首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The aim of the present study was to investigate the binding sites interactions and the selectivity of sarpogrelate to human 5-HT(2) receptor family (5-HT(2A), 5-HT(2B) and 5-HT(2C) receptor subtypes) using molecular modeling. Rhodopsin (RH) crystal structures were used as template to build structural models of the human serotonin-2A and -2C receptors (5-HT(2A)R, 5-HT(2C)R), whereas for 5-HT(2B)R, we used our previously published three-dimensional (3D) models based on bacteriorhodopsin (BR). Sarpogrelate, a novel 5-HT(2)R antagonist, was docked to the receptors. Molecular dynamics (MD) simulations produced the strongest interaction for 5-HT(2A)R/sarpogrelate complex. Upon binding, sarpogrelate constraints aromatic residues network (Trp(3.28), Phe(5.47), Trp(6.48), Phe(6.51), Phe(6.52) in 5-HT(2A)R; Phe(3.35), Phe(6.51), Trp(7.40) in 5-HT(2B)R; Trp(3.28), Phe(3.35), Phe(5.47), Trp(6.48), Phe(6.51), Phe(6.52) in 5-HT(2C)R) in a stacked configuration, preventing activation of the receptor. The models suggest that the structural origin of the selectivity of sarpogrelate to 5-HT(2A)R vs both 5-HT(2B)R and 5-HT(2C)R comes from the following results: (1) The tight interaction between the antagonist and the transmembrane domain (TMD) 3. Asp(3.32) neutralizes the cationic head and interacts simultaneously with carboxylic group hydrogen of the antagonist molecule. (2) Due to steric hindrance, Ser(5.46) (vs Ala(5.46) in 5HT(2B) and 5HT(2C)) prevents sarpogrelate to enter deeply inside the hydrophobic core of the helix bundle and to interact with Pro(5.50). (3) The side chain of Ile(4.56) (vs Ile(4.56) in 5HT(2B)R and Val(4.56) in 5HT(2C)R) constraints sarpogrelate to adjust its position by translating toward the strongly attractive Asp(3.32). These results are in good agreement with binding affinities (pKi) of sarpogrelate for 5-HT(2) receptor family expressed in transfected cell.  相似文献   

3.
The nature of the receptor mediating serotonin contraction in the rat stomach fundus has not been clearly associated with either 5HT1 or 5HT2 receptors. We have explored the possibility that such receptors in the rat fundus may better correlate with 5HT1A or 5HT1B receptor subtypes as defined by radiolabeled ligand binding studies with brain cortical membranes. Meta chlorophenylpiperazine (CPP) and meta trifluoromethylphenylpiperazine (TFMPP), selective ligands for the 5HT1B receptor and LY165163, a selective ligand for the 5HT1A receptor, have been evaluated for their agonist and antagonist activity at serotonin receptors in the rat stomach fundus. CPP and TFMPP were partial agonists in the rat stomach fundus whereas LY165163 showed no agonist activity in this smooth muscle in concentrations up to 10(-4)M. All three phenylpiperazines antagonized serotonin-induced contractions in the rat stomach fundus. The affinity for serotonin receptors in the rat fundus was similar for all three phenylpiperazines in spite of the reported selectivity of MCPP and TFMPP for 5HT1B and of LY165163 for 5HT1A receptors. Furthermore, the affinity of these agents for serotonin receptors in the rat stomach fundus did not agree with their reported affinity for either 5HT1A or 5HT1B binding sites in rat cortical membranes. Thus, the similarity in affinities of these phenylpiperazine derivatives for serotonin receptors mediating contraction in the rat fundus along with their different affinities for 5HT1A and 5HT1B binding sites argues against the possibility that the serotonin receptor in the rat fundus is of the 5HT1A or 5HT1B subtype of serotonin receptor.  相似文献   

