脂肪的生成。本文概述脂肪组织的分类,介绍诱导白色脂肪米色化的免疫途径,分析免疫细胞与脂肪细胞之间的对话,以此探讨免疫干预作为肥胖防治的潜在方法。  相似文献   

13.
通过对肥胖大鼠肠道代谢物改变的研究,揭示乳酸菌降低肥胖大鼠血清胆固醇的机制及对各代谢途径产生的影响。选取健康雄性5周龄SD大鼠并分为3组:饲喂低脂日粮的对照组(C),饲喂高脂日粮的高脂组(H),饲喂高脂日粮同时灌胃乳酸菌BX-1的乳酸菌组(BX-1)。通过气相色谱-质谱联用(GC-MS)非靶向的方式测定各处理组大鼠粪便代谢产物的变化。灌胃乳酸菌BX-1可影响肥胖大鼠肠道代谢物,尤其可促进肥胖大鼠体内泛酸及多种糖代谢中间产物(醛糖、木糖、乳糖、核糖、鼠李糖、果糖)含量的增加。同时影响氨基酸代谢产物脯氨酸的大量增加,伴随焦谷氨酸和鸟氨酸的降低。BX-1还能促进高脂日粮大鼠肠道内不饱和脂肪酸十八烯酸的增加。BX-1对胆汁酸代谢物的影响较大,促进肥胖大鼠肠道内游离胆汁酸以及牛磺类结合胆汁酸的大量生成。胆固醇作为胆汁酸合成的前体物质,有助于血清胆固醇的降低。BX-1主要通过调节肥胖大鼠体内糖代谢、氨基酸代谢以及胆汁酸代谢来降低血清胆固醇含量。  相似文献   

14.
肌肉生长抑制素(myostatin, MSTN)除负性调控骨骼肌质量外,还在肥胖、糖尿病的发生发展中起重要作用。肥胖和糖尿病患者的血清MSTN含量、骨骼肌MSTN水平显著增加,而降低MSTN表达水平或者抑制其活性可减少脂肪在体内的累积,延缓肥胖和糖尿病的发生发展。降低MSTN表达水平或活性延缓肥胖和糖尿病发生发展,除通过增加骨骼肌质量实现外,还可通过增加葡萄糖摄取,促进脂肪细胞发育、代谢和白色脂肪棕色化,提高瘦素敏感性,减轻炎症反应,以及提高线粒体功能等途径实现。运动也可显著降低肥胖和糖尿病患者的MSTN水平,这可能是运动减脂、改善胰岛素敏感性、预防糖尿病发生发展的重要机制之一。该文就MSTN对肥胖、糖尿病发生发展的影响和机制以及运动对其调控作一综述,这不仅为肥胖、糖尿病的预防和治疗提供了新靶点,也为运动改善肥胖和糖尿病发生发展的机制提供了新视角。  相似文献   

15.
脂肪肝(NAFLD)既可是一个独立的疾病,也可是一类疾病的伴发疾病,肥胖患者、脂肪营养不良症患者、糖尿病患者均伴发脂肪肝。脂肪肝时肝细胞内蓄积的脂质多为甘油三酯,因此肝细胞甘油三酯代谢紊乱是脂肪肝发生最主要原因。肝细胞甘油三酯蓄积会破坏其对胰岛素敏感性,促进肝糖异生导致高血糖,也可引起肝细胞极低密度脂蛋白分泌增加,升高血脂。本文详细阐述肝细胞甘油三酯代谢途径的重要步骤,探讨这些步骤异常与脂肪肝之间的关系,为脂肪肝药物设计提供新靶点。的每条通路的各个步骤,探讨这些步骤异常与脂肪肝之间的关系,为脂肪肝药物设计提供新靶点。  相似文献   

