首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ferritins are nearly ubiquitous iron storage proteins playing a fundamental role in iron metabolism. They are composed of 24 subunits forming a spherical protein shell encompassing a central iron storage cavity. The iron storage mechanism involves the initial binding and subsequent O2-dependent oxidation of two Fe2+ ions located at sites A and B within the highly conserved dinuclear "ferroxidase center" in individual subunits. Unlike animal ferritins and the heme-containing bacterioferritins, the Escherichia coli ferritin possesses an additional iron-binding site (site C) located on the inner surface of the protein shell close to the ferroxidase center. We report the structures of five E. coli ferritin variants and their Fe3+ and Zn2+ (a redox-stable alternative for Fe2+) derivatives. Single carboxyl ligand replacements in sites A, B, and C gave unique effects on metal binding, which explain the observed changes in Fe2+ oxidation rates. Binding of Fe2+ at both A and B sites is clearly essential for rapid Fe2+ oxidation, and the linking of FeB2+ to FeC2+ enables the oxidation of three Fe2+ ions. The transient binding of Fe2+ at one of three newly observed Zn2+ sites may allow the oxidation of four Fe2+ by one dioxygen molecule.  相似文献   

2.
The hollow sphere-shaped 24-meric ferritin can store large amounts of iron as a ferrihydrite-like mineral core. In all subunits of homomeric ferritins and in catalytically active subunits of heteromeric ferritins a diiron binding site is found that is commonly addressed as the ferroxidase center (FC). The FC is involved in the catalytic Fe(II) oxidation by the protein; however, structural differences among different ferritins may be linked to different mechanisms of iron oxidation. Non-heme ferritins are generally believed to operate by the so-called substrate FC model in which the FC cycles by filling with Fe(II), oxidizing the iron, and donating labile Fe(III)–O–Fe(III) units to the cavity. In contrast, the heme-containing bacterial ferritin from Escherichia coli has been proposed to carry a stable FC that indirectly catalyzes Fe(II) oxidation by electron transfer from a core that oxidizes Fe(II). Here, we put forth yet another mechanism for the non-heme archaeal 24-meric ferritin from Pyrococcus furiosus in which a stable iron-containing FC acts as a catalytic center for the oxidation of Fe(II), which is subsequently transferred to a core that is not involved in Fe(II)-oxidation catalysis. The proposal is based on optical spectroscopy and steady-state kinetic measurements of iron oxidation and dioxygen consumption by apoferritin and by ferritin preloaded with different amounts of iron. Oxidation of the first 48 Fe(II) added to apoferritin is spectrally and kinetically different from subsequent iron oxidation and this is interpreted to reflect FC building followed by FC-catalyzed core formation.  相似文献   

3.
Human ferritins sequester and store iron as a stable FeOOH((s)) mineral core within a protein shell assembled from 24 subunits of two types, H and L. Core mineralization in recombinant H- and L-subunit homopolymer and heteropolymer ferritins and several site-directed H-subunit variants was investigated to determine the iron oxidation/hydrolysis chemistry as a function of iron flux into the protein. Stopped-flow absorption spectrometry, UV spectrometry, and electrode oximetry revealed that the mineral core forms by at least three pathways, not two as previously thought. They correspond to the ferroxidase, mineral surface, and the Fe(II) + H2O2 detoxification reactions, respectively: [see reactions]. The H-subunit catalyzed ferroxidase reaction 1 occurs at all levels of iron loading of the protein but decreases with increasing iron added (48-800 Fe(II)/protein). Reaction 2 is the dominant reaction at 800 Fe(II)/protein, whereas reaction 3 occurs largely at intermediate iron loadings of 100-500 Fe(II)/protein. Some of the H2O2 produced in reaction 1 is consumed in the detoxification reaction 3; the 2/1 Fe(II)/H2O2 stoichiometry of reaction 3 minimizes hydroxyl radical production during mineralization. Human L-chain ferritin and H-chain variants lacking functional nucleation and/or ferroxidase sites deposit their iron largely through the mineral surface reaction 2. H2O2 is shown to be an intermediate product of dioxygen reduction in L-chain as well as in H-chain and H-chain variant ferritins.  相似文献   