4.
Serotonin and octopamine (OA) are biogenic amines that are active throughout the nervous systems of insects, affecting sensory processing, information coding and behavior. As an initial step towards understanding the modulatory roles of these amines in olfactory processing we cloned two putative serotonin receptors (Ms5HT1A and Ms5HT1B) and one putative OA (MsOAR) receptor from the moth Manduca sexta. Ms5HT1A and Ms5HT1B were both similar to 5HT1-type receptors but differed from each other in their N-terminus and 3rd cytoplasmic loop. Ms5HT1A was nearly identical to a serotonin receptor from Heliothis virescens and Ms5HT1B was almost identical to a serotonin receptor from Bombyx mori. The sequences for homologs of Ms5HT1A from B. mori and Ms5HT1B from H. virescens were also obtained, suggesting that the Lepidoptera likely have at least two serotonin receptors. The MsOAR shares significant sequence homology with pharmacologically characterized OA receptors, but less similarity to putative OA/tyramine receptors from the moths B. mori and H. virescens. Using the MsOAR sequence, fragments encoding putative OA receptors were obtained from B. mori and H. virescens, suggesting that MsOAR is the first OA receptor cloned from a lepidopteran.  相似文献   

5.
J L Plassat  U Boschert  N Amlaiky    R Hen 《The EMBO journal》1992,11(13):4779-4786
Serotonin (5-HT) is a neuromodulator that mediates a wide range of physiological functions by activating multiple receptors. Using a strategy based on amino acid sequence homology between 5-HT receptors that interact with G proteins, we have isolated a cDNA encoding a new serotonin receptor from a mouse brain library. Amino acid sequence comparisons revealed that this receptor was a distant relative of all previously identified 5-HT receptors; we therefore named it 5HT5. When expressed in Cos-7 cells and NIH-3T3 cells, the 5HT5 receptor displayed a high affinity for the serotonergic radioligand [125I]LSD. Surprisingly, its pharmacological profile resembled that of the 5HT1D receptor, which is a 5-HT receptor subtype which has been shown to inhibit adenylate cyclase and which is predominantly expressed in basal ganglia. However, unlike 5HT1D receptors, the 5HT5 receptor did not inhibit adenylate cyclase and its mRNA was not found in basal ganglia. On the contrary, in situ hybridization experiments revealed that the 5HT5 mRNA was expressed predominantly in cerebral cortex, hippocampus, habenula, olfactory bulb and granular layer of the cerebellum. Our results therefore demonstrate that the 5HT1D receptors constitute a heterogeneous family of receptors with distinct intracellular signalling properties and expression patterns.  相似文献   

6.
The prototypic arylpiperazines, meta-chlorophenylpiperazine (mCPP), meta-trifluoromethylphenylpiperazine (TFMPP) and quipazine are widely studied serotonergic ligands with nonselective effects at 5HT1 and 5HT2 receptor subtypes. The present study was designed to compare the affinities of these arylipiperazines at 5HT3 receptors, and to determine agonist or antagonist activity at 5HT3 receptors. Quipazine showed high affinity at brain 5HT3 receptors (IC50 = 4.4 nM) and was a potent agonist of the von Bezold-Jarisch reflex in anesthetized rats, a response mediated by cardiac 5HT3 receptors. In concentrations that activated 5HT3 receptors, quipazine also antagonized serotonin-induced bradycardia in anesthetized rats. Taken together, these data suggest that quipazine is an agonist/antagonist with high affinity at 5HT3 receptors in both brain and cardiac tissue. Although mCPP also showed relatively high affinity at brain 5HT3 receptors (IC50 = 61.4 nM), it did not activate the von Bezold-Jarisch reflex; instead, mCPP potently antagonized serotonin-induced bradycardia. Thus, mCPP acts as an antagonist at 5HT3 receptors in the periphery. Although both quipazine and mCPP possessed relatively high affinity at brain 5HT3 receptors, TFMPP did not bind appreciably to 5HT3 receptors in brain (IC50 = 2373 nM) and neither activated nor inhibited cardiac 5HT3 receptors. That TFMPP did not interact with 5HT3 receptors, whereas quipazine and mCPP did, is in marked contrast to the similar effects of all three arylpiperazines at other serotonin receptors. The selectivity of TFMPP for 5HT1 and 5HT2 receptors (i.e., its minimal affinity for 5HT3 receptors) suggests that this arylpiperazine may be a preferred ligand relative to mCPP when studying 5HT1 or 5HT2 receptor mediated responses.  相似文献   

