首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
TET(ten-eleven translocation)蛋白属于酮戊二酸和Fe2+依赖的双加氧酶,能够产生催化氧化作用。在TET蛋白家族的催化氧化作用下5-甲基胞嘧啶(5-methylcytosine,5mC)可转化为5-羟甲基胞嘧啶(5-hydroxymethylcytosine,5hmC),并可进一步转化为5-甲酰胞嘧啶(5-formylcytosine,5fC)和5-羧基胞嘧啶(5-carboxylcytosine,5caC)。TET蛋白在DNA胞嘧啶的去甲基化、胚胎发育和基因重新编码等过程都存在重要作用,其中TET蛋白参与DNA胞嘧啶的去甲基化过程的作用机制一直是研究热点,另外,有研究发现TET与肿瘤的发生也存在联系,可能成为新的肿瘤分子标志。  相似文献   

2.
TET蛋白的去甲基化机制及其在调控小鼠发育过程中的作用   总被引:1,自引:0,他引:1  
TET(Ten-eleven translocation)蛋白家族共有3个成员,分别为TET1、TET2和TET3,均属于α-酮戊二酸(α-KG)和Fe2+依赖的双加氧酶,可以将5-甲基胞嘧啶(5-methylcytosine, 5 mC)氧化为5-羟甲基胞嘧啶(5-hydroxymethylcytosine, 5 hmC)、5-甲酰基胞嘧啶(5-formylcytosine, 5 fC)及5-羧基胞嘧啶(5-carboxylcytosine, 5 caC)。研究表明,TET蛋白通过不同机制以主动或被动的方式调控DNA去甲基化,且去甲基化的活性可能受其他因子的调控。TET蛋白广泛参与哺乳动物发育过程的调节,其中在原始生殖细胞的形成、胚胎发育、干细胞多能性及神经和脑发育等方面发挥了重要作用。TET蛋白生物功能的发现为表观遗传学研究开辟了全新的研究领域,而且相关研究结果对拓展生命科学研究具有重要意义。文章综述了TET蛋白家族的结构、去甲基化分子机制及在小鼠发育过程中的作用,为深入了解TET蛋白的功能提供理论基础。  相似文献   

3.
DNA的胞嘧啶(C)5-甲基化是一种重要的表观修饰,它参与基因调节、基因组印记、X-染色体失活、重复序列抑制和癌症发生等过程. 5-甲基胞嘧啶(5mC)可被TET (ten-eleven translocation)蛋白家族进一步转化为5-羟甲基胞嘧啶(5hmC),该过程是DNA去甲基化的1个必要阶段. 5hmC可在活性转录基因起始位点和Polycomb抑制基因启动子延伸区域富集.TET蛋白包括3个成员TET1、TET2和TET3,均属于α-酮戊二酸和Fe2+依赖的双加氧酶,其催化涉及氧化过程.小鼠Tet1在胚胎干细胞发育中拥有双重作用,即促进全能因子的转录,又参与发育调节因子的抑制.人TET蛋白的破坏与造血系统肿瘤相关,如在骨髓增生性疾病/肿瘤存在频繁的TET2基因突变.TET蛋白和5hmC的研究为DNA甲基化/去甲基化及其生物学功能提供了新的视点.  相似文献   

4.
TET(ten-eleven translocation)家族蛋白能够介导DNA的5-甲基胞嘧啶(5-methylcytosine,5m C)的氧化,产生5-羟甲基胞嘧啶(5-hydroxymethylcytosine,5hm C)。通过TET蛋白的催化,可以诱导特定靶基因的启动子区域Cp G岛的去甲基化,从而激活基因的转录。TET1蛋白是一个拥有2039个氨基酸的DNA去甲基化酶,通过预测,TET1拥有18个核定位信号(nuclear localization signals,NLSs),其中13个为单分型NLS,5个为双分型NLS。本文利用绿色荧光蛋白和各种突变体,首次确定了小鼠TET1蛋白的2个NLSs,分别存在于CXXC结构域和催化结构域,而且这2个NLSs对全长TET1的和定位都是必需的。我们的研究对深入理解TET1的蛋白结构与功能研究具有重要意义。  相似文献   

