首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The transforming gene product, P70gag-actin-fgr, of Gardner-Rasheed feline sarcoma virus (GR-FeSV) is a single polypeptide composed of regions derived from cellular and viral genes. Gamma actin and c-fgr genes are the two known cellular components of the GR-FeSV genome. In the present study, sequences representing each cell-derived gene were deleted and the resulting constructs were tested for transforming activity by transfection of NIH 3T3 cells. Constructs lacking a portion of the c-fgr proto-oncogene failed to induce focus formation, demonstrating the essential nature of this component for GR-FeSV oncogenic activity. In contrast, the construct lacking the actin domain was more active than GR-FeSV DNA in transformation assays. Protein specified by the actin deletion mutant possessed a 2.4-fold greater specific protein-tyrosine kinase activity compared with that of the wild-type gene product. Furthermore, the actin domain had no detectable effect on the ability of the fgr kinase to associate with cytoskeleton or to phosphorylate unique cellular proteins on tyrosine. Our findings demonstrate that the actin domain inhibits focus formation and impairs protein-tyrosine kinase activity.  相似文献   

2.
Human c-fgr induces a monocyte-specific enzyme in NIH 3T3 cells.   总被引:1,自引:0,他引:1       下载免费PDF全文
The mutant c-fgr protein (p58c-fgr/F523) containing Phe-523 instead of Tyr-523 exhibited transforming activity in NIH 3T3 cells like other protein-tyrosine kinases of the src family, but normal p58c-fgr (p58c-fgr/wt) did not. The mutant protein showed tyrosine kinase activity threefold higher than that of the normal protein in vitro. Surprisingly, transfection of the normal c-fgr gene into NIH 3T3 cells resulted in induction of sodium fluoride (NaF)-sensitive alpha-naphthyl butyrate esterase (alpha-NBE), a marker enzyme of cells of monocytic origin, which was not induced in v-src-, v-fgr-, or lyn-transfected NIH 3T3 cells. The NaF-sensitive alpha-NBE induced in c-fgr transfectants was shown by isoelectric focusing to have a pI of 5.2 to 5.4, a range which was the same as those for thioglycolate-induced murine peritoneal macrophages and 1 alpha,25-dihydroxyvitamin D3-treated WEHI-3B cells. Immunoblotting studies with antiphosphotyrosine antibodies revealed that 58-, 62-, 75-, 120-, 200-, and 230-kDa proteins were commonly phosphorylated at tyrosine residues in NIH 3T3 cells transfected with normal and mutated c-fgr, while 95-kDa protein was significantly phosphorylated at tyrosine residues in cells transfected with the mutated c-fgr. These findings suggest that tyrosine phosphorylation of specific cellular substrate proteins is important in induction of NaF-sensitive alpha-NBE and cell transformation by p58c-fgr.  相似文献   

3.
The amino-termina, noncatalytic half of Src contains two domains, designated the Src homology 2 (SH2) and Src homology 3 (SH3) domains, that are highly conserved among members of the Src family of tyrosine kinases. The SH2 domain (which can be further divided into the B and C homology boxes) and the SH3 domain (also referred to as the A box) are also found in several proteins otherwise unrelated to protein tyrosine kinases. It is believed that these domains are important for directing specific protein-protein interactions necessary for the proper functioning of Src. To determine the importance of the SH2 and SH3 domains in regulating the functions of c-Src, we evaluated mutants of c-Src lacking the A box (residues 88 to 137), the B box (residues 148 to 187) or the C box (residues 220 to 231). Each of these deletions caused a 14- to 30-fold increase in the in vitro level of kinase activity of c-Src. Chicken embryo fibroblasts expressing the deletion mutants displayed a transformed cell morphology, formed colonies in soft agar, and contained elevated levels of cellular phosphotyrosine-containing proteins. Src substrates p36, p85, p120, p125, the GTPase-activating protein (GAP), and several GAP-associated proteins were phosphorylated on tyrosine in cells expressing the A, B, or C box deletion mutant. p110 was highly phosphorylated in cells expressing the C box mutant, was weakly phosphorylated in cells expressing the B box mutant, and was not phosphorylated in cells expressing the A box mutant. Expression of the mutant proteins caused a reorganization of the actin cytoskeleton similar to that seen in v-Src-transformed cells. In addition, deletion of the A, B, or C box did not diminish the transforming or enzymatic activity of an activated variant of c-Src, E378G. These data indicate that deletion of the A, B, or C homology box causes an activation of the catalytic and transforming potential of c-Src and that while these mutations caused subtle differences in substrate phosphorylation, the homology boxes are not required for many of the phenotypic changes associated with transformation by Src.  相似文献   