7.
Serotonin (5‐HT)2C receptors play a role in psychoaffective disorders and often contribute to the antidepressant and anxiolytic effects of psychotropic drugs. During stress, activation of these receptors exerts a negative feedback on 5‐HT release, probably by increasing the activity of GABAergic interneurons. However, to date, the GABA receptor types that mediate the 5‐HT2C receptor‐induced feedback inhibition are still unknown. To address this question, we assessed the inhibition of 5‐HT turnover by a 5‐HT2C receptor agonist (RO 60‐0175) at the hippocampal level and under conditions of stress, after pharmacological or genetic inactivation of either GABA‐A or GABA‐B receptors in mice. Neither the GABA‐B receptor antagonist phaclofen nor the specific genetic ablation of either GABA‐B1a or GABA‐B1b subunits altered the inhibitory effect of RO 60‐0175, although 5‐HT turnover was markedly decreased in GABA‐B1a knock‐out mice in both basal and stress conditions. In contrast, the 5‐HT2C receptor‐mediated inhibition of 5‐HT turnover was reduced by the GABA‐A receptor antagonist bicuculline. However, a significant effect of 5‐HT2C receptor activation persisted in mutant mice deficient in the α3 subunit of GABA‐A receptors. It can be inferred that non‐α3 subunit‐containing GABA‐A receptors, but not GABA‐B receptors, mediate the 5‐HT2C‐induced inhibition of stress‐induced increase in hippocampal 5‐HT turnover in mice.

  相似文献   


8.
9.
Cardio-respiratory reflex effects of an exogenous serotonin challenge are suggested to be modulated by activation of the peripheral 5HT2 and 5HT3 receptors. In the present experiments the blocking effects of serotoninergic active drugs: ketanserin and tropanserin (MDL 72222) were studied in six pentobarbitone-chloralose anaesthetized cats. Bolus injection of serotonin (0.05 mg.kg(-1)) into the right femoral vein evoked prompt apnea, hypotension followed by tachypnoeic breathing. Pre-treatment with ketanserin (0.1 mg.kg(-1)), 5HT2 receptor antagonist, shortened the duration of post-serotonin apnea (P < 0.05), but had no effect on the pattern of post-apnoeic breathing. 5HT3 receptor blockade with the selective antagonist MDL 72222 (0.2 mg.kg(-1)) totally eliminated respiratory response to serotonin. In breaths that followed post-serotonin apnea, peak amplitude of the integrated phrenic signal was reduced (P < 0.001), unbiased by ketanserin blockade, and remained at the baseline level in MDL treated rats. Serotonin-induced hypotension was unaffected by the blockade of 5HT2 receptors. Inactivation of 5HT3 receptors with MDL attenuated the fall in blood pressure (P < 0.05). This data suggests that the squeal of serotonin-induced pulmonary chemoreflex, i.e. respiratory arrest, post-apnoeic pattern of breathing, bradycardia, and partially hypotension are mediated by 5HT3 receptors.  相似文献   

10.
Dempsey CM  Mackenzie SM  Gargus A  Blanco G  Sze JY 《Genetics》2005,169(3):1425-1436
Drugs that target the serotonergic system are the most commonly prescribed therapeutic agents and are used for treatment of a wide range of behavioral and neurological disorders. However, the mechanism of the drug action remain a conjecture. Here, we dissect the genetic targets of serotonin (5HT), the selective 5HT reuptake inhibitor (SSRI) fluoxetine (Prozac), the tricyclic antidepressant imipramine, and dopamine. Using the well-established serotonergic response in C. elegans egg-laying behavior as a paradigm, we show that action of fluoxetine and imipramine at the 5HT reuptake transporter (SERT) and at 5HT receptors are separable mechanisms. Even mutants completely lacking 5HT or SERT can partially respond to fluoxetine and imipramine. Furthermore, distinct mechanisms for each drug can be recognized to mediate these responses. Deletion of SER-1, a 5HT1 receptor, abolishes the response to 5HT but has only a minor effect on the response to imipramine and no effect on the response to fluoxetine. In contrast, deletion of SER-4, a 5HT2 receptor, confers significant resistance to imipramine while leaving the responses to 5HT or fluoxetine intact. Further, fluoxetine can stimulate egg laying via the Gq protein EGL-30, independent of SER-1, SER-4, or 5HT. We also show that dopamine antagonizes the 5HT action via the 5HT-gated ion channel MOD-1 signaling, suggesting that this channel activity couples 5HT and dopamine signaling. These results suggest that the actions of these drugs at specific receptor subtypes could determine their therapeutic efficacy. SSRIs and tricyclic antidepressants may regulate 5HT outputs independently of synaptic levels of 5HT.  相似文献   