5.
TET(ten-eleven translocation)家族蛋白能够介导DNA的5-甲基胞嘧啶(5-methylcytosine,5m C)的氧化,产生5-羟甲基胞嘧啶(5-hydroxymethylcytosine,5hm C)。通过TET蛋白的催化,可以诱导特定靶基因的启动子区域Cp G岛的去甲基化,从而激活基因的转录。TET1蛋白是一个拥有2039个氨基酸的DNA去甲基化酶,通过预测,TET1拥有18个核定位信号(nuclear localization signals,NLSs),其中13个为单分型NLS,5个为双分型NLS。本文利用绿色荧光蛋白和各种突变体,首次确定了小鼠TET1蛋白的2个NLSs,分别存在于CXXC结构域和催化结构域,而且这2个NLSs对全长TET1的和定位都是必需的。我们的研究对深入理解TET1的蛋白结构与功能研究具有重要意义。  相似文献   

6.
【目的】以重组大肠杆菌表达的枯草芽孢杆菌(Bacillus subtilis)L-异亮氨酸双加氧酶(L-isoleucine dioxygenase,IDO)为研究对象,考察其催化L-异亮氨酸(L-Ile)羟基化反应的影响因素,构建IDO催化合成羟基氨基酸的反应体系。【方法】通过Ni-NTA亲和层析法从重组大肠杆菌(Escherichia coli)BL21/p ET28a-ido中纯化获得重组IDO,以L-Ile为底物,考察重组IDO催化羟基化反应的影响因素,并进一步针对耦联反应优化α-酮戊二酸(α-KG)在重组IDO酶促转化体系中的添加浓度。【结果】基于重组IDO催化L-Ile羟基化的活性测定,计算该酶Km为0.247 mmol/L,kcat为1.260 s-1,kcat/Km为5.101 L/(mmol·s),与其他同源酶动力学参数比较分析表明,重组IDO的底物亲和性及催化效率较高。重组IDO催化反应的最适温度为20°C、最适p H为7.0;在35°C以下较为稳定;反应体系中Fe2+最适浓度为1 mmol/L。重组IDO可催化不同L-氨基酸反应,对L-异亮氨酸、L-正亮氨酸、L-甲硫氨酸的活性较高。通过优化α-KG浓度,反应体系中添加30 mmol/Lα-KG时,可将底物浓度提高至70 mmol/L,产物4-羟基异亮氨酸(4-HIL)的摩尔产率达66.20%,表明α-KG作为反应耦联辅因子,其浓度对重组IDO催化L-Ile羟基化具有显著影响。【结论】重组IDO的底物亲和性、催化效率、最适催化条件、稳定性等基本性质有利于催化L-Ile羟基化反应。在其催化反应体系中,α-KG作为反应耦联辅因子,对酶促转化效果影响显著。研究结果为4-HIL及其他羟基氨基酸的酶促转化提供了研究基础。  相似文献   

7.
α-酮戊二酸(α-ketoglutarate,α-KG)是戊二酸带酮基的衍生物中的一种,是三羧酸循环中重要的代谢中间产物,通过异柠檬酸脱氢酶(IDH)催化异柠檬酸氧化脱羧和谷氨酸脱氢酶催化谷氨酸氧化脱氨产生,是连接细胞内碳-氮代谢的关键节点。动脉粥样硬化(atherosclerosis,As)是一种慢性进行性疾病,病因复杂,且容易引发多种心脑血管疾病。本文从血管内皮细胞功能、自噬、DNA甲基化修饰、能量代谢、血管衰老等方面探讨α-KG与As之间的关系及其调控机制。  相似文献   

