首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
基因组拷贝数变异及其突变机理与人类疾病   总被引:1,自引:0,他引:1  
Du RQ  Jin L  Zhang F 《遗传》2011,33(8):857-869
拷贝数变异(Copy number variation,CNV)是由基因组发生重排而导致的,一般指长度为1 kb以上的基因组大片段的拷贝数增加或者减少,主要表现为亚显微水平的缺失和重复。CNV是基因组结构变异(Structural variation,SV)的重要组成部分。CNV位点的突变率远高于SNP(Single nucleotide polymorphism),是人类疾病的重要致病因素之一。目前,用来进行全基因组范围的CNV研究的方法有:基于芯片的比较基因组杂交技术(array-based comparative genomic hybridization,aCGH)、SNP分型芯片技术和新一代测序技术。CNV的形成机制有多种,并可分为DNA重组和DNA错误复制两大类。CNV可以导致呈孟德尔遗传的单基因病与罕见疾病,同时与复杂疾病也相关。其致病的可能机制有基因剂量效应、基因断裂、基因融合和位置效应等。对CNV的深入研究,可以使我们对人类基因组的构成、个体间的遗传差异、以及遗传致病因素有新的认识。  相似文献   

2.
拷贝数变异的全基因组关联分析   总被引:3,自引:0,他引:3  
基因组拷贝数变异(copy number variations,CNVs)是指与基因组参考序列相比,基因组中≥1 kb的DNA片段插入、缺失和/或扩增,及其互相组合衍生出的复杂变异.由于其具有分布范围广、可遗传、相对稳定和高度异质性等特点,目前认为,CNVs是一种新的可以作为疾病易感标志的基因组DNA多态性,其变异引起的基因剂量改变可以导致表型改变.最近,一种基于CNVs的新的疾病易感基因鉴定策略——CNV全基因组关联分析开始出现,这一策略和传统的基于单核苷酸多态性的关联分析具有互补性,通过认识基因组结构变异可以认识复杂疾病的分子机制和遗传基础.  相似文献   

3.
刘静  王亚楠  孙亚奇  王洪洋  汪超  彭中镇  刘榜 《遗传》2014,36(4):354-359
拷贝数变异(Copy number variation, CNV)是染色体上发生的一种微结构变异, 已引起越来越多研究者的关注。本课题组前期已获得猪13号染色体上的32个CNV区域(CNV region, CNVR), 为了发掘CNVR内的基因信息, 文章在线检索了上述CNVR内的基因并进行基因本体(Gene Ontology)分析。结果共发现236个基因, 其中有注释基因169个, 主要参与蛋白质水解、细胞粘附、大分子降解等生物过程。为了探索这些基因拷贝数变异的遗传规律, 文章选择RCAN1(Regulators of calcineurin 1)基因为候选基因, 利用QPCR方法在莱芜猪群中检测了该基因的拷贝数, 并分析了CNV在莱芜猪3个家系中的遗传规律。结果表明, RCAN1基因在莱芜猪群体中存在拷贝数的缺失、重复现象, 其拷贝数变异的遗传规律符合孟德尔遗传方式。  相似文献   

4.
拷贝数变异: 基因组多样性的新形式   总被引:1,自引:0,他引:1  
吴志俊  金玮 《遗传》2009,31(4):339-347
基因拷贝数变异是指DNA片段大小范围从kb到Mb的亚微观突变, 是一可能具有致病性、良性或未知临床意义的基因组改变。Fosmid末端配对序列比较策略、比较基因组杂交芯片是当前较多使用的检测手段。染色体非等位的同源重排、非同源突变和非b DNA结构是造成基因组拷贝数变异的重要原因。拷贝数变异可导致不同程度的基因表达差异, 对正常表型的构成及疾病的发生发展具有一定作用。文章在总结基因拷贝数变异的认识过程和研究策略的基础上, 分析了拷贝数变异的形成和作用机制, 介绍了第一代人类基因组拷贝数变异图谱, 阐述了拷贝数变异研究的临床意义, 提示在探索疾病相关的遗传变异时不能错失拷贝数变异这一基因组多样性的新形式。  相似文献   

