首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
We examined environmental and social factors affecting reproductivesuccess across a 20-year data set of individually known cheetahson the Serengeti Plains of Tanzania. Because cheetahs are seeninfrequently and are not amenable to mark–recapture techniques,we devised a model to estimate time of death for individualsthat disappeared from our records. We found that males had markedlylower survival than females. Recruitment was negatively affectedby rainfall but positively affected by numbers of Thomson'sgazelles, the cheetahs' chief prey. There was a negative associationbetween recruitment and numbers of lions, demonstrating thatthe high rates of predation observed in previous studies haveimplications for the dynamics of cheetah populations. Recruitmentwas related to mother's age, peaking when she reached 6–7years. Sociality affected survival in two ways. First, adolescentsliving in temporary sibling groups had higher survival thansingletons, particularly males with sisters. Second, adult malesliving in coalitions had higher survival than singletons inperiods when other coalitions were numerous, yet they had lowersurvival when other coalitions were rare. These results corroborateobservations of enhanced prey capture by female adolescentsand antipredator benefits for adolescents in groups, as wellas competitive advantages for adult males in groups. Furthermore,our findings stress the importance of interactions between environmentaland social factors in affecting reproductive success in mammals.  相似文献   

2.
3.
4.
Foraging herbivores face twin threats of predation and parasite infection, but the risk of predation has received much more attention. We evaluated, experimentally, the role of olfactory cues in predator and parasite risk assessment on the foraging behaviour of a population of marked, free-ranging, red-necked wallabies (Macropus rufogriseus). The wallabies adjusted their behaviour according to these olfactory cues. They foraged less, were more vigilant and spent less time at feeders placed in the vicinity of faeces from dogs that had consumed wallaby or kangaroo meat compared with that of dogs feeding on sheep, rabbit or possum meat. Wallabies also showed a species-specific faecal aversion by consuming less food from feeders contaminated with wallaby faeces compared with sympatric kangaroo faeces, whose gastrointestinal parasite fauna differs from that of the wallabies. Combining both parasite and predation cues in a single field experiment revealed that these risks had an additive effect, rather than the wallabies compromising their response to one risk at the expense of the other.  相似文献   

5.
Understanding and predicting the outcomes of biological invasions is challenging where multiple invader and native species interact. We hypothesize that antagonistic interactions between invaders and natives could divert their impact on subsequent invasive species, thus facilitating coexistence. From field data, we found that, when existing together in freshwater sites, the native amphipod Gammarus duebeni celticus and a previous invader G. pulex appear to facilitate the establishment of a second invader, their shared prey Crangonyx pseudogracilis. Indeed, the latter species was rarely found at sites where each Gammarus species was present on its own. Experiments indicated that this may be the result of G. d. celticus and G. pulex engaging in more intraguild predation (IGP) than cannibalism; when the ‘enemy’ of either Gammarus species was present, that is, the other Gammarus species, C. pseudogracilis significantly more often escaped predation. Thus, the presence of mutual enemies and the stronger inter- than intraspecific interactions they engage in can facilitate other invaders. With some invasive species such as C. pseudogracilis having no known detrimental effects on native species, and indeed having some positive ecological effects, we also conclude that some invasions could promote biodiversity and ecosystem functioning.  相似文献   

6.
I analyzed the interaction of different types of costs in determiningoptimal behavior using mathematical models. The analysis concentrateson foraging behavior and asks (1) whether the cost factor thathas the greatest effect on fitness generally has the greatesteffect on optimal trait values and (2) whether increasing thesize of one type of cost makes the optimal behavior absolutelyor relatively more sensitive to that cost. The foraging costsconsidered are energy expenditure, predation risk, and othermortality factors. It is shown that increasing the magnitudeof one cost often decreases the relative and absolute sensitivityof the optimal foraging strategy to that cost. The relativefitness effects of different costs generally differ from therelative sensitivities of the optimal strategies to the costfactors. Researchers should therefore measure the shapes ofcost curves rather than their average magnitudes to determinewhich of several costs can be ignored in cost-benefit analyses.  相似文献   

7.
8.
Infection avoidance behaviors are the first line of defense against pathogenic encounters. Behavioral plasticity in response to internal or external cues of infection can therefore generate potentially significant heterogeneity in infection. We tested whether Drosophila melanogaster exhibits infection avoidance behavior, and whether this behavior is modified by prior exposure to Drosophila C Virus (DCV) and by the risk of DCV encounter. We examined 2 measures of infection avoidance: (1) the motivation to seek out food sources in the presence of an infection risk and (2) the preference to land on a clean food source over a potentially infectious source. While we found no evidence for preference of clean food sources over potentially infectious ones, previously exposed female flies showed lower motivation to pick a food source when presented with a risk of encountering DCV. We discuss the relevance of behavioral plasticity during foraging for host fitness and pathogen spread.  相似文献   