16.
长期以来,人们对免疫系统有了一定的认识和研究。无论在病理状态还是非病理状态,免疫系统都会监视和作用被称之为"免疫代谢"。大量的事实显示,肥胖及相关疾病,均能激活先天性免疫系统和获得性免疫系统。肥胖相关的慢性炎症,是内脏脂肪发生胰岛素抵抗的始动因素。脂肪因子和天然免疫淋巴细胞,尤其是巨噬细胞调节脂肪炎症和葡萄糖稳态。本综述就脂肪组织中的免疫细胞类型及对炎症和胰岛素抵抗的调节过程进行讨论。  相似文献   

17.
脂肪细胞对胰岛β细胞功能的内分泌调节作用   总被引:2,自引:0,他引:2  
Zhao YF  Chen C 《生理学报》2007,59(3):247-252
脂肪因子包括脂肪细胞分泌的多种活性因子,它们通过内分泌方式调节胰岛β细胞的胰岛素分泌、基因表达以及细胞凋亡等多方面的功能。本文提出脂肪因子影响胰岛β细胞功能主要通过三条相互联系的途径而实现。第一是调节β细胞内葡萄糖和脂肪的代谢;第二是影响β细胞离子通道的活性;第三是改变β细胞本身的胰岛素敏感性。脂肪细胞的内分泌功能是一个动态过程,在不同的代谢状态下,各脂肪因子的分泌发生不同变化。从正常代谢状态发展到肥胖以及2型糖尿病的过程中,脂肪因子参与了胰岛β细胞功能障碍的发生与发展。  相似文献   

18.
在肥胖症中,脂肪组织中低度慢性炎症的积累可导致脂肪组织功能障碍和全身能量代谢失衡。低度全身炎症可能与一些代谢紊乱或心血管疾病和其他慢性疾病的恶化有关。脂肪细胞具有复杂的生物学特性,能够选择性地激活不同的代谢途径以响应环境刺激。研究表明,脂肪细胞在适当的刺激下可以容易地分化和去分化,从而根据代谢需要将自身转化成不同的表型。虽然其潜在的机制尚未完全明了,但脂肪细胞大小的增加和在过量喂养下不能储存甘油三酯对代谢功能失调至关重要,并表现为以炎症和凋亡途径激活及促炎脂肪因子分泌为特征。在肥胖症中,脂肪因子分泌的改变、脂肪细胞失衡和脂肪酸释放到循环系统中,有助于维持免疫细胞的激活和浸润到组织器官。最近研究发现,脂肪细胞还参与调节与肥胖炎症相关的巨噬细胞、中性粒细胞和调节性T细胞等免疫细胞的活性。了解脂肪细胞调节途径和去分化过程可能有助于研究抑制肥胖相关炎症和相关代谢紊乱的新策略。  相似文献   

19.
现代研究发现脂肪组织的功能不仅仅只是储存以及释放脂类,还作为人体的内分泌腺,在维持机体代谢平衡方面具有重要的作用。而肥胖状态时脂肪组织的分泌功能紊乱,炎症因子与脂肪因子分泌失衡,打破了机体的代谢平衡。更糟糕的是,脂肪组织形成慢性低度炎症以及缺氧微环境,引起胶原的异常沉积,脂肪组织纤维化,从而破坏脂肪组织正常功能,可能进一步导致糖尿病以及肿瘤的产生。因此,本文主要概述肥胖引起的慢性炎症和缺氧微环境通过分泌炎症因子、上调缺氧诱导因子的表达,进而改变脂肪细胞外基质的组成,最终促进脂肪纤维化的发生的机制。  相似文献   

20.
肥胖已成为全球性公共卫生问题,肥胖及其引发的代谢疾病严重威胁人类健康.脂肪细胞发育及糖脂代谢与此密切相关,其中,白色脂肪细胞数量和体积的增加直接导致肥胖发生,而棕/米色脂肪的生成及其产热功能的增加有助于抵抗肥胖及相关代谢疾病.近年来已有较多研究从白色脂肪棕色化的角度着手研发保健食品及药物,从而抵抗肥胖.本文将对调控白色...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号