8.
L-脯氨酸-4-羟化酶(L-Proline-4-hydroxylase,P4H)是依赖α-酮戊二酸(α-KG)和Fe2+的双加氧酶成员之一,在反式-4-羟基-L-脯氨酸(trans-4-hydroxy-L-proline,t-4Hyp)等重要手性化合物的生物合成中发挥关键作用。本研究构建了来源于Bradyrhizobium japonicum USDA 6的P4H重组大肠杆菌Escherichia coli BL21(DE3)/p ET-28b-p4h BJ,SDS-PAGE和酶活检测结果表明,该菌株具有表达可溶性P4H和催化合成t-4Hyp的能力。通过优化,确定了该重组菌全细胞催化合成t-4Hyp较优的反应体系和条件:10 m L p H 6.5 80 mmol/LMES缓冲液、9 mmol/L L-Pro,6 mmol/L L-抗坏血酸,6 mmol/Lα-KG,0.8 mmol/L Fe SO4·7H2O,反应温度为35℃;在20 g/L湿细胞的催化反应中,t-4Hyp的合成量达到34.86 mg/L,比优化前(17.53 mg/L)提高了98.86%。该工作为进一步利用P4H生物催化法合成t-4Hyp奠定了一定的技术基础。  相似文献   

9.
本研究通过在大豆基因组数据库中检索拟南芥AtDAO1在大豆中的同源基因,获得了GmDAO1基因序列。通过对GmDAO1基因编码的氨基酸序列及启动子序列进行生物信息学分析,我们发现GmDAO1基因CDS序列全长951bp,编码316个氨基酸。GmDAO1编码的蛋白为亲水性蛋白,具有1个N-糖基化位点、3个激酶磷酸化位点与1个豆蔻酰化位点。结构域分析表明GmDAO1含有双加氧酶与2OG-Fe(II)加氧酶结构域,是2-酮戊二酸依赖性双加氧酶基因(2-ODD)家族的成员。GmDAO1预测的启动子区域含有与激素、胁迫、光应答、生物钟调控和转录因子结合相关的顺式作用元件。系统进化分析结果表明DAO1在豆科植物进化过程中比较保守。组织特异性表达分析结果显示GmDAO1在叶片中表达量最低,在根中表达量最高。因此我们推测其可能参与生长素的代谢途径。  相似文献   

10.
PHD锌指蛋白8(PHF8)是一种Fe2+和α-酮戊二酸依赖的组蛋白赖氨酸去甲基化酶.PHF8属于包含JmjC结构域蛋白家族,在N端还含有一个PHD(planthomeodomain)锌指结构域.人的PHF8基因突变往往破坏组蛋白去甲基化酶活性,从而引发遗传性X-连锁智力迟滞(XLMR)并伴发唇裂的发生.PHF8一方面可催化H3K9me2/1、H4K20me1和H3K27me2的去甲基化,另一方面还通过N端PHD锌指结构域与H3K4me3结合而发挥转录共激活作用.PHF8可调节rRNA和多个涉及神经发育的蛋白质编码基因如JARID1C的表达.这些研究显示,PHF8是一种重要的神经发育调节因子,从而拓宽了对组蛋白甲基化与基因表达关联的理解,同时为XLMR疾病的理解提供了新的线索.  相似文献   

11.
在L-谷氨酸脱氢酶(EC 1.4.1.3,L-GluDH)催化L-谷氨酸氧化脱氨过程中涉及昂贵的氧化型烟酰胺辅因子NAD+,因此需要构建其再生体系以降低成本.通过构建桥联黄素(F4)耦联L-谷氨酸脱氢酶催化L-谷氨酸生产α-酮戊二酸(α-KG)的新型均相体系,桥联黄素能高效氧化天然还原型烟酰胺辅因子NADH至其氧化态N...  相似文献   

12.
利用L-谷氨酸氧化酶(LGOX),对酶法转化L-谷氨酸生产α-酮戊二酸(α-KG)的工艺条件进行了研究。首先对野生菌链霉菌Streptomyces sp.FMME066进行亚硝基胍诱变,获得一株遗传性状稳定的突变株Streptomyces sp.FMME067;突变株在最优培养基(g/L):果糖10,蛋白胨7.5,KH2PO4 1,CaCl2 0.05条件下,LGOX酶活为0.14 U/mL。LGOX的生化特征为最适pH 8.5、温度35℃,Mn2+是激活剂。对LGOX转化L-谷氨酸生产α-KG的条件进行优化,在最优条件下转化24 h,α-KG产量为38.1 g/L,转化率为81.4%。研究结果为开发LGOX酶法转化生产α-KG的工业化奠定了坚实的基础。  相似文献   

