首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The structure and function of the transverse tubular system(TTS) in two types of crustacean muscle fibers are examined.Giant fibers from the barnacle,Balanus nubilus, which are gradedlycontracting, are compared with allor-none twitch fibers fromthe crab, Carcinus maenas. Both fiber types were found to havedeep sarcolemmal invaginations which serve both to increasethe fiber surface area and to kfeep the length of the tubulesshort enough for electrotonic propagation.The ultrastructureof the tubular system in both types of fiber is compared.Thesystem is better developed in Carcinus than in Balanus, butthe slow Balanus fibers do have a relatively well developedTTS and sarcoplasmic reticulum in contrast to slow vertebratefibers. The apparent high, membrane-capacitance values of crustaceanfibers are the result of investigators not taking into considerationthe large increase in surface area due to the sarcolemmal infoldings.Thetubular membranes in Carcinus fibers were found to be permselectiveto chloride ions, and could be made to swell (as confirmed byelectron microscopy) by establishing an outward gradient forchloride across them. The capacitance of the tubular membranerelative to the plasma membrane was found to increase when thetubuleswere swollen. The implication of a fiber having two spatiallyseparated, differentially permeable membranes on excitation-contractioncoupling is discussed.  相似文献   

2.
3.

Aim

The aim of this study was to identify adaptations in muscle activity distribution to spinal tissue creep in presence of muscle fatigue.

Methods

Twenty-three healthy participants performed a fatigue task before and after 30 minutes of passive spinal tissue deformation in flexion. Right and left erector spinae activity was recorded using large-arrays surface electromyography (EMG). To characterize muscle activity distribution, dispersion was used. During the fatigue task, EMG amplitude root mean square (RMS), median frequency and dispersion in x- and y-axis were compared before and after spinal creep.

Results

Important fatigue-related changes in EMG median frequency were observed during muscle fatigue. Median frequency values showed a significant main creep effect, with lower median frequency values on the left side under the creep condition (p≤0.0001). A significant main creep effect on RMS values was also observed as RMS values were higher after creep deformation on the right side (p = 0.014); a similar tendency, although not significant, was observed on the left side (p = 0.06). A significant creep effects for x-axis dispersion values was observed, with higher dispersion values following the deformation protocol on the left side (p≤0.001). Regarding y-axis dispersion values, a significant creep x fatigue interaction effect was observed on the left side (p = 0.016); a similar tendency, although not significant, was observed on the right side (p = 0.08).

Conclusion

Combined muscle fatigue and creep deformation of spinal tissues led to changes in muscle activity amplitude, frequency domain and distribution.  相似文献   

4.
This is an investigation of the effects on the late after-potential of immersing frog sartorius muscles in three kinds of modified Ringer's fluid; hypertonic, low chloride, and potassium-free. The late after-potential has been attributed to the depolarizing effect of an accumulation of potassium, during a preceding train of impulses, in the intermediary space of the model of a muscle fiber proposed by Adrian and Freygang. Both the hypertonic and low chloride solutions prolonged the late after-potential reversibly and the potassium-free solution shortened it. The effect of the low potassium solution fitted those data calculated from the model, but the effect of the hypertonic and low chloride solutions required an increase in size of the intermediary space of the model in order to fit the calculated data. An electron microscopic study of the muscles showed that the size of the transverse tubular system changed reversibly in the hypertonic and low chloride solutions in almost the amount necessary to fit the experimental data to the calculated data. This agreement between the change in size of the transverse tubular system and that of the intermediary space indicates that the intermediary space may be the transverse tubular system.  相似文献   