4.
5.
6.
HCC2998 is a highly differentiated human colon carcinoma cell line, which has been shown to be converted to a poorly differentiated one after expression of a constitutively active phosphatidylinositol 3-kinase (PI3' kinase). These cells express aberrant sizes of a regulatory subunit of PI3' kinase, p85alpha, with molecular weights of 50 and 76 kDa at a very low level. To elucidate how these cells express these proteins, we analyzed mutations within the p85alpha gene. DNA sequencing analysis revealed that these mutant proteins were generated by independent point mutations in the two alleles of the p85alpha gene: one in the coding sequence, and the other in the acceptor sequence for splicing. Introduction of wild-type p85alpha into HCC2998 cells induced slight rounding of the cells and enhancement of mucin secretion. At the same time, a membrane receptor, ErbB3, was phosphorylated on tyrosine, which in turn, binds to PI3' kinase. Since ErbB3 is upstream of PI3' kinase, it is likely that there is an autocrine loop in which PI3' kinase is activated by ErbB3, which may contribute to dedifferentiation of the cells.  相似文献   

7.
《The Journal of cell biology》1989,109(6):3129-3136
The fgr protooncogene is a member of the src family of protein tyrosine kinases. Recent studies have shown that normal myelomonocytic cells and tissue macrophages are the major sites of fgr mRNA expression. In the present study, we have identified the fgr protooncogene protein product in HL60 cells and have examined its expression as a function of HL60 cell maturation. Whether induced toward monocytic or granulocytic lineages, p55c-fgr accumulated in HL60 cells during maturation. In differentiated cells, the protein was active as a protein tyrosine kinase and was localized to peripheral cell membranes. Demonstration that a myristyl group was covalently bound to the protein probably accounted for its subcellular distribution. These findings establish developmental regulation of p55c-fgr in a lineage that represents its natural site of expression.  相似文献   

8.
vav, a novel human oncogene, was originally generated in vitro by replacement of its normal 5' coding sequences with sequences from pSV2neo DNA, cotransfected as a selectable marker (S. Katzav, D. Martin-Zanca, and M. Barbacid, EMBO J. 8:2283-2290, 1989). The vav proto-oncogene is normally expressed in cells of hematopoietic origin. To determine whether the 5' rearrangement of vav or its ectopic expression in NIH 3T3 cells contributes to its transforming potential, we isolated murine and human proto-vav cDNA clones as well as human genomic clones corresponding to the 5' end of the gene. Normal proto-vav was poorly transforming in NIH 3T3 cells, whereas truncation of its 5' end greatly enhanced its transforming activity. The relative failure of full-length proto-vav cDNA clones to transform NIH 3T3 cells indicates that the transforming activity of vav is not simply due to ectopic expression. Analysis of the predicted amino terminus of the vav proto-oncogene shows that it contains a helix-loop-helix domain and a leucine zipper motif similar to that of myc family proteins, though it lacks a basic region that is usually found adjacent to helix-loop-helix domains. Loss of the helix-loop-helix domain of proto-vav, either by truncation or by rearrangement with pSV2neo sequences, activates its oncogenic potential.  相似文献   

9.
Molecular analysis of the human trk oncogene, a transforming gene isolated from a colon carcinoma biopsy, revealed the existence of a novel member of the tyrosine kinase gene family. This locus, which we now designate the trk proto-oncogene, codes for a protein of 790 amino acid residues that has several features characteristic of cell surface receptors. They include (i) a 32-amino-acid-long putative signal peptide, (ii) an amino-terminal moiety (residues 33 to 407) rich in consensus sites for N-glycosylation, (iii) a transmembrane domain, (iv) a kinase catalytic region highly related to that of other tyrosine kinases, and (v) a very short (15 residue) carboxy-terminal tail. Residues 1 to 392 were absent in the trk oncogene, as they were replaced by tropomyosin sequences. However, no other differences were found between the transforming and nontransforming trk alleles (residues 392 to 790), suggesting that no additional mutations are required to activate the transforming potential of this gene. The human trk proto-oncogene codes for a 140,000-dalton glycoprotein, designated gp140proto-trk. However, its primary translational product is a 110,000-dalton glycoprotein which becomes immediately glycosylated, presumably during its translocation into the endoplasmic reticulum. This molecule, designated gp110proto-trk, is further glycosylated to yield the mature form, gp140proto-trk. Both gp110proto-trk and gp140proto-trk proteins possess in vitro kinase activity specific for tyrosine residues. Finally, iodination of intact NIH 3T3 cells expressing trk proto-oncogene products indicated that only the mature form, gp140proto-trk, cross the plasma membrane, becoming exposed to the outside of the cell. These results indicate that the product of the human trk locus is a novel tyrosine kinase cell surface receptor for an as yet unknown ligand.  相似文献   