4.
The iron redox and hydrolysis chemistry of the ferritins   总被引:2,自引:0,他引:2  

Background

Ferritins are ubiquitous and well-characterized iron storage and detoxification proteins. In bacteria and plants, ferritins are homopolymers composed of H-type subunits, while in vertebrates, they typically consist of 24 similar subunits of two types, H and L. The H-subunit is responsible for the rapid oxidation of Fe(II) to Fe(III) at a dinuclear center, whereas the L-subunit appears to help iron clearance from the ferroxidase center of the H-subunit and support iron nucleation and mineralization.

Scope of review

Despite their overall similar structures, ferritins from different origins markedly differ in their iron binding, oxidation, detoxification, and mineralization properties. This chapter provides a brief overview of the structure and function of ferritin, reviews our current knowledge of the process of iron uptake and mineral core formation, and highlights the similarities and differences of the iron oxidation and hydrolysis chemistry in a number of ferritins including those from archaea, bacteria, amphibians, and animals.

General Significance

Prokaryotic ferritins and ferritin-like proteins (Dps) appear to preferentially use H2O2 over O2 as the iron oxidant during ferritin core formation. While the product of iron oxidation at the ferroxidase centers of these and other ferritins is labile and is retained inside the protein cavity, the iron complex in the di-iron cofactor proteins is stable and remains at the catalytic site. Differences in the identity and affinity of the ferroxidase center ligands to iron have been suggested to influence the distinct reaction pathways in ferritins and the di-iron cofactor enzymes.

Major conclusions

The ferritin 3-fold channels are shown to be flexible structures that allow the entry and exit of different ions and molecules through the protein shell. The H- and L-subunits are shown to have complementary roles in iron oxidation and mineralization, and hydrogen peroxide appears to be a by-product of oxygen reduction at the FC of most ferritins. The di-iron(III) complex at the FC of some ferritins acts as a stable cofactor during iron oxidation rather than a catalytic center where Fe(II) is oxidized at the FC followed by its translocation to the protein cavity.  相似文献   

5.
Mineralization in Ferritin: An Efficient Means of Iron Storage   总被引:22,自引:0,他引:22  
Ferritins are a class of iron storage and mineralization proteins found throughout the animal, plant, and microbial kingdoms. Iron is stored within the protein shell of ferritin as a hydrous ferric oxide nanoparticle with a structure similar to that of the mineral "ferrihydrite." The eight hydrophilic channels that traverse the protein shell are thought to be the primary avenues by which iron gains entry to the interior of eukaryotic ferritins. Twenty-four subunits constitute the protein shell and, in mammalian ferritins, are of two types, H and L, which have complementary functions in iron uptake. The H chain contains a dinuclear ferroxidase site that is located within the four-helix bundle of the subunit; it catalyzes the oxidation of ferrous iron by O(2), producing H(2)O(2). The L subunit lacks this site but contains additional glutamate residues on the interior surface of the protein shell which produce a microenvironment that facilitates mineralization and the turnover of iron(III) at the H subunit ferroxidase site. Recent spectroscopic studies have shown that a di-Fe(III) peroxo intermediate is produced at the ferroxidase site followed by formation of a mu-oxobridged dimer, which then fragments and migrates to the nucleation sites to form incipient mineral core species. Once sufficient core has developed, iron oxidation and mineralization occur primarily on the surface of the growing crystallite, thus minimizing the production of potentially harmful H(2)O(2).  相似文献   