5.
The transverse electrical impedance of single frog skeletal muscle fibers was measured at 31 frequencies that ranged from 1 to 100,000 Hz. Each fiber was bathed entirely in Ringer's solution, but it was positioned so that a central length of 5 mm was in a hollow plastic disk and was electrically isolated from the ends of the fiber. The diameter of the segment of the fiber in the disk was measured and then the segment was pressed from opposite sides by two insulating wedges. Electrical current was passed transversely through the segment between two platinum-platinum black electrodes that were located in the pools of Ringer's solution within the disk. The results were corrected for stray parallel capacitance, series resistance of the Ringer's solution between the fiber and the electrodes, parallel shunt resistance around the fiber, and the phase shift of the measuring apparatus. A nonlinear least-squares routine was used to fit a lumped equivalent circuit to the data from six fibers. The equivalent circuit that was chosen for the fibers contained three parallel branches; each branch was composed of a resistor and a capacitor in series. The model also included a seventh adjustable parameter that was designed to account for the degree of compression of the fibers by the insulating wedges. The branches of the equivalent circuit were assumed to represent the electrical properties of: (a) the myoplasm in series with the membrane capacitance that was exposed directly to the pools of Ringer's solution; (b) the capacitance and series resistance of the transverse tubules that were exposed directly to the pools of Ringer's solution; (c) the membrane capacitance in series with the shunt resistance between the fibers and the insulating wedges. The results gave no indication that current entered the sarcoplasmic reticulum.  相似文献   

6.
7.
The least explored areas in the phylogenetic development ofimmunity are the primitive chordate subphyla. The limited studieson tunicate internal defense mechanisms are presented and discussed.Primary and secondary immune responses and immunological maturationto vertebrate erythrocytes in Ciona intestinalis suggest thatits internal defense mechanisms may be closely allied to boththe invertebrates and vertebrates.  相似文献   

8.
Eighteen compounds were identified by GC–MS of their trimethylsilyl derivatives in n-butanolic extract from the biomass of Botryllus schlosseri. Three of them, 5-oxoproline, 5-hydroxyhydantoin, and kinurenic acid, were found in marine invertebrates for the first time. In addition to cellulose, the biomass was also shown to contain complex water-soluble sulfated polysaccharides. These were extracted and fractionated, and sulfate content and monosaccharide composition were determined in the fractions; fucose, xylose, galactose, mannose, glucose, glucosamine, galactosamine, and uronic acids were found. Unlike several other tunicate species, Botryllus schlosseri does not seem to contain any simple galactan sulfate.  相似文献   

9.
The double sucrose-gap method was applied to single muscle fibers of Xenopus. From the "artificial node" of the fiber, action potentials were recorded under current-clamping condition together with twitches of the node. The action potentials were stored on magnetic tape. The node was then made inexcitable by tetrodotoxin or by a sodium-free solution, and the wave form of the action potential stored on magnetic tape was imposed on the node under voltage-clamp condition (simulated AP). The twitch height caused by the simulated AP's was always smaller than the twitch height produced by the real action potentials, the ratio being about 0.3 at room temperature. The results strongly suggest that the transverse tubular system is excitable and is necessary for the full activation of twitch, and that the action potential of the tubules contributes to about 70 % of the total mechanical output of the normal isotonic twitch at 20°C. Similar results were obtained in the case of tetanic contraction. At a temperature near 10°C, twitches produced by the simulated AP were not very different (85 % of control amplitude) from the twitches caused by real action potentials. This indicates that the excitability of the tubules becomes less necessary for the full activation of twitch as the temperature becomes lower.  相似文献   

10.
The observation of the spin-echo decay in a long time domain has revealed that there exist at least three different fractions of non- (or slowly) exchanging water in the rat gastrocnemius muscle. These fractions of water are characterized with different nuclear magnetic resonance (NMR) relaxation times and are identified with the different parts of tissue water. The water associated with the macromolecules was found to be approximately 8% of the total tissue water and not to exchange rapidly with the rest of the intracellular water. The transverse relaxation time (T2) of the myoplasm is 45 ms which is roughly a 40-fold reduction from that of a dilute electrolyte solution. This fraction of water accounts for 82% of the tissue water. The reduced relaxation time is shown neither to be caused by fast exchange between the hydration and myoplasmic water nor by the diffusion of water across the local magnetic field gradients which arise from the heterogeneity in the sample. About 10% of the tissue water was resolved to be associated with the extracellular space, the relaxation time of which is approximately four times that of the myoplasm. Mathematical treatments of the proposed mechanisms which may be responsible for the reduction of tissue water relaxation times are given in this paper. The results of our study are consistent with the notion that the structure and/or motions of all or part of the cellular water are affected by the macromolecular interface and this causes a change in the NMR relaxation rates.  相似文献   