11.
The 5‐hydroxytryptamine (serotonin, 5‐HT) type 3 (5‐HT3) receptor belongs to the superfamily of Cys‐loop ligand‐gated ion channels, and can be either homopentameric (5‐HT3A) or heteropentameric (5‐HT3AB) receptor. Several modulators are known, which either inhibit or potentiate this channel, but few have any appreciable selectivity between the two subtypes or can modulate one receptor differently to the other. In this study, we show that the anticancer drug, topotecan, bidirectionally modulates the 5‐HT3 receptor using a two‐electrode voltage clamp technique. Topotecan inhibited 5‐HT‐gated current through homomeric 5‐HT3A receptors. Interestingly, however, additional expression of the 5‐HT3B subunit changed the response to topotecan dramatically from an inhibitory to a potentiatory one. This effect was dependent on the level of 5‐HT3B subunit expression. Moreover, the effect was reduced in the receptors containing the 5‐HT3B(Y129S) polymorphic variant. These finding could explain individual differences in the sensitivity to topotecan‐induced nausea and vomiting.  相似文献   

12.
By selective breeding, two sublines of rats with high or low activity of platelet serotonin (5HT) transporter (5HTt) have been developed (Wistar-Zagreb 5HT rats). Previous studies demonstrated significant differences between the sublines in the expression of platelet 5HTt at the level of both, mRNA and protein. Pharmacological studies showed marked alterations in brain 5HTt function, indicating differences in central serotonin homeostasis, although analysis of regional brain 5HTt gene expression did not show analogous differences. In this study, we searched for possible changes in the expression of the two central 5HT receptor subtypes: 5HT-1A and 5HT-1B, both participating in the regulation of brain 5HT transmission. Semi-quantitative RT-PCR, with three different housekeeping genes as internal standards, showed no differences in the levels of 5HT-receptor expression between the sublines. Results suggest that constitutional alteration of 5HT homeostasis, induced by selective breeding for the extremes of platelet 5HTt activity, did not cause measurable changes in the expression of central 5HT-1A (hippocampus) and 5HT-1B (striatum) receptors in the mentioned rat sublines under physiological conditions.  相似文献   

13.
Multiple mechanisms of serotonergic signal transduction   总被引:7,自引:0,他引:7  
B L Roth  D M Chuang 《Life sciences》1987,41(9):1051-1064
In this article we review serotonergic signal transduction mechanisms in the central and peripheral nervous systems and in a variety of target organs. The various classes of pharmacologically defined serotonergic receptors are coupled to three major effector systems: (1) adenylate cyclase; (2) phospholipase C mediated phosphoinositide (PI) hydrolysis and (3) ion channels (K+ and Ca++). Long term occupancy of serotonergic receptors also appears to induce alterations in mRNA and protein synthesis. For all three types of signal transduction there is evidence accumulating which suggests the involvement of guanine nucleotide regulatory proteins. Recent findings suggest that the distinct types of pharmacologically defined serotonergic receptors (5HT1A, 5HT1B, 5HT1c, 5HT2) may be coupled to one or more signal transduction systems. Thus, 5HT1 receptors may both activate and inhibit adenylate cyclase and increase K+-ion conductance in the hippocampus. 5HT2 receptors which activate PI hydrolysis in the brain, both open voltage-gated calcium channels and activate PI metabolism in certain smooth muscle preparations. Thus, each class of serotonergic receptor may be linked to one or more distinct biochemical transduction mechanisms. The possibility is raised that selective agonists and antagonists might be developed which have specific effects on a particular receptor-linked effector system.  相似文献   

14.
Serotonin (5-HT) is an indirect modulator of the electric organ discharge (EOD) in the weakly electric gymnotiform fish, Brachyhypopomus pinnicaudatus. Injections of 5-HT enhance EOD waveform "masculinity", increasing both waveform amplitude and the duration of the second phase. This study investigated the pharmacological identity of 5-HT receptors that regulate the electric waveform and their effects on EOD amplitude and duration. We present evidence that two sets of serotonin receptors modulate the EOD in opposite directions. We found that the 5HT1AR agonist 8-OH-DPAT diminishes EOD duration and amplitude while the 5HT1AR antagonist WAY100635 increases these parameters. In contrast, the 5HT2R agonist alpha-Me-5-HT increases EOD amplitude but not duration, yet 5-HT-induced increases in EOD duration can be inhibited by blocking 5HT2A/2C-like receptors with ketanserin. These results show that 5-HT exerts bi-directional control of EOD modulations in B. pinnicaudatus via action at receptors similar to mammalian 5HT1A and 5HT2 receptors. The discordant amplitude and duration response suggests separate mechanisms for modulating these waveform parameters.  相似文献   