5.
拷贝数目变异(copy-number variant, CNV)也称拷贝数目多态(copy-number polymorphism, CNP), 是一种大小介于1 kb至3 Mb的DNA片段的变异, 在人类基因组中广泛分布, 其覆盖的核苷酸总数大大超过单核苷酸多态性(single nucleotide polymorphisms, SNPs)的总数, 极大地丰富了基因组遗传变异的多样性。CNV对于物种特异的基因组构成、物种的演化和系统发育以及基因组某些特定区域基因的表达和调控可能具有非常重要的生物学意义。本文从CNV的多态性、CNV的检测方法、CNV的多态性与表型的关联分析以及CNV的进化四个方面综述了CNV的研究成果, 并就CNV在动物基因组中的研究进行了展望。  相似文献   

6.
基因组结构变异分为两个层次:显微水平(microscopic)和亚显微水平(submicroscopic)。显微水平的基因组结构变异主要是指显微镜下可见的染色体畸变,包括整倍体或非整倍体、缺失、插入、倒位、易位、脆性位点等结构变异。亚显微水平的基因组结构变异是指DNA片段长度在1Kb-3Mb的基因组结构变异,包括缺失、插入、重复、重排、倒位、DNA拷贝数目变化(copy numbervariation,CNV),这些统称为CNV或者CNP(copy number polymorphisms,CNP)。对CNV的研究能够帮助研究者建立遗传检测假说,进而发现疾病易感基因,同时加深对表型变异的理解,为今后研究人类生物功能、进化、疾病奠定基础。本文主要从CNV的研究历史、分子机制、研究方法、研究意义等四个方面进行综述.。  相似文献   

7.
<正>基因重排可以导致基因拷贝数变异(CNV),即1 kb以上的基因组大片段的拷贝数增加或减少。对于小部分精神分裂症或自闭症患者而言,由等位基因CNV所造成的认知障碍或成为致病的主要因素。近日,冰岛人类遗传学研究与分析公司deCODE Genetics的科学家对一组冰岛的CNV携带者展开了相关研究。他们发现CNV携带者存在类似精神分裂症患者的大脑认知异常现象,且具有患精神分裂症或自闭症的风险。认知测试的结果显示,CNV携带者的IQ与正常人无明显区别,但CNV  相似文献   

8.
家养动物参考基因组组装的不断完善和群体重测序数据的持续增加促进了基因组中大量变异的发现。基因组上的变异主要包括单核苷酸变异(SNP)和拷贝数变异(CNV)两种类型。相对于数量众多,已经被广泛研究和用作分子育种标记SNP,目前已经被发现和经过实验验证其功能的CNV数量较少,鲜有被直接用作分子标记进行育种的报道。CNV片段长度大、在基因组中普遍存在且比SNP变异覆盖的基因组范围更广,所以可能对农艺性状造成很大影响,其在畜禽基因组研究和育种应用中具有广阔前景。重点讨论了家养动物CNV的研究进展,并对其在家养动物育种中的应用进行了分析展望。  相似文献   

9.
目的:基于基因拷贝数变异(CNV)区域网络识别神经胶质瘤的重要功能区域。方法:运用独特的计算样本的共相关性值的方法,使CNV数据与基因数据产生联系;基于蛋白质互作关系,在CNV区域与基因之间搭建桥梁,构建CNV区域网络;分析网络拓扑性质,识别出神经胶质瘤的重要功能CNV区域。结果:本文共识别出了11个与神经胶质瘤相关的候选重要功能CNV区域,通过功能注释和通路分析,确认了识别到的区域与神经胶质瘤有重要联系。结论:通过基因与表型之间的联系,利用已知表型基因在同源、功能、互作、结构域上的特征将CNV区域与基因联系起来,通过基因的功能可以了解到CNV区域的功能,对于疾病的预测和诊断有重要的意义。  相似文献   

10.
李燕  李垚垚 《生物信息学》2015,13(3):186-191
基于不同的测序技术,基因拷贝数变异的检测方法有多种,但时间复杂度较高,而新一代测序技术的发展为基因拷贝数变异检测的研究开辟了新领域。通过仿真实验、置换检验设计出一种新的基于新一代测序的拷贝数变异检测算法。不同于其它算法,本算法无需参考样本,通过直接研究比对后的序列以及reads与拷贝数的关系,来研究检测拷贝数变异,实验结果表明在时间复杂度上能提高50%以上的运算速度,这对今后拷贝数与疾病的研究具有重要意义。  相似文献   