10.
The nucleotide sequence of a 5' segment of the human genomic c-fms proto-oncogene suggested that recombination between feline leukemia virus and feline c-fms sequences might have occurred in a region encoding the 5' untranslated portion of c-fms mRNA. The polyprotein precursor gP180gag-fms encoded by the McDonough strain of feline sarcoma virus was therefore predicted to contain 34 v-fms-coded amino acids derived from sequences of the c-fms gene that are not ordinarily translated from the proto-oncogene mRNA. The (gP180gag-fms) polyprotein was cotranslationally cleaved near the gag-fms junction to remove its gag gene-coded portion. Determination of the amino-terminal sequence of the resulting v-fms-coded glycoprotein, gp120v-fms, showed that the site of proteolysis corresponded to a predicted signal peptidase cleavage site within the c-fms gene product. Together, these analyses suggested that the linked gag sequences may not be necessary for expression of a biologically active v-fms gene product. The gag-fms sequences of feline sarcoma virus strain McDonough and the v-fms sequences alone were inserted into a murine retroviral vector containing a neomycin resistance gene. Both constructs were biologically active when transfected into NIH 3T3 cells and produced morphologically transformed foci at equivalent efficiencies. When transfected into a cell line (psi 2) expressing complementary viral gene functions, G418-resistant (Neor) cells containing either of these vector DNAs produced high titers of transforming viruses. Analysis of proteins produced in cells containing the vector lacking gag gene sequences showed that gP180gag-fms was not synthesized, whereas normal levels of both immature gp120v-fms and mature gp140v-fms were detected. The glycoprotein was efficiently transported to the cell surface, and it retained wild-type tyrosine kinase activity. We conclude that a cryptic hydrophobic signal peptide sequence in v-fms was unmasked by gag deletion, thereby allowing the correct orientation and transport of the v-fms gene product within membranous organelles. It seems likely that the proteolytic cleavage of gP180gag-fms is mediated by signal peptidase and that the amino termini of gp140v-fms and the c-fms gene product are identical.  相似文献   

11.
To study cross-talk between unoccupied epidermal growth factor (EGF) receptors and activated EGF receptor kinases, we have used double-transfected cells, IHE2 cells, expressing both an enzymatically active insulin-EGF chimeric receptor and an inactive kinase EGF receptor mutant. Using immunoaffinity-purified receptors, we show that insulin increased phosphorylation of the insulin-EGF chimeric beta subunit and of the kinase-deficient EGF receptor. Stimulation of intact IHE2 cells with insulin leads to a rapid tyrosine autophosphorylation of the insulin-EGF chimeric beta subunit and to tyrosine phosphorylation of the unoccupied kinase-deficient EGF receptor. Insulin-stimulated transphosphorylation of the kinase-deficient EGF receptor yields the same pattern of tryptic phosphopeptides as those in EGF-induced autophosphorylation of the wild-type human EGF receptor. We conclude that insulin, through activation of the insulin-EGF chimeric receptor, mediates transphosphorylation of the kinase-deficient EGF receptor, further confirming that EGF receptor autophosphorylation may proceed by an intermolecular mechanism. In addition to receptor tyrosine phosphorylation, we find that exposure of cells to insulin results in enhanced phosphorylation on serine and threonine residues of the unoccupied kinase-deficient EGF receptor. These results suggest that insulin-EGF chimeric receptor activation stimulates at least one serine/threonine kinase, which in turn phosphorylates the kinase-deficient EGF receptor. Finally, we show that transphosphorylation and coexpression of an active kinase cause a decrease in the number of cell surface kinase-deficient EGF receptors without increasing their degradation rate.  相似文献   