9.
Interactions among species, which range from competition to facilitation, have profound effects on ecosystem functioning. Large carnivores are of particular importance in shaping community structure since they are at the top of the food chain, and many efforts are made to conserve such keystone species. Despite this, the mechanisms of carnivore interactions are far from understood, yet they are key to enabling or hindering their coexistence and hence are highly relevant for their conservation. The goal of this review is thus to provide detailed information on the extents of competition and facilitation between large carnivores and their impact in shaping their life histories. Here, we use the example of spotted hyaenas (Crocuta crocuta) and lions (Panthera leo) and provide a comprehensive knowledge of their interactions based on meta‐analyses from available literature (148 publications). Despite their strong potential for both exploitation and interference competition (range and diet overlap, intraguild predation and kleptoparasitism), we underline some mechanisms facilitating their coexistence (different prey‐age selection and scavenging opportunities). We stress the fact that prey abundance is key to their coexistence and that hyaenas forming very large groups in rich ecosystems could have a negative impact on lions. We show that the coexistence of spotted hyaenas and lions is a complex balance between competition and facilitation, and that prey availability within the ecosystem determines which predator is dominant. However, there are still many gaps in our knowledge such as the spatio‐temporal dynamics of their interactions. As both species' survival becomes increasingly dependent on protected areas, where their densities can be high, it is critical to understand their interactions to inform both reintroduction programs and protected area management.  相似文献   

10.
Habitat selection under foraging—predation-risk trade-offshas been a frequent topic of interest to theoretical behavioraland evolutionary ecologists. However, most habitat selectionmodels assume that individuals compete exploitatively for resourcesand that predation is either density independent or dilutedcompletely by competitor number, despite empirical evidencethat other forms of competition and predation also occur innature. I developed an individual-based model for studyingthe effects of alternative forms of competition and predationon the process of habitat selection under foraging—predation-risktrade-offs. To make the model more relevant to natural populations,I assumed that individuals vary continuously in traits relatedto competitive ability and vulnerability to predation and allowed resources and predators to be distributed across more than twohabitats. The results of my investigation demonstrate thatthe predicted pattern of habitat selection can be affecteddramatically by the form predation is assumed to take. Whenpredation is density dependent or frequency dependent, individuals will tend to be distributed across habitats according to theirabsolute vulnerability to predation. In contrast, when predationis density dependent or vulnerability dependent, individualswill tend to segregate by competitive ability. Whether oneassumes that individuals compete for resources via exploitationor interference also influences the predicted pattern of habitat selection. In general, interference competition results in amore even distribution of competitors across habitats.  相似文献   

11.
Group foraging can be beneficial for ungulates by decreasing the time required for vigilance, but it can also prove costly because of competition. To determine responses to gregarious behaviour, we studied foraging activity and vigilance of impala ( Aepyceros melampus ) near Kruger National Park, South Africa. We measured time spent foraging, vigilant, moving, grooming, engaging in social interactions and determined herd size and group distribution (i.e. density). We calculated accepted food abundance (AFA), food ingestion rate, steps per minute and percent vigilance for female, bachelor male and herd male impala. There was no relationship between herd size and vigilance, but vigilance decreased with increasing density ( t 1,311 = 4.91, P  <0.0001). Additionally, AFA decreased ( t 1,61 = 5.96, P  <0.0001) and steps per minute increased ( t 1,311 = 14.38, P  <   0.0001) as more individuals fed in close proximity to each other. Impala could be altering their behaviour to accommodate a perceived change in resources because of intraspecific competition and these adjustments might be related more to the distribution of herd members than to herd size. Further studies should examine the behaviour of gregarious animals in relation to the distribution of herd members in addition to group size.  相似文献   

12.
Aggression by top predators can create a “landscape of fear” in which subordinate predators restrict their activity to low‐risk areas or times of day. At large spatial or temporal scales, this can result in the costly loss of access to resources. However, fine‐scale reactive avoidance may minimize the risk of aggressive encounters for subordinate predators while maintaining access to resources, thereby providing a mechanism for coexistence. We investigated fine‐scale spatiotemporal avoidance in a guild of African predators characterized by intense interference competition. Vulnerable to food stealing and direct killing, cheetahs are expected to avoid both larger predators; hyenas are expected to avoid lions. We deployed a grid of 225 camera traps across 1,125 km2 in Serengeti National Park, Tanzania, to evaluate concurrent patterns of habitat use by lions, hyenas, cheetahs, and their primary prey. We used hurdle models to evaluate whether smaller species avoided areas preferred by larger species, and we used time‐to‐event models to evaluate fine‐scale temporal avoidance in the hours immediately surrounding top predator activity. We found no evidence of long‐term displacement of subordinate species, even at fine spatial scales. Instead, hyenas and cheetahs were positively associated with lions except in areas with exceptionally high lion use. Hyenas and lions appeared to actively track each, while cheetahs appear to maintain long‐term access to sites with high lion use by actively avoiding those areas just in the hours immediately following lion activity. Our results suggest that cheetahs are able to use patches of preferred habitat by avoiding lions on a moment‐to‐moment basis. Such fine‐scale temporal avoidance is likely to be less costly than long‐term avoidance of preferred areas: This may help explain why cheetahs are able to coexist with lions despite high rates of lion‐inflicted mortality, and highlights reactive avoidance as a general mechanism for predator coexistence.  相似文献   

13.
We tested for facultative changes in behavior of an aquaticinsect in response to cues from predation and for evolutionof prey behavior in response to experimental predation regimes.Larvae of the tree hole mosquito Aedes triseriatus reducedfiltering, browsing, and time below the surface in responseto water that had held a feeding larva of the predator Toxorhynchitesrutilus. We subjected experimental A. triseriatus populationsto culling of 50% of the larval population, either by T. rutiluspredation or by random removal. After two generations of laboratoryculling, behavior of the two treatment groups diverged. Aedestriseriatus in control-culled lines retained their facultativeshift from filtering to resting, but tended to lose the response of reduced browsing below the surface in water that had helda feeding predator. Predator-culled lines lost their facultativeresponse of reduced filtering in water that had held a feedingpredator and evolved toward more time resting