11.
全基因组测序及其在遗传性疾病研究及诊断中的应用   总被引:1,自引:0,他引:1  
邵谦之  姜毅  吴金雨 《遗传》2014,36(11):1087-1098
最近,随着测序成本的不断降低,数据分析策略的不断提升,全基因组测序(whole-genome sequencing,WGS)已经在癌症、孟德尔遗传病、复杂疾病的致病基因检测中得到了一定运用,并逐步走向了临床诊断。全基因组测序不但可以检测编码区和非编码区的点突变(SNVs)和插入缺失(InDels),还可以在全基因组范围内检测拷贝数变异(copy number variation,CNV)以及结构变异(structure variation,SV)。本文详细地介绍了全基因组测序的标准生物信息分析流程与方法,及其在疾病研究、临床诊断中的应用,并对全基因组测序在医学遗传学中的应用与研究进展,以及数据分析方面面临的挑战进行了概述。  相似文献   

12.
基因拷贝数异常(copy number variations,CNVs)是广泛存在于人体基因组的一种结构变异现象,主要包括拷贝数的缺失、插入、重组以及多位点的复杂变异等。最初是在病人的基因组中发现,后来的研究表明在正常人体中也普遍存在。有关CNVs的研究将随机个体之间的基因组差异估计值大大提高,极大的改变了人们的认识。目前,关于CNVs的研究多处在初步探索阶段,CNVs如何导致疾病,以及如何引起基因等的改变而诱发疾病的机理也需更进一步的研究加以验证和证实。该文主要就近年来关于CNVs的研究进展作一综述。  相似文献   

13.
区域捕获测序是针对基因组特定区段如对MHC(Major histocompatibility complex)区域、外显子区域等测序的有效手段,但是由于捕获测序中探针设计不均匀而造成区域内测序深度变异很大,因此,与基于全基因组的测序数据相比,其拷贝数变异的检测难度更大.目前已经出现了捕获测序下拷贝数变异(copy number variations,CNV)的检测方法,但对CNV的检测准确性仍然很低,特别是对于低频率CNV来说效果极差.因此,本研究开发了一个新的拷贝数变异检测方法,其特点是:(1)以区域内划分的区间为单位检测区间内的CNV,而不是直接对每个个体检测CNV;(2)全面利用群体内所有个体信息,通过区间内read深度在群体的分布规律来检测CNV的分离规律,假设区间内只有1个CNV,那么区间内的read深度将服从三峰的混合正态分布.将该方法应用于21 327个银屑病个体区域捕获测序的CNV检测中,结果表明,XHMM,ExomeDepth和本方法跟金标准重叠的窗口总数与金标准总窗口数的百分比(即重叠率)分别是7%、18%和62%.与XHMM和ExomeDepth相比,新方法在区间内CNV检测覆盖度可以分别提高55个百分点和44个百分点.本研究完善拷贝数变异检测方法,为疾病的诊断治疗提供一定的理论依据.  相似文献   

14.
施锦绣  王莹  黄薇 《中国科学C辑》2008,38(10):900-906
伴随着人类基因组计划、人类单倍型图谱和人类拷贝数变异图谱的完成, 基因分型技术获得了长足的发展, 同时促进了对复杂性状疾病的研究. 本文结合国家人类基因组南方研究中心的发展和研究项目, 介绍了目前国际上广泛应用的几种基因分型技术, 及国内外复杂性状疾病遗传研究的突破和进展.  相似文献   

15.
拷贝数变异(copy number variation,CNV)是指基因组发生1 Kb 以上的DNA片段的增添、缺失或重排。癌症的早期诊断与治疗一直是本世纪亟待解决的难题。CNV的相关研究为人类健康和疾病的治疗提供了宝贵的见解。目前,CNV的研究引发了人们对疾病的新探索,尤其体现在与遗传物质息息相关的疾病(例如,癌症)的病因研究、临床诊断、新药研发和治疗。该文主要综述了CNV的研究方法、形成机制以及其与癌症间的联系,以期推动癌症相关研究的发展。  相似文献   

16.
高通量、高分辨率基因组学技术的出现推动了人类基因组中长度在1kb~3Mb的亚显微水平结构变异检测方法的发展,这些结构变异主要包括基因拷贝数变异、倒置、插入、缺失、重复及其他基因重排.而传统的细胞遗传学技术达不到如此高的分辨率.本文介绍了目前主要的基因组结构变异的检测技术,包括基于芯片的比较基因组杂交技术和代表性寡核苷酸芯片分析技术,基于PCR的多重扩增探针杂交技术和依赖于连接反应的多重探针扩增技术,配对末端图谱技术等.还比较和分析了各种方法的优劣势并提出了目前结构变异数据库存在的问题.最后讨论了这些变异对于人类表型多态性、疾病易感性、药物反应程度及群体遗传学的影响.  相似文献   

