首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In hypertension arterial wall properties do not necessarily depend on increased blood pressure alone. The present study investigates the relationship between the development of hypertension and thoracic aortic wall properties in 1.5-, 3-, and 6-mo-old spontaneously hypertensive rats (SHR); Wistar-Kyoto rats (WKY) served as controls. During ketamine-xylazine anesthesia, compliance and distensibility were assessed by means of a noninvasive ultrasound technique combined with invasive blood pressure measurements. Morphometric measurements provided in vivo media cross-sectional area and thickness, allowing the calculation of the incremental elastic modulus. Extracellular matrix protein contents were determined as well. Blood pressure was not significantly different in 1.5-mo-old SHR and WKY, but compliance and distensibility were significantly lower in SHR. Incremental elastic modulus was not significantly different between SHR and WKY at this age. Media thickness and media cross-sectional area were significantly larger in SHR than in WKY, but there was no consistent difference in collagen density and content between the strains. Blood pressure was significantly higher in 3- and 6-mo-old SHR than in WKY, and compliance was significantly lower in SHR. The findings in this study show that in SHR, in which hypertension develops over weeks, alterations in functional aortic wall properties precede the development of hypertension. The decrease in compliance and distensibility at a young age most likely results from media hypertrophy rather than a change in intrinsic elastic properties.  相似文献   

2.
Modeling the complex deformations of cylindrical tubes under external pressure is of interest in engineering and physiological applications. The highly non-linear post-buckling behavior of cross-section of the tube during collapse attracted researchers for years. Major efforts were concentrated on studying the behavior of thin-wall tubes. Unfortunately, the knowledge on post-buckling of thick-wall tubes is still incomplete, although many experimental and several theoretical studies have been performed. In this study we systematically studied the effect of the wall thickness on post-buckling behavior of the tube. For this purpose, we utilized a computational model for evaluation of the real geometry of the deformed cross-sectional area due to negative transmural (internal minus external) pressure. We also developed an experimental method to validate the computational results. Based on the computed cross-sections of tubes with different wall thicknesses, we developed a general tube law that accounts for thin or thick wall tubes and fits the numerical data of computed cross-sectional areas versus transmural pressures.  相似文献   

3.
Passive filling is a major determinant for the pump performance of the left ventricle and is determined by the filling pressure and the ventricular compliance. In the quantification of the passive mechanical behaviour of the left ventricle and its compliance, focus has been mainly on fiber orientation and constitutive parameters. Although it has been shown that the left-ventricular shape plays an important role in cardiac (patho-)physiology, the dependency on left-ventricular shape has never been studied in detail. Therefore, we have quantified the influence of left-ventricular shape on the overall compliance and the intramyocardial distribution of passive fiber stress and strain during the passive filling period. Hereto, fiber stress and strain were calculated in a finite element analysis of passive inflation of left ventricles with different shapes, ranging from an elongated ellipsoid to a sphere, but keeping the initial cavity volume constant. For each shape, the wall volume was varied to obtain ventricles with different wall thickness. The passive myocardium was described by an incompressible hyperelastic material law with transverse isotropic symmetry along the muscle fiber directions. A realistic transmural distribution in fiber orientation was assumed. We found that compliance was not altered substantially, but the transmural distribution of both passive fiber stress and strain was highly dependent on regional wall curvature and thickness. A low curvature wall was characterized by a maximum in the transmural fiber stress and strain in the mid-wall region, while a steep subendocardial transmural gradient was present in a high curvature wall. The transmural fiber stress and strain gradients in a low and high curvature wall were, respectively, flattened and steepened by an increase in wall thickness.  相似文献   