12.
The feline c-fes proto-oncogene, different parts of which were captured in feline leukemia virus (FeLV) to generate the transforming genes (v-fes) of the Gardner-Arnstein (GA) strain of feline sarcoma virus (FeSV) and the Snyder-Theilen strain (ST) of FeSV, was cloned and its genetic organization determined. Southern blot analysis revealed that the c-fes genetic sequences were distributed discontinuously and colinearly with the v-fes transforming gene over a DNA region of around 12.0 kb. Using cloned c-fes sequences, complementation of GA-FeSV transforming activity was studied. Upon replacement of the 3' half of v-fesGA with homologous feline c-fes sequences and transfection of the chimeric gene, morphological transformation was observed. Immunoprecipitation analysis of these transformed cells revealed expression of high Mr fusion proteins. Phosphorylation of these proteins was observed in an in vitro protein kinase assay, and tyrosine residues appeared to be involved as acceptor amino acid.  相似文献   

13.
We have sought to identify candidate substrates for src family protein-tyrosine kinases potentially important for transformation. Transfected NIH/3T3 cells, each overexpressing a normal or activated version of the fyn, fgr, or src translational product, were examined using antibody to phosphotyrosine as a probe. Expression of each cDNA induced similar but distinct patterns of tyrosine phosphorylated cellular proteins, with the extent of phosphorylation being greatest in cells expressing an activated kinase. A 70-kDa tyrosine-phosphorylated protein was found to associate with the activated fyn gene product. A protein designated p130, tyrosine phosphorylated in vitro, and in vivo, was found to physically associate with the activated product of each src family gene examined. Physical interaction of three different highly transforming tyrosine kinases with a common cellular protein suggests that p130 may play an important role in transformation induced by src family kinases.  相似文献   

14.
Mechanism of met oncogene activation   总被引:53,自引:0,他引:53  
  相似文献   

15.
The Saccharomyces cerevisiae DBR1 gene encodes a 2'-5' phosphodiesterase that debranches intron RNA lariats following splicing. Yeast dbr1 mutants accumulate intron lariats and are also defective for mobility of the retrotransposons Ty1 and Ty3. We used a mutagenic PCR method to generate a collection of dbr1 mutant alleles to explore the relationship between the roles of DBR1 in transposition and debranching. Eight mutants defective for Ty1 transposition contained single amino acid changes in Dbr1p. Two mutations, G84A and N85D, are in a conserved phosphoesterase motif that is believed to be part of the active site of the enzyme, supporting a connection between enzymatic activity and Ty1 transposition. Two other mutations, Y68F and Y68D, occur at a potential phosphorylation site, and we have shown that Dbr1p is phosphorylated on tyrosine. We have developed an RNase protection assay to quantitate intron RNA accumulation in cells. The assay uses RNA probes that hybridize to ACT1 intron RNA. Protection patterns confirm that sequences from the 5' end of the intron to the lariat branch point accumulate in dbr1 mutants in a branched (lariat) conformation. RNase protection assays indicate that all of the newly generated dbr1 mutant alleles are also deficient for debranching, further supporting a role for 2'-5' phosphodiesterase activity in Ty1 transposition. A Ty1 element lacking most of its internal sequences transposes independently of DBR1. The existence of Dbr1p-dependent Ty1 sequences raises the possibility that Dbr1p acts on Ty1 RNA.  相似文献   

16.
The dual specificity mammalian enzyme PIKfyve phosphorylates in vitro position d-5 in phosphatidylinositol (PtdIns) and PtdIns 3-P, itself or exogenous protein substrates. Here we have addressed the crucial questions for the identity of the lipid products and the role of PIKfyve enzymatic activity in mammalian cells. CHO, HEK293, and COS cells expressing PIKfyve(WT) at high levels and >90% efficiencies increased selectively the intracellular PtdIns 3,5-P(2) production by 30--55%. In these cell types PtdIns 5-P was undetectable. A kinase-deficient point mutant, PIKfyve(K1831E), transiently transfected into these or other cells elicited a dramatic dominant phenotype. Subsequent to a dilation of the PIKfyve-containing vesicles, PIKfyve(K1831E)-expressing cells progressively accumulated multiple swollen lucent vacuoles of endosomal origin, first in the perinuclear cytoplasm and then toward the cell periphery. Despite their drastically altered morphology, the PIKfyve(K1831E)-expressing cells were viable and functionally active, evidenced by several criteria. This phenotype was completely reversed by introducing PIKfyve(WT) into the PIKfyve(K1831E)-transfected cells. Disruptions of the localization signal in the PIKfyve kinase-deficient mutant yielded a PIKfyve(K1831E Delta fyve) protein, incompetent to vacuolate cells, implying that an active PIKfyve enzyme at distinct late endocytic membranes is crucial for normal cell morphology. This was further substantiated by examining the vacuolation-induced potency of several pharmacological stimuli in cells expressing high PIKfyve(WT) levels. Together, the results indicate that PIKfyve enzymatic activity, possibly through the generation of PtdIns 3,5-P(2), and/or yet to be identified endogenous phosphoproteins, is critical for cell morphology and endomembrane homeostasis.  相似文献   