17.
本文利用先进的生物信息学方法,首次从全基因组水平综合基因表达、甲基化水平和拷贝数变异三类数据,寻找与肺鳞状细胞癌(LUSC)发生和发展密切相关的特征基因,为进一步解释其内在机理、开发新的靶向药物和治疗手段提供更加深入的理论依据.为克服全基因组数据超高维高噪声小样本特性对机器学习算法性能的影响,防止信息饱和现象的干扰,本文创新性地组合应用4种特征基因筛选方法,分别从特异性、相关性、生物学功能和对肿瘤分类模型的贡献等多个方面,通过迭代降维技术递归筛选真正的特征基因.研究中,我们以TCGA(The Cancer Genome Atlas project)数据库中的LUSCⅠ~Ⅲ期病人样本为例,对其基因表达数据(GE)、基因甲基化数据(ME)以及拷贝数变异数据(CNV)进行分析.结果筛选出67个GE特征基因,对3类样本分类的平均准确率达到86.29%,70个ME特征基因,相应的分类准确率为90.92%,31个CNV特征基因,相应的分类准确率为69.16%.KEGG(Kyoto Encyclopedia of Genes and Genomes)和IPA(Ingenuity Pathway Analysis)对上述3类特征基因集在代谢通路水平和基因调控网络水平上的分析,证明了其在调控水平上的密切关系.同时也表明,识别的特征基因与LUSC肿瘤进展之间有着重要的直接关系,这对了解肿瘤机理以及新靶向治疗的发展非常重要.  相似文献   

18.
全基因组测序研究主要包括通过不同测序技术和组装比对方法,获得某物种的全基因组序列图谱,及在此基础上构建物种全基因组遗传变异图谱进行个体或群体遗传多样性、选择信号或起源进化等方面的研究。利用单核苷酸多态性(SNP)、插入和缺失(Indel)和拷贝数变异(CNV)等遗传变异作为分子标记,全基因组测序研究已经在家畜起源进化、驯化、适应性机制、重要经济性状候选基因、群体历史动态等方面取得了许多重要的研究成果。本文主要对近几年全基因组测序在常见家畜(猪、马、牛、羊等及其近缘物种)的取得的重要研究成果进行了综述,并讨论了全基因组测序的优势、缺点及在生产中意义。此外,对基因组测序研究的未来发展进行了归纳及展望,以期为今后家畜重要经济性状的功能基因定位和物种起源、驯化研究提供参考。  相似文献   

19.
拷贝数变异是指基因组中发生大片段的DNA序列的拷贝数增加或者减少。根据现有的研究可知,拷贝数变异是多种人类疾病的成因,与其发生与发展机制密切相关。高通量测序技术的出现为拷贝数变异检测提供了技术支持,在人类疾病研究、临床诊疗等领域,高通量测序技术已经成为主流的拷贝数变异检测技术。虽然不断有新的基于高通量测序技术的算法和软件被人们开发出来,但是准确率仍然不理想。本文全面地综述基于高通量测序数据的拷贝数变异检测方法,包括基于reads深度的方法、基于双末端映射的方法、基于拆分read的方法、基于从头拼接的方法以及基于上述4种方法的组合方法,深入探讨了每类不同方法的原理,代表性的软件工具以及每类方法适用的数据以及优缺点等,并展望未来的发展方向。  相似文献   

20.
多重连接依赖性探针扩增技术及其应用进展   总被引:1,自引:0,他引:1  
多重连接依赖性探针扩增(MLPA)是一种高通量、针对待测核酸中靶序列进行定性和相对定量分析的新技术。该技术具有分辨率高、操作简便、设备要求低等诸多优势而广泛用于检测人类基因组内拷贝数变异(CNV)。近年来,MLPA在技术与应用上又有许多新的发展,如运用化学合成法制备3'、5'探针,MLPA在基因甲基化检测、基因表达水平分析、基因部分片段重复区域拷贝数分析及转基因基因分型中的应用,并且MLPA与基因芯片微阵列技术的结合,使得多重连接探针扩增真正具备了高通量检测能力。本文就MLPA技术及其应用进展作一综述。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号