4.
The compliance of the vessel wall affects hemodynamic parameters which may alter the permeability of the vessel wall. Based on experimental measurements, the present study established a finite element (FE) model in the proximal elastic vessel segments of epicardial right coronary arterial (RCA) tree obtained from computed tomography. The motion of elastic vessel wall was measured by an impedance catheter and the inlet boundary condition was measured by an ultrasound flow probe. The Galerkin FE method was used to solve the Navier–Stokes and Continuity equations, where the convective term in the Navier–Stokes equation was changed in the arbitrary Lagrangian–Eulerian (ALE) framework to incorporate the motion due to vessel compliance. Various hemodynamic parameters (e.g., wall shear stress—WSS, WSS spatial gradient—WSSG, oscillatory shear index—OSI) were analyzed in the model. The motion due to vessel compliance affects the time-averaged WSSG more strongly than WSS at bifurcations. The decrease of WSSG at flow divider in elastic bifurcations, as compared to rigid bifurcations, implies that the vessel compliance decreases the permeability of vessel wall and may be atheroprotective. The model can be used to predict coronary flow pattern in subject-specific anatomy as determined by noninvasive imaging.  相似文献   

5.
The aim of the study was to investigate the relative contributions of geometrical and material factors to overall left-ventricular cavity stiffness. Left-ventricular cavity shapes were reconstructed using a computer and the variation of myocardial elastic modulus was calculated, by the finite element method, through the passive phase of diastole when rising volume coincided with rising pressure. Geometric data were obtained from biplane cineangiography, with micromanometer pressure measurements, for ten patients with left ventricular disease. Dimensional analysis was applied to the initial and derived data from which the influences of myocardial compliance, wall thickness-to-long dimension ratio, and aspect ratio (long-to-short axes) were determined. The ratio between the volume elasticity and the myocardial modulus of elasticity, the normalized stiffness ratio (NSR), is proposed as a useful index of left ventricular mechanical behaviour in diastole. The volume elasticity of the chamber is dependent not only upon the myocardium elastic modulus and the wall thickness ratio, but also on the shape of the chambe. Changes in the thickness/radius ratio of the ventricle have less effect upon its distention than those in the long dimension/radius ratio. The left ventricle becomes more spherical in shpae through diastole and hence becomes stiffer by this geometric mechanism.  相似文献   

6.
To analyze the effects of decellularization on the biomechanical properties of porcine common carotid arteries, decellularization was performed by a detergent-enzymatic procedure that preserves extracellular matrix scaffold. Internal diameter, external diameter, and wall thickness were measured by optical microscopy on neighboring histological sections before and after decellularization. Rupture tests were conducted. Inner diameter and wall thickness were measured by echo tracking during pressure inflation from 10 to 145 mmHg. Distensibility and incremental elastic modulus were computed. At 10 mmHg, mean diameter of decellularized arteries was 5.38 mm, substantially higher than controls (4.1 mm), whereas decellularized and control arteries reached the same internal diameter (6.7 mm) at 145 mmHg. Wall thickness decreased 16% for decellularized and 32% for normal arteries after pressure was increased from 10 to 145 mmHg. Decellularized arteries withstood pressure >2,200 mmHg before rupture. At 145 mmHg, decellularization reduced compliance by 66% and increased incremental elastic modulus by 54%. Removal of cellular elements from media led to changes in arterial dimensions. Collagen fibers engaged more rapidly during inflation, yielding a stiffer vessel. Distensibility was therefore significantly lower (by a factor of 3) in decellularized than in normal vessels: reduced in the physiological range of pressures. In conclusion, decellularization yields vessels that can withstand high inflation pressures with, however, markedly different geometrical and biomechanical properties. This may mean that the potential use of a decellularized artery as a scaffold for the creation of xenografts may be compromised because of geometrical and compliance mismatch.  相似文献   

7.
Pressure wave propagation has been examined in a model artery with spatially varying compliance. Although results were affected by viscous losses, appropriate allowance for such losses produced agreement between experimental findings and predictions of linear wave transmission theory. Particularly, the ability of non-uniformity of the tube wall to generate amplification of the pressure wave was confirmed. However, extrapolation to the physiological situation suggests that reflections from discrete sites in peripheral beds have a greater effect on pressure wave propagation than does elastic non-uniformity of major vessels. A theoretical analysis has demonstrated that the effects of elastic non-uniformity can be interpreted as the integrated effects of infinitesimal reflections from each progressive increment in wall stiffness.  相似文献   