15.
Human platelets are known to possess 5HT2 receptors which, when activated, amplify the aggregation response produced by other aggregating agents. Several 5HT2 receptor antagonists, including ketanserin and ritanserin, are known to antagonize serotonin-mediated aggregation of human platelets. In the present study, we document the ability of three ergoline 5HT2 receptor antagonists, LY53857, sergolexole, and LY237733, to antagonize the serotonergic component of the human platelet aggregation response. Potencies of the ergoline esters (LY53857 and sergolexole) and the ergoline amide (LY237733) to inhibit serotonin-amplified platelet aggregation responses were similar to the potencies of ketanserin and ritanserin under the conditions of our study. Furthermore, all five 5HT2 receptor antagonists were capable of fully inhibiting the serotonergic component of the platelet aggregation response. In contrast to these potent ergoline esters and amides, 1-isopropyl dihydrolysergic acid (up to 10(-5)M), a putative metabolite of the ergoline esters, was ineffective under these in vitro conditions. These data are consistent with the high potency of these ergolines as antagonists of 5HT2 receptors and further support the involvement of 5HT2 receptors on human platelets in the amplifying response to serotonin.  相似文献   

16.
M L Cohen  N Mason  K W Schenck 《Life sciences》1986,39(25):2441-2446
LY165163, a ligand reported to be selective for the 5HT1A subtype of serotonin receptor, was examined for its ability to interact with 5HT2 receptors in the rat jugular vein and alpha-receptors in the rat aorta. In these smooth muscle preparations, no agonist activity of LY165163 occurred in concentrations up to 10(-5) M. However, LY165163 was an antagonist of serotonin-induced contractions in the jugular vein and of norepinephrine-induced contractions in the rat aorta. The dissociation constant calculated for LY165163 at 5HT2 receptors in the rat jugular vein was 10(-8) M and at alpha-receptors in the rat aorta was 2 X 10(-7) M. Thus, LY165163 is a relatively potent antagonist at vascular 5HT2 sites and possesses appreciable affinity at alpha-receptors. Based on these data, the multiple receptor interactions of LY165163 must be taken into consideration when utilizing this agent as a probe for the 5HT1A subtype of serotonin receptor.  相似文献   

17.
Recent studies have shown that G-protein-coupled receptors (GPCRs) can assemble as high molecular weight homo- and hetero-oligomeric complexes. This can result in altered receptor-ligand binding, signaling, or intracellular trafficking. We have co-transfected HEK-293 cells with differentially epitope-tagged GPCRs from different subfamilies and determined whether oligomeric complexes were formed by co-immunoprecipitation and immunoblot analysis. This gave the surprising result that the 5HT(1A) receptor was capable of forming hetero-oligomers with all GPCRs tested including the 5HT(1B), 5HT(1D), EDG(1), EDG(3), GPR(26), and GABA(B2) receptors. The testing of other GPCR combinations showed similar results with hetero-oligomer formation occurring for the 5HT(1D) with the 5HT(1B) and EDG(1) receptor. Control studies showed that these complexes were present in co-transfected cells before the time of lysis and that the hetero-oligomers were comprised of GPCRs at discrete stoichiometries. These findings suggest that GPCRs have a natural tendency to form oligomers when co-transfected into cells. Future studies should therefore investigate the presence and physiological role of GPCR hetero-oligomers in cells in which they are endogenously expressed.  相似文献   