6.
Ferritin is a ubiquitous iron-storage protein that has 24 subunits. Each subunit of ferritins that exhibit high Fe(II) oxidation rates has a diiron binding site, the so-called ferroxidase center (FC). The role of the FC appears to be essential for the iron-oxidation catalysis of ferritins. Studies of the iron oxidation by mammalian, bacterial, and archaeal ferritin have indicated different mechanisms are operative for Fe(II) oxidation, and for inhibition of the Fe(II) oxidation by Zn(II). These differences are presumably related to the variations in the amino acid residues of the FC and/or transport channels. We have used a combination of UV–vis spectroscopy, fluorescence spectroscopy, and isothermal titration calorimetry to study the inhibiting action of Zn(II) ions on the iron-oxidation process by apoferritin and by ferritin aerobically preloaded with 48 Fe(II) per 24-meric protein, and to study a possible role of phosphate in initial iron mineralization by Pyrococcus furiosus ferritin (PfFtn). Although the empty FC can accommodate two zinc ions, binding of one zinc ion to the FC suffices to essentially abolish iron-oxidation activity. Zn(II) no longer binds to the FC nor does it inhibit iron core formation once the FC is filled with two Fe(III). Phosphate and vanadate facilitate iron oxidation only after formation of a stable FC, whereupon they become an integral part of the core. These results corroborate our previous proposal that the FC in PfFtn is a stable prosthetic group, and they suggest that its formation is essential for iron-oxidation catalysis by the protein.  相似文献   

7.
Ferritin plays an important role in iron metabolism and our aim is to understand the mechanisms by which iron is sequestered within its protein shell as the mineral ferrihydrite. We present M?ssbauer spectroscopic data on recombinant human and horse spleen ferritin from which we draw the following conclusions: (1) that apoferritin catalyses Fe(II) oxidation as a first step in ferrihydrite deposition, (2) that the catalysis of Fe(II) oxidation is associated with residues situated within H chains, at the postulated 'ferroxidase centre' and not in the 3-fold inter-subunit channels previously suggested as the initial Fe(II) binding and oxidation site; (3) that both isolated Fe(III) and Fe(III) mu-oxo-bridged dimers found previously by M?ssbauer spectroscopy to be intermediates in iron-core formation in horse spleen ferritin, are located on H chains; and (4) that these dimers form at ferroxidase centres. The importance of the ferroxidase centre is suggested by the conservation of its ligands in many ferritins from vertebrates, invertebrates and plants. Nevertheless iron-core formation does occur in those ferritins that lack ferroxidase centres even though the initial Fe(II) oxidation is relatively slow. We compare the early stages of core formation in such variants and in horse spleen ferritin in which only 10-15% of its chains are of the H type. We discuss our findings in relation to the physiological role of isoferritins in iron storage processes.  相似文献   

8.
Ferritins: a family of molecules for iron storage, antioxidation and more   总被引:1,自引:0,他引:1  
Ferritins are characterized by highly conserved three-dimensional structures similar to spherical shells, designed to accommodate large amounts of iron in a safe, soluble and bioavailable form. They can have different architectures with 12 or 24 equivalent or non-equivalent subunits, all surrounding a large cavity. All ferritins readily interact with Fe(II) to induce its oxidation and deposition in the cavity in a mineral form, in a reaction that is catalyzed by a ferroxidase center. This is an anti-oxidant activity that consumes Fe(II) and peroxides, the reagents that produce toxic free radicals in the Fenton reaction. The mechanism of ferritin iron incorporation has been characterized in detail, while that of iron release and recycling has been less thoroughly studied. Generally ferritin expression is regulated by iron and by oxidative damage, and in vertebrates it has a central role in the control of cellular iron homeostasis. Ferritin is mostly cytosolic but is found also in mammalian mitochondria and nuclei, in plant plastids and is secreted in insects. In vertebrates the cytosolic ferritins are composed of H and L subunit types and their assembly in a tissues specific ratio that permits flexibility to adapt to cell needs. The H-ferritin can translocate to the nuclei in some cell types to protect DNA from iron toxicity, or can be actively secreted, accomplishing various functions. The mitochondrial ferritin is found in mammals, it has a restricted tissue distribution and it seems to protect the mitochondria from iron toxicity and oxidative damage. The various functions attributed to the cytosolic, nuclear, secretory and mitochondrial ferritins are discussed.  相似文献   