8.
The inability to study appropriate human tissues at various stages of development has precluded the elaboration of a thorough understanding of the pathogenic mechanisms leading to diseases linked to mutations in genes for elastic fiber proteins. Recently, new insights have been gained by studying mice harboring targeted mutations in the genes that encode fibrillin-1 and elastin. These genes have been linked to Marfan syndrome (MFS) and supravalvular aortic stenosis (SVAS), respectively. For fibrillin-1, mouse models have revealed that phenotype is determined by the degree of functional impairment. The haploinsufficiency state or the expression of low levels of a product with dominant-negative potential from one allele is associated with mild phenotypes with a predominance of skeletal features. Exuberant expression of a dominant-negative-acting protein leads to the more severe MFS phenotype. Mice harboring targeted deletion of the elastin gene (ELN) show many of the features of SVAS in humans, including abnormalities in the vascular wall and altered hemodynamics associated with changes in wall compliance. The genetically altered mice suggest that SVAS is predominantly a disease of haploinsufficiency. These studies have underscored the prominent role of the elastic matrix in the morphogenesis and homeostasis of the vessel wall.  相似文献   

9.

Optimal bladder compliance is essential to urinary bladder storage and voiding functions. Calculated as the change in filling volume per change in pressure, bladder compliance is used clinically to characterize changes in bladder wall biomechanical properties that associate with lower urinary tract dysfunction. But because this method calculates compliance without regard to wall structure or wall volume, it gives little insight into the mechanical properties of the bladder wall during filling. Thus, we developed Pentaplanar Reflected Image Macroscopy (PRIM): a novel ex vivo imaging method to accurately calculate bladder wall stress and stretch in real time during bladder filling. The PRIM system simultaneously records intravesical pressure, infused volume, and an image of the bladder in five distinct visual planes. Wall thickness and volume were then measured and used to calculate stress and stretch during filling. As predicted, wall stress was nonlinear; only when intravesical pressure exceeded ~ 15 mmHg did bladder wall stress rapidly increase with respect to stretch. This method of calculating compliance as stress vs stretch also showed that the mechanical properties of the bladder wall remain similar in bladders of varying capacity. This study demonstrates how wall tension, stress and stretch can be measured, quantified, and used to accurately define bladder wall biomechanics in terms of actual material properties and not pressure/volume changes. This method is especially useful for determining how changes in bladder biomechanics are altered in pathologies where profound bladder wall remodeling occurs, such as diabetes and spinal cord injury.

  相似文献   

10.
A semi-empirical model applicable to the flow of blood and other particulate suspensions through narrow tubes has been developed. It envisages a central core of blood surrounded by a wall layer of reduced hematocrit. With the help of this model the wall layer thickness and extent of plug flow may be calculated using pressure drop, flow rate and hematocrit reduction data. It has been found from the available data in the literature that for a given sample of blood the extent of plug flow increases with decreasing tube diameter. Also for a flow through a given tube it increases with hematocrit. The wall layer thickness is found to decrease with increase in blood hematocrit. A comparison between the results of rigid particulate suspensions and blood reveals that the thicker wall layer and smaller plug flow radius in the case of blood may be attributed to the deformability of the erythrocytes.  相似文献   