17.
The transforming abl proteins p160gag-abl, p185bcr-abl, and p210bcr-abl and the normal protein p140c-abl have identical catalytic sites, but differ in their N-terminal domains. Previous studies have indicated that the transforming abl proteins possess higher tyrosine kinase activity than the normal abl proto-oncogene product. In the present study, we demonstrate that two transforming abl proteins, p210bcr-abl and p160gag-abl, exhibit a higher affinity toward ATP and synthetic tyrosine containing substrates than p140c-abl. Furthermore, protein tyrosine kinase blockers from the tyrphostin family can discriminate between normal abl and transforming abl proteins of both human and mouse origin. These results suggest that the transforming potency of the abl proteins may result from their higher affinities toward intracellular signal transducers and demonstrate for the first time that oncogene products can differ from their homologous proto-oncogene product in substrate specificity. The ability of tyrphostins to discriminate between normal and transforming abl proteins suggests that it may be possible to design specific abl kinase inhibitors to combat abl-associated human leukemias.  相似文献   

18.
The rat-derived Harvey murine sarcoma virus (Ha-MuSV) contains a transduced ras oncogene activated by two missense mutations and flanked by rat retroviruslike VL30 sequences. Ha-MuSV induces focal transformation of mouse NIH 3T3 cells in vitro and tumors (fibrosarcomas and splenic erythroleukemias) in newborn mice. We have used these two assays to study the contribution of coding and noncoding viral sequences to the biological activity of Ha-MuSV. A good correlation was found between the in vitro and in vivo assays. In several different isogenic Ha-MuSV variants, those with a rasH gene that had one or both of the Ha-MuSV missense mutations were much more active biologically than the corresponding proto-oncogene. A Ha-MuSV variant that encoded the proto-oncogene protein induced lymphoid leukemias (with thymomas), with a relatively long latent period, rather than the fibrosarcomas and erythroleukemias characteristic of Ha-MuSV with one or both missense mutations. A VL30-derived segment with enhancer activity was identified downstream from v-rasH. A mutant Ha-MuSV from which this 3' noncoding segment was deleted expressed lower levels of the wild-type viral protein, displayed impaired transforming activity in vitro, and induced lymphoid leukemias (with thymomas). 5' noncoding rat c-rasH sequences were found to increase the biological activity of the virus when substituted for the corresponding segment of v-rasH. We conclude that (i) the biological activity of Ha-MuSV can be influence significantly by noncoding sequences located outside the long terminal repeat as well as by coding sequences, (ii) VL30 sequences positively regulate the expression of v-rasH, (iii) relatively low biological levels of ras, whether resulting from low-level expression of wild type v-rasH or high-levels of ras proto-oncogene protein, induce a type of tumor that differs from tumors induced by high biological levels of ras, and (iv) the in vivo pathogenicity of the Ha-MuSV variants correlated with their transforming activity on NIH 3T3 cells.  相似文献   

19.
20.
The c-kit proto-oncogene, the cellular homolog of the transforming gene of a feline retrovirus, encodes a transmembrane tyrosine kinase homologous to receptors for growth factors. To study the cellular function of c-kit, we constructed a chimeric molecule composed of the extracellular portion of the receptor for epidermal growth factor (EGF) and the transmembrane and cytoplasmic domains of p145kit. The hybrid molecule was properly expressed in murine fibroblasts and displayed specific binding of EGF (Kd, 3 x 10(-8) M). Activation of the chimeric receptor by EGF stimulated the tyrosine kinase activity of kit and led to the generation of a potent mitogenic signal. Moreover, cells expressing the chimeric receptor acquired a transformed phenotype once they were stimulated with the heterologous ligand.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号