11.
12.
13.
Potentiometric dyes are useful tools for studying membrane potential changes from compartments inaccessible to direct electrical recordings. In the past, we have combined electrophysiological and optical techniques to investigate, by using absorbance and fluorescence potentiometric dyes, the electrical properties of the transverse tubular system in amphibian skeletal muscle fibers. In this paper we expand on recent observations using the fluorescent potentiometric indicator di-8-ANEPPS to investigate structural and functional properties of the transverse tubular system in mammalian skeletal muscle fibers. Two-photon laser scanning confocal fluorescence images of live muscle fibers suggest that the distance between consecutive rows of transverse tubules flanking the Z-lines remains relatively constant in muscle fibers stretched to attain sarcomere lengths of up to 3.5 μm. Furthermore, the combined use of two-microelectrode electrophysiological techniques with microscopic fluorescence spectroscopy and imaging allowed us to compare the spectral properties of di-8-ANEPPS fluorescence in fibers at rest, with those of fluorescence transients recorded in stimulated fibers. We found that although the indicator has excitation and emission peaks at 470 and 588 nm, respectively, fluorescence transients display optimal fractional changes (13%/100 mV) when using filters to select excitation wavelengths in the 530–550 nm band and emissions beyond 590 nm. Under these conditions, results from tetanically stimulated fibers and from voltage-clamp experiments suggest strongly that, although the kinetics of di-8-ANEPPS transients in mammalian fibers are very rapid and approximate those of the surface membrane electrical recordings, they arise from the transverse tubular system membranes.  相似文献   

14.
15.
Swelling of the Transverse Tubular System in Frog Sartorius   总被引:5,自引:3,他引:2       下载免费PDF全文
Electron microscopy shows that the transverse tubular system of frog sartorius swells in Ringer fluid in which NaCl is partially replaced by sucrose (sucrose isotonic solutions). At constant tonicity, the degree of swelling is roughly proportional to the decrease in ionic strength and to the sucrose concentration of the bathing solution. Swelling is time-dependent and reversible within 2 hr. The late after potential which follows a train of impulses is prolonged with swelling, but not to the extent expected from the model of Adrian and Freygang. This discrepancy remains unexplained, as does the mechanism of swelling of the transverse tubular system, although some suggestions are offered. One is that the transverse tubular system contains fixed charges and swells like a fixed charge gel.  相似文献   

16.
The co-dominant Tunicate (Tu) mutation in maize causes nonreproductive structures in both the male and female inflorescences to be enlarged. This mutation also affects sex determination, permitting the development of pistils in the normally staminate tassel. In order to characterize the role of the normal tu gene product, we have analysed genetic interaction between Tu and other mutations that perturb specific stages of floral development. Synergistic interactions observed suggested that the tu product functions in at least three stages of floral development–determination of spikelet primordia, differentiation of non-reproductive organs and pistil abortion in the tassel. © 1994 Wiley-Liss, Inc.  相似文献   

17.
18.
SYNOPSIS. Colonies of the compound tunicate Botryllus show thecapacity for self—nonself discrimination by fusion betweenseparated pieces of the same colony and rejection between piecesof unrelated colonies. We have found that genes controllingthis colony specificity are similar to those which cause transplantrejection in the vertebrates. Like the loci within the vertebratemajor histocompatibility complex (MHC), Botryllus fusibility(or histocompatibility) genes are highly polymorphic. In Botryllus,the histocompatibility complex also controls self—sterility,and limits cross—fertilization between colonies sharinghistocompatibility alleles. The mouse MHC, the H-2 region, islinked to loci which also affect the frequencies of allelesat H-2 loci in mouse populations. Thus both systems containcharacters which could act to promote the heterozygous conditionat the linked histocompatibility loci. We suggest that suchlinked characters are responsible for the evolution of allogeneicpolymorphism in vertebrates (however currently maintained),and that tunicate fusibility loci may be the evolutionary precursorsof vertebrate MHC genes.  相似文献   

19.
Plasma Physics Reports - The dispersion characteristics of surface and evanescent waves in ф metal–dielectric–plasma–dielectric–metal structure in the presence of...  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号