13.
利用L-谷氨酸氧化酶(LGOX),对酶法转化L-谷氨酸生产α-酮戊二酸(α-KG)的工艺条件进行了研究。首先对野生菌链霉菌Streptomyces sp.FMME066进行亚硝基胍诱变,获得一株遗传性状稳定的突变株Streptomyces sp.FMME067;突变株在最优培养基(g/L):果糖10,蛋白胨7.5,KH2PO4 1,CaCl2 0.05条件下,LGOX酶活为0.14 U/mL。LGOX的生化特征为最适pH 8.5、温度35℃,Mn2+是激活剂。对LGOX转化L-谷氨酸生产α-KG的条件进行优化,在最优条件下转化24 h,α-KG产量为38.1 g/L,转化率为81.4%。研究结果为开发LGOX酶法转化生产α-KG的工业化奠定了坚实的基础。  相似文献   

14.
以光滑拟球酵母为研究模型,研究α-酮戊二酸的浓度情况。通过单因素实验得到α-酮戊二酸积累最佳浓度的各单因素条件为:葡萄糖浓度140g/L,NH4Cl浓度5g/L。在碳源(30g/L葡萄糖初始浓度)匮乏条件下加入丙酮酸30g/L,在此条件下丙酮酸转化为α-酮戊二酸的转化率最高达53.7%。以30g/L丙酮酸为唯一碳源时在7L发酵罐中光滑拟球酵母可生成浓度为10.7g/Lα-酮戊二酸,外源丙酮酸的转化率可达66.9%。这一结果表明,T.glabrata具有将丙酮酸转化为α-KG的能力。  相似文献   

15.
作为相容性物质,5-羟化四氢嘧啶不仅可以调节渗透压,还可以稳定蛋白结构,在医药、生物制造和化工行业具有广阔的发展前景。四氢嘧啶羟化酶属于Fe2+与2-酮戊二酸依赖型双加氧酶超家族,主要催化四氢嘧啶生成5-羟化四氢嘧啶。我们简要介绍了四氢嘧啶羟化酶的基因来源、活性检测、蛋白结构、催化机理及活性中心等方面的研究进展。  相似文献   

16.
DNA羟甲基化修饰是基因组表观遗传学的重要调控方式,指5-甲基胞嘧啶(5-m C)在TET蛋白家族的催化作用下氧化生成5-羟甲基胞嘧啶(5-hm C),完成DNA胞嘧啶的去甲基化过程。基因组甲基化异常导致了多种肿瘤的发生,羟甲基化修饰作为去甲基化的一种,同样与肿瘤发生密不可分。在消化系统肿瘤发生发展过程中存在5-hm C含量的变化,其原因可能与TET蛋白家族、IDH突变等密切相关,提示DNA羟甲基化修饰参与了消化系统肿瘤的发生发展过程。本文围绕DNA羟甲基化修饰与消化系统肿瘤之间的关系进行综述,旨在为消化系统肿瘤羟甲基化修饰研究提供新方向。  相似文献   

17.
羟基化氨基酸在生物技术和分子生物学中具有独特价值,具有抗真菌、抗菌、抗病毒和抗癌的特性。通过比较化学合成与生物催化合成羟基氨基酸的异同,选择具有高对映结构选择性的生物催化合成方法成为羟基氨基酸合成的首选。生物催化实现疏水性氨基酸的羟基化和羟化酶紧密相关,而羟化酶又是单核非血红素Fe(Ⅱ)和α-酮戊二酸依赖型双加氧酶(Fe/αKGDs)的一种,Fe/αKGDs存在共性催化机制。因此,疏水性氨基酸在被催化的过程中,会利用关键中间体高价铁-超氧复合体(Fe(Ⅳ)=O)引起多种氧化转化,从而完成羟基化过程。文中就疏水性氨基酸的羟基化合成及功能应用,尤其是(2S,3R,4S)-4-羟基-异亮氨酸(4-HIL)和羟脯氨酸,进行了详细的阐述,探讨了Fe/αKGDs的共性催化反应机制,并对羟基氨基酸在基础研究和工业中的应用进行了综述。  相似文献   