9.
Ferritin molecules contain 24 polypeptide chains folded as four-helix bundles and arranged as a hollow shell capable of storing up to 4500 Fe(III) atoms. H chains contain ferroxidase centres which lie within the bundle, about 12?Å (1.2?nm) from the outside surface and 8?Å from the inner surface of the protein shell. Catalysis of Fe(II) oxidation precedes storage of Fe(III) as ferrihydrite, with the formation of μ-oxo-bridged Fe(III) dimers as intermediates. Factors influencing the movement of μ-oxo-bridged Fe(III) from the ferroxidase centre to the ferritin cavity are uncertain. Assistance by small chelators is one possibility. The aim of this investigation was to determine whether iron at the dinuclear centres of three ferritins (human H chain homopolymer, HuHF, the non-haem ferritin of Escherichia coli, EcFTN, and horse spleen ferritin, HoSF) is accessible to chelators. Forty-eight Fe(II) atoms/molecule were added to the apoferritins followed, 2?min later, by the addition of chelator (1,10-phenanthroline, 2,2-bipyridine, desferrioxamine or 3,4-dihydroxybenzaldehyde). Iron species were analysed by Mössbauer spectroscopy or visible absorbance. Competition between chelators and apoferritin for Fe(II) was also investigated. The main conclusions of the study are that: (1) dinuclear iron and iron in small iron-cores in HuHF and EcFTN is mobilisable by all four chelators; (2) the chelators penetrate the shell; (3) 3,4-dihydroxybenzaldehyde is the most efficient in mobilising Fe(III) but the least successful in competing for Fe(II); (4) Fe(III) is more readily released from EcFTN than from HuHF; (5) 2,2′-bipyridine aids the movement of Fe(III) from ferroxidase centre to core.  相似文献   

10.
BackgroundThe mechanism of iron oxidation and core formation in homopolymeric H-type ferritins has been extensively studied in-vitro, so has the reductive mobilization of iron from the inorganic iron(III) core. However, neither process is well-understood in-vivo despite recent scientific advances.Scope of reviewHere, we provide a summary of our current understanding of iron mineralization and iron core dissolution in homopolymeric H-type ferritins and highlight areas of interest and further studies that could answer some of the outstanding questions of iron metabolism.Major conclusionsThe overall iron oxidation mechanism in homopolymeric H-type ferritins from vertebrates (i.e. human H and frog M ferritins) is similar, despite nuances in the individual oxidation steps due to differences in the iron ligand environments inside the three fold channels, and at the dinuclear ferroxidase centers. Ferrous cations enter the protein shell through hydrophilic channels, followed by their rapid oxidization at di‑iron centers. Hydrogen peroxide produced during iron oxidation can react with additional iron(II) at ferroxidase centers, or at separate sites, or possibly on the surface of the mineral core. In-vitro ferritin iron mobilization can be achieved using a variety of reducing agents, but in-vivo iron retrieval may occur through a variety of processes, including proteolytic degradation, auxiliary iron mobilization mechanisms involving physiological reducing agents, and/or oxidoreductases.General significanceThis review provides important insights into the mechanisms of iron oxidation and mobilization in homopolymeric H-type ferritins, and different strategies in maintaining iron homeostasis.  相似文献   

11.
Li C  Hu X  Zhao G 《Biochimie》2009,91(2):230-239
It was established that ferritin from pea seed is composed of 26.5 and 28.0kDa subunits, but the relationship between the two subunits is unclear. The present study by both MALDI-TOF-MS and MS/MS indicated that the 28.0kDa subunit is distinct from the 26.5kDa subunit although they might share high homology in amino acid sequence, a result suggesting that pea seed ferritin is encoded by at least two genes. This result is not consistent with previous proposal that the 28.0kDa subunit is converted into the 26.5kDa subunit upon cleavage of its N-terminal sequence by free radical. Also, present results indicated that pea seed ferritin contains two different kinds of ferroxidase centers located in the 28.0 and 26.5kDa subunits, respectively. This is an exception among all known ferritins. Therefore, it is of special interest to know the role of the two subunits in iron oxidative deposition. Spectrophotometric titration and stopped flow results indicated that 48 ferrous ions can be bound and oxidized by oxygen at the ferroxidase sites, demonstrating that all of the ferroxidase sites are active and involved in fast Fe(II) oxidation. However, unlike H and L subunits in horse spleen ferritin (HoSF), both the 28.0 and 26.5 subunits lack cooperation in iron turnover into the inner cavity of pea seed ferritin.  相似文献   