18.
The goal of this work was to study possible mechanisms underlying the potentiation of vasopressor response to serotonin observed in traumatic shock. Experiments with isolated aorta and mesenteric artery of the rat showed that vasoconstriction is caused by the activation of 5HT2A receptors. Agonists of 5HT1B, 5HT1D, 5HT2B, and 5HT4 receptors induced vasodilation. Agonists of 5HT1A receptors had a dual effect determined by interaction with α1-adrenergic receptors and 5HT1A receptors. Plasma membrane depolarization with 15 mM KCl increased the vasoconstrictive force in response to serotonin. This effect was determined by the ability of KCl to activate voltage-gated calcium channels, as a result of which the intracellular calcium stores are replenished. Inhibition of the response to serotonin by ketanserin, a 5HT2A receptor blocker, did not depend on the presence of 15 mM KCl. Constriction in response to serotonin was potentiated after its addition to vessels preconstricted with noradrenaline or endothelin-1. The constriction response partially retained in the presence of 2 × 10?7 M ketanserin, which completely suppressed the serotonin-induced constriction of dilated vessels both at normal membrane potential and after plasma membrane depolarization. It can be assumed that noradrenalin and endothelin-1 alter the characteristics of 5HT2A receptors and possibly 5HT1A receptors as a result of their heterodimerization with the receptors for these vasoconstrictive hormones or receptor-receptor interaction at the level of signaling systems. Along with the potentiating effect of KCl, this mechanism may underlie the enhancement of vasopressor response to serotonin in shock.  相似文献   

19.
Both microdialysis and electrophysiology were used to investigate whether another serotonin (5‐HT) receptor subtype next to the 5‐HT1A autoreceptor is involved in the acute effects of a selective serotonin reuptake inhibitor on 5‐HT neuronal activity. On the basis of a previous study, we decided to investigate the involvement of the 5‐HT7 receptors. Experiments were performed with the specific 5‐HT7 antagonist SB 258741 and the putative 5‐HT7 agonist AS19. In this study WAY 100.635 was used to block 5‐HT1A receptors. Systemic administration of SB 258741 significantly reduced the effect of combined selective serotonin reuptake inhibitor and WAY 100.635 administration on extracellular 5‐HT in the ventral hippocampus as well as 5‐HT neuronal firing in the dorsal raphe nucleus. In the microdialysis study, co‐administration of AS19 and WAY 100.635 showed a biphasic effect on extracellular 5‐HT in ventral hippocampus, hinting at opposed 5‐HT7 receptor mediated effects. In the electrophysiological experiments, systemic administration of AS19 alone displayed a bell‐shaped dose–effect curve: moderately increasing 5‐HT neuronal firing at lower doses while decreasing it at higher doses. SB 258741 was capable of blocking the effect of AS19 at a low dose. This is consistent with the pharmacological profile of AS19, displaying high affinity for 5‐HT7 receptors and moderate affinity for 5‐HT1A receptors. The data are in support of an excitatory effect of selective serotonin reuptake inhibitors on 5‐HT neuronal activity mediated by 5‐HT7 receptors. It can be speculated, that the restoration of 5‐HT neuronal firing upon chronic antidepressant treatment, which is generally attributed to desensitization of 5‐HT1A receptors alone, in fact results from a shift in balance between 5‐HT1A and 5‐HT7 receptor function.  相似文献   

20.
N-Methyl-D-aspartate (NMDA)-gated ion channels are known to play a critical role in motoneuron depolarization, but the molecular mechanisms modulating NMDA activation in the spinal cord are not well understood. This study demonstrates that activated 5HT2C receptors enhance NMDA depolarizations recorded electrophysiologically from motoneurons. Pharmacological studies indicate involvement of Src tyrosine kinase mediates 5HT2C facilitation of NMDA. RT-PCR analysis revealed edited forms of 5HT2C were present in mammalian spinal cord, indicating the availability of G-protein-independent isoforms. Spinal cord neurons treated with the 5HT2C agonist MK 212 showed increased Src(Tyr-416) phosphorylation in a dose-dependent manner thus verifying that Src is activated after treatment. In addition, 5HT2C antagonists and tyrosine kinase inhibitors blocked 5HT2C-mediated Src(Tyr-416) phosphorylation and also enhanced NMDA-induced motoneuron depolarization. Co-immunoprecipitation of synaptosomal fractions showed that GluN2A, 5HT2C receptors, and Src tyrosine kinase form protein associations in synaptosomes. Moreover, immunohistochemical analysis demonstrated GluN2A and 5HT2C receptors co-localize on the processes of spinal neurons. These findings reveal that a distinct multiprotein complex links 5-hydroxytryptamine-activated intracellular signaling events with NMDA-mediated functional activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号