18.
采用简易的偶联终点显色反应(Trinder显色反应),从土壤中分离出高产谷氨酸氧化酶(LGOX)的菌株不透明红球菌Rhodococcus opacus FMME1-41,并对此菌株的产酶特性进行研究。结果表明:该菌株所产LGOX主要分泌在发酵液中,对L-谷氨酸具有较强的底物专一性,最适pH 6.5,最适温度为35℃,Mn~(2+)是该酶的激活剂。通过发酵培养基优化,培养30 h时LGOX活力达到6.4 U/m L。利用该酶转化L-谷氨酸生产α-酮戊二酸,在最佳转化条件下转化20 h,α-酮戊二酸产量达到91.2 g/L,转化率为91.8%,α-KG生产强度为4.56 g/(L·h)。  相似文献   

19.
花青素合成酶(anthocyanin synthetase,ANS)是花色苷合成途径末端的一个关键酶,催化无色花色素到有色花色素的转变。该研究利用RACE技术从鸡爪槭‘出猩猩’深红色叶片中克隆获得一个ANS基因,命名为ApANS。该cDNA序列全长1 371 bp,具有完整的开放阅读框(ORF),共1 083 bp,编码360个氨基酸,该基因编码的蛋白质具有典型的2OG-Fe II-Oxy保守功能域,保守结构域中含有α-酮戊二酸及Fe~(2+)结合位点,属于α-酮戊二酸双加氧酶家族;序列比对和系统进化分析表明,鸡爪槭ApANS蛋白质与同为无患子目的龙眼ANS蛋白质同源性为90%,亲缘关系最近。实时荧光定量PCR分析结果显示,ApANS基因在红色叶片中表达量较高,略带红色的黄色、绿色叶片中微量表达,绿色叶片中不表达;在叶片芽叶期、展叶期及呈色期具有很高的表达量,而后随着叶色的转绿,表达量急剧下降。这说明,ApANS在鸡爪槭叶片花色苷代谢及色泽形成过程中具有重要作用。  相似文献   

20.
提高光滑球拟酵母乙酰辅酶A水平促进α-酮戊二酸合成   总被引:1,自引:0,他引:1  
[目的]为了了解光滑球拟酵母中乙酰辅酶A含量对其碳代谢及其通量的影响.[方法]将来源于酿酒酵母中编码乙酰辅酶A合成酶ACS2基因过量表达于发酵法生产丙酮酸的生产菌株Torulopsis glabrata中,获得了一株乙酰辅酶A合成酶活性提高9.2倍(1.20 U/mg protein)的重组菌T. glabrataACS2-1.[结果]与出发菌株WSH-IP303相比,重组菌T glabrataACS2-1:(1)能以乙酸为唯一碳源在胞内积累0.94 mmol/(L·g DCW)的L酰辅酶A;(2)以葡萄糖为唯一碳源时胞内乙酰辅A浓度、α-酮戊二酸产量和Cα-KG,Cpyr是出发菌株WSH-IP303的3.22、2.05和2.52倍;(3)在葡萄糖培养基中添加4 g/L 乙酸,使乙酰辅酶A浓度、α-酮戊二酸产量和CαKG>>/Cpyr是出发菌株WSH-IP303的4.55、2.47和3.75倍,α-酮戊二酸浓度达到17.8 g/L.[结论]这一结果表明,改变细胞内关键辅因子的浓度能使碳代谢流的流向与通量发生改变,从积累丙酮酸转向过量积累α-酮戊二酸.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号