11.
Abstract. Ricinus communis plants have an unusually high capacity to exude considerable quantities of phloem sap from bark incisions. We have used Ricinus as an experimental system to study different aspects of sap exudation. Dimensional changes in the bark, monitored by a displacement transducer, showed that pressure release in the sieve tubes was accompanied by elastic shrinkage. The rate of exudation was also controlled by the degree of pressurization and elastic properties of the sieve tubes. A displacement transducer was used to measure the elastic modulus (ɛ) of phloem samples by immersing them in a range of different osmotica. The cells had a low elastic modulus (ɛ= 1.62 ± 0.41 MPa at full turgor). ɛ of phloem tissue in massage pretreated bark, from which exudation was enhanced, was not significantly different from that of unmassaged bark in contrast with the suggestion of Lee (1981). However, anatomical studies showed that massage pretreatment has a stimulating influence on the cambial cell division, which increased the phloem tissue cross-section up to 160%. The newly-formed sieve tubes were 'spliced' into existing ones in the unmassaged zone to re-establish vascular continuity. Plants with a greater capacity to exude phloem sap from a given stem location had a greater cross-sectional area of sieve tubes in the vicinity.
The significance of observations with respect to other sap exudation phenomenon is discussed. The importance of the present work in understanding the technique of palm tapping, on which the palm sugar industry depends, is also considered.  相似文献   

12.
13.
Using an axisymmetric geometry that retains certain qualitative features of the trachea, we extend one-dimensional modeling of flow in collapsible tubes to include both curved shell effects and, for untethered tubes, wall inertia. A systematic scaling of the finite deformation membrane equations leads to an approximate set which is consistent with the one-dimensional fluid model; axial and normal wall variables are coupled elastically, but only axial inertia is retained. Transverse curvature causes elastic coupling that can give rise to axial wall motion and a flutter instability. The source of instability is the product of a nonzero reference axial curvature with axial tension variation due to axial stretching. The numerical results suggest that this mechanism may be significant even in processes which cannot be assumed one-dimensional.  相似文献   

14.
Proteins are the active players in performing essential molecular activities throughout biology, and their dynamics has been broadly demonstrated to relate to their mechanisms. The intrinsic fluctuations have often been used to represent their dynamics and then compared to the experimental B-factors. However, proteins do not move in a vacuum and their motions are modulated by solvent that can impose forces on the structure. In this paper, we introduce a new structural concept, which has been called the structural compliance, for the evaluation of the global and local deformability of the protein structure in response to intramolecular and solvent forces. Based on the application of pairwise pulling forces to a protein elastic network, this structural quantity has been computed and sometimes is even found to yield an improved correlation with the experimental B-factors, meaning that it may serve as a better metric for protein flexibility. The inverse of structural compliance, namely the structural stiffness, has also been defined, which shows a clear anticorrelation with the experimental data. Although the present applications are made to proteins, this approach can also be applied to other biomolecular structures such as RNA. This present study considers only elastic network models, but the approach could be applied further to conventional atomic molecular dynamics. Compliance is found to have a slightly better agreement with the experimental B-factors, perhaps reflecting its bias toward the effects of local perturbations, in contrast to mean square fluctuations. The code for calculating protein compliance and stiffness is freely accessible at https://jerniganlab.github.io/Software/PACKMAN/Tutorials/compliance .  相似文献   

15.
Intravena caval respiratory support (or membrane oxygenation) is a potential therapy for patients with acute respiratory insufficiency. A respiratory support catheter is being developed that consists of a bundle of hollow fiber membranes with a centrally positioned pulsating balloon to enhance gas exchange. This study examined the influence of vessel compliance on the gas exchange performance of the pulsating respirator, support catheter. Polyurethane elastic tubes were fabricated with compliance comparable to that measured in bovine vena cava specimens. The gas exchange performance of the respiratory catheter was studied in an in-vitro flow loop using either the model compliant tube or a rigid tube as a "mock" vena cava. Balloon pulsation enhanced gas exchange comparably in both rigid and model compliant vessels up to 120 bpm pulsation frequency. Above 120 bpm gas exchange increased with further pulsation in the rigid tube, but no additional increase in gas exchange was seen in the compliant tube. The differences above 120 bpm may reflect differences in the compliance of the elastic tube versus the natural vena cava.  相似文献   