12.
Ferritins are iron storage proteins made of 24 subunits forming a hollow spherical shell. Vertebrate ferritins contain varying ratios of heavy (H) and light (L) chains; however, known ferritin structures include only one type of chain and have octahedral symmetry. Here, we report the 1.9A structure of a secreted insect ferritin from Trichoplusia ni, which reveals equal numbers of H and L chains arranged with tetrahedral symmetry. The H/L-chain interface includes complementary features responsible for ordered assembly of the subunits. The H chain contains a ferroxidase active site resembling that of vertebrate H chains with an endogenous, bound iron atom. The L chain lacks the residues that form a putative iron core nucleation site in vertebrate L chains. Instead, a possible nucleation site is observed at the L chain 3-fold pore. The structure also reveals inter- and intrasubunit disulfide bonds, mostly in the extended N-terminal regions unique to insect ferritins. The symmetrical arrangement of H and L chains and the disulfide crosslinks reflect adaptations of insect ferritin to its role as a secreted protein.  相似文献   

13.
Previous kinetics studies with homopolymer ferritins (bullfrog M-chain, human H-chain and Escherichia coli bacterial ferritins) have established that a mu-1,2-peroxo diferric intermediate is formed during Fe(II) oxidation by O2 at the ferroxidase site of the protein. The present study was undertaken to determine whether such an intermediate is formed also during iron oxidation in horse spleen ferritin (HoSF), a naturally occurring heteropolymer ferritin of H and L-subunits (approximately 3.3 H-chains/HoSF), and to assess its role in the formation of the mineral core. Multi-wavelength stopped-flow spectrophotometry of the oxidative deposition of iron in HoSF demonstrated that a transient peroxo complex (lambda(max) approximately 650 nm) is produced in this protein as for other ferritins. The peroxo complex in HoSF is formed about fourfold slower than in human H-chain (HuHF) and decays more slowly (approximately threefold) as well, at an iron level of two Fe(II)/H-chain. However, as found for HuHF, a second intermediate is formed in HoSF as a decay product of the peroxo complex. Only one-third of the expected peroxo complex forms at the ferroxidase centers of HoSF when two Fe(II)/H-subunits are added to the protein, dropping to only approximately 14% when 20 Fe(II)/H-chain are added, indicating a declining role of the peroxo complex in iron deposition. In contrast to HuHF, HoSF does not enzymatically regenerate the observable peroxo complex. The kinetics of mineralization in HoSF are modeled satisfactorily by a mechanism in which the ferroxidase site rapidly produces an incipient core from a single turnover of iron, upon which subsequent Fe(II) is oxidized autocatalytically to build the Fe(O)OH(s) mineral core. This model supports a role for the L-chain in iron mineralization and helps to explain the widespread occurrence of heteropolymer ferritins in tissues of vertebrates.  相似文献   

14.
Stabilization of iron in a bioavailable form is the function of ferritin, a protein of 24 subunits forming a coat around a core of less than or equal to 4500 hydrated iron atoms. The core of ferritin isolated from tissues contains Fe3+, but Fe2+ is required for experimental core formation in protein coats; reduction of Fe3+ to Fe2+ facilitates iron removal from protein coats. Using the differences in x-ray absorption spectra (x-ray absorption near edge structure) between Fe2+ and Fe3+ to monitor reconstitution of ferritin from Fe2+ and protein coats, we observed stabilization of Fe2+, apparently inside the coat. Mixtures of Fe2+ and Fe3+ persisted for greater than or equal to 16 h in air indicating that, in vivo, some iron in ferritin could be stored as Fe2+ and with Fe3+ could yield magnetite.  相似文献   

15.
Early embryonic lethality of H ferritin gene deletion in mice   总被引:17,自引:0,他引:17  
Ferritin molecules play an important role in the control of intracellular iron distribution and in the constitution of long term iron stores. In vitro studies on recombinant ferritin subunits have shown that the ferroxidase activity associated with the H subunit is necessary for iron uptake by the ferritin molecule, whereas the L subunit facilitates iron core formation inside the protein shell. However, plant and bacterial ferritins have only a single type of subunit which probably fulfills both functions. To assess the biological significance of the ferroxidase activity associated with the H subunit, we disrupted the H ferritin gene (Fth) in mice by homologous recombination. Fth(+/-) mice are healthy, fertile, and do not differ significantly from their control littermates. However, Fth(-/-) embryos die between 3.5 and 9.5 days of development, suggesting that there is no functional redundancy between the two ferritin subunits and that, in the absence of H subunits, L ferritin homopolymers are not able to maintain iron in a bioavailable and nontoxic form. The pattern of expression of the wild type Fth gene in 9.5-day embryos is suggestive of an important function of the H ferritin gene in the heart.  相似文献   

16.
Apo horse spleen ferritin (apo HoSF) was reconstituted to various core sizes (100-3500 Fe3+/HoSF) by depositing Fe(OH)3 within the hollow HoSF interior by air oxidation of Fe2+. Fe2+ and phosphate (Pi) were then added anaerobically at a 1:4 ratio, and both Fe2+ and Pi were incorporated into the HoSF cores. The resulting Pi layer consisted of Fe2+ and Pi at about a 1:3 ratio which is strongly attached to the reconstituted ferritin mineral core surface and is stable even after air oxidation of the bound Fe2+. The total amount of Fe2+ and Pi bound to the iron core surface increases as the core volume increases up to a maximum near 2500 iron atoms, above which the size of the Pi layer decreases with increasing core size. M?ssbauer spectroscopic measurements of the Pi-reconstituted HoSF cores using 57Fe2+ show that 57Fe3+ is the major species present under anaerobic conditions. This result suggests that the incoming 57Fe2+ undergoes an internal redox reaction to form 57Fe3+ during the formation of the Pi layer. Addition of bipyridine removes the 57Fe3+ bound in the Pi layer as [57Fe(bipy)3]2+, showing that the bound 57Fe2+ has not undergone irreversible oxidation. This result is related to previous studies showing that 57Fe2+ bound to native core is reversibly oxidized under anaerobic conditions in native holo bacterial and HoSF ferritins. Attempts to bury the Pi layer of native or reconstituted HoSF by adding 1000 additional iron atoms were not successful, suggesting that after its formation, the Pi layer "floats" on the developing iron mineral core.  相似文献   

17.
Ferric minerals in ferritins are protected from cytoplasmic reductants and Fe2+ release by the protein nanocage until iron need is signaled. Deletion of ferritin genes is lethal; two critical ferritin functions are concentrating iron and oxidant protection (consuming cytoplasmic iron and oxygen in the mineral). In solution, opening/closing (gating) of eight ferritin protein pores controls reactions between external reductant and the ferritin mineral; pore gating is altered by mutation, low heat, and physiological urea (1 mm) and monitored by CD spectroscopy, protein crystallography, and Fe2+ release rates. To study the effects of a ferritin pore gating mutation in living cells, we cloned/expressed human ferritin H and H L138P, homologous to the frog open pore model that was unexpressable in human cells. Human ferritin H L138P behaved like the open pore ferritin model in vitro as follows: (i) normal protein cage assembly and mineralization, (ii) increased iron release (t1/2) decreased 17-fold), and (iii) decreased alpha-helix (8%). Overexpression (> 4-fold), in HeLa cells, showed for ferritin H L138P equal protein expression and total cell 59Fe but increased chelatable iron, 16%, p < 0.01 (59Fe in the deferoxamine-containing medium), and decreased 59Fe in ferritin, 28%, p < 0.01, compared with wild type. The coincidence of decreased 59Fe in open pore ferritin with increased chelatable 59Fe in cells expressing the ferritin open pore mutation suggests that ferritin pore gating influences to the amount of iron (59Fe) in ferritin in vivo.  相似文献   

18.
The origin of previously observed variations in stoichiometry of iron oxidation during the oxidative deposition of iron in ferritin has been poorly understood. Knowledge of the stoichiometry of Fe(II) oxidation by O2 is essential to establishing the mechanism of iron core formation. In the present work, the amount of Fe(II) oxidized was measured by M?ssbauer spectrometry and the O2 consumed by mass spectrometry. The number of protons produced in the reaction was measured by "pH stat" titration and hydrogen peroxide production by the effect of the enzyme catalase on the measured stoichiometry. For protein samples containing low levels of iron (24 Fe(II)/protein) the stoichiometry was found to be 1.95 +/- 0.18 Fe(II)/O2 with H2O2 being a product, viz. Equation 1. 2Fe2+ + O2 + 4H2O----2FeOOH + H2O2 + 4H+ (1) EPR spin trapping experiments showed no evidence of superoxide radical formation. The stoichiometry markedly increased with additional iron (240-960 Fe/protein), to a value of 4 Fe(II)/O2 as in Equation 2. 4Fe2+ + O2 + 6H2O----4FeOOH + 8H+ (2) As the iron core is progressively laid down, the mechanism of iron oxidation changes from a protein dominated process with H2O2 being the primary product of O2 reduction to a mineral surface dominated process where H2O is the primary product. These results emphasize the importance of the apoferritin shell in facilitating iron oxidation in the early stage of iron deposition prior to significant development of the polynuclear iron core.  相似文献   

19.
Mammalian ferritins are predominantly heteropolymeric species consisting of 2 structurally similar, but functionally and genetically distinct subunit types, called H (Heavy) and L (Light). The two subunits co-assemble in different H and L ratios to form 24-mer shell-like protein nanocages where thousands of iron atoms can be mineralized inside a hollow cavity. Here, we use differential scanning calorimetry (DSC) to study ferritin stability and understand how various combinations of H and L subunits confer aspects of protein structure–function relationships. Using a recently engineered plasmid design that enables the synthesis of complex ferritin nanostructures with specific H to L subunit ratios, we show that homopolymer L and heteropolymer L-rich ferritins have a remarkable hyperthermostability (Tm = 115 ± 1°C) compared to their H-ferritin homologues (Tm = 93 ± 1°C). Our data reveal a significant linear correlation between protein thermal stability and the number of L subunits present on the ferritin shell. A strong and unexpected iron-induced protein thermal destabilization effect (ΔTm up to 20°C) is observed. To our knowledge, this is the first report of recombinant human homo- and hetero-polymer ferritins that exhibit surprisingly high dissociation temperatures, the highest among all known ferritin species, including many known hyperthermophilic proteins and enzymes. This extreme thermostability of our L and L-rich ferritins may have great potential for biotechnological applications.  相似文献   

20.
Zinc and terbium, inhibitors of iron incorporation in the ferritins, have been used for many years as probes of structure-function relationships in these proteins. Isothermal titration calorimetric and kinetic measurements of Zn(II) and Tb(III) binding and inhibition of Fe(II) oxidation were used to identify and characterize thermodynamically ( n, K, Delta H degrees, Delta S degrees, and Delta G degrees ) the functionally important binding sites for these metal ions in recombinant human H-chain, L-chain, and H-chain site-directed variant ferritins. The data reveal at least two classes of binding sites for both Zn(II) and Tb(III) in human H-chain ferritin: one strong, corresponding to binding of one metal ion in each of the eight three-fold channels, and the other weak, involving binding at the ferroxidase and nucleation sites of the protein as well as at other weak unidentified binding sites. Zn(II) and Tb(III) binding to recombinant L-chain ferritin showed similar stoichiometries for the strong binding sites within the channels, but fewer weaker binding sites when compared to the H-chain protein. The kinetics and binding data indicate that the binding of Zn(II) and Tb(III) in the three-fold channels, which is the main pathway of iron(II) entry in ferritin, blocks the access of most of the iron to the ferroxidase sites on the interior of the protein, accounting for the strong inhibition by these metal ions of the oxidative deposition of iron in ferritin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号