16.
A new theoretical approach was used to study the nonlinear response of a microvascular segment subjected to a pressure step at one end. The method is suitable for both large and small deformations of the vessel wall in the case of an elastic response of the segment. It is shown that the use of this simulation permits an indirect determination of the compliance of the vessel. The procedure is applied in two cases of major interest: first the in-vivo study of the intermittent blood flow in the microcirculation, and second, the analysis of experiments using micropipettes. The resulting values of the compliance agree with other values found in the previous studies. The theoretical method is particularly adapted to nonlinear equations.  相似文献   

17.
Tubes of various elastic materials were tested using a purpose-built apparatus to select those most appropriate for physical simulation of the arterial wall. The influences of temperature and longitudinal stress were measured in selected tubes. It was found that the static elasticity of latex tubes is close to that of the arterial wall for intraluminal pressures corresponding to the lower range of intra-arterial pressures.  相似文献   

18.
Bacterial cellulose (BC) was deposited in tubular form by fermenting Acetobacter xylinum on top of silicone tubes as an oxygenated support and by blowing different concentrations of oxygen, that is, 21% (air), 35%, 50%, and 100%. Mechanical properties such as burst pressure and tensile properties were evaluated for all tubes. The burst pressure of the tubes increased with an increase in oxygen ratio and reached a top value of 880 mmHg at 100% oxygen. The Young's modulus was approximately 5 MPa for all tubes, irrespective of the oxygen ratio. The elongation to break decreased from 30% to 10-20% when the oxygen ratio was increased. The morphology of the tubes was characterized by Scanning Electron Microscopy (SEM). All tubes had an even inner side and a more porous outer side. The cross section indicated that the tubes are composed of layers and that the amount of layers and the yield of cellulose increased with an increase in oxygen ratio. We propose that an internal vessel wall with high density is required for the tube to sustain a certain pressure. An increase in wall thickness by an increase in oxygen ratio might explain the increasing burst pressure with increasing oxygen ratio. The fermentation method used renders it possible to produce branched tubes, tubes with unlimited length and inner diameters. Endothelial cells (ECs) were grown onto the lumen of the tubes. The cells formed a confluent layer after 7 days. The tubes potential as a vascular graft is currently under investigation in a large animal model at the Centre of Vascular Engineering, Sahlgrenska University  相似文献   

19.
Segments of silicone rubber tube were suspended between rigid pipes and subjected to slowly varying transmural pressure covering a range from slight distension to collapse with osculation. The local inside cross-sectional area at a chosen axial site was simultaneously measured via catheter by an electrical impedance method. Pressure-area relations were recorded thus at various axial sites, under varying conditions of axial tube wall tension, in tubes of two different wall thickness (0.3 and 0.4 of mean radius). Unsupported tube segment length was also varied by means of an insert device. The relations were used to calculate the variation of wave velocity with area according to Young's equation. First opposite wall contact during collapse was shown to occur at a smaller fraction of undistended circular cross-sectional area than in the thin-walled tubes investigated previously by others.  相似文献   

20.
Morphological studies of pollen tubes have shown that the configuration of structural cellular elements differs between the growing apex and the distal part of the cell. This polarized cellular organization reflects the highly anisotropic growth behavior of this tip growing cell. Accordingly, it has frequently been postulated that physical properties of pollen tubes such as cell wall plasticity should show anisotropic distribution, but no experimental evidence for this has been published hitherto. Using micro-indentation techniques, we quantify pollen tube resistance to lateral deformation forces and analyze its visco-elasticity as a function of distance from the growing apex. Our studies reveal that cellular stiffness is significantly higher at the distal portion of the cell. This part of the cell is also completely elastic, whereas the apex shows a visco-elastic component upon deformation. To relate these data to the architecture of the particular pollen tube investigated in this study, Papaver rhoeas, we analyzed the distribution of cell wall components such as pectin, callose, and cellulose as well as the actin cytoskeleton in this cell using fluorescence label. Our data revealed that, in particular, the degree of pectin methyl esterification and the configuration of the actin cytoskeleton correlate well with the distribution of the physical properties on the longitudinal axis of the cell. This suggests a role for these cellular components in the determination of the cytomechanics of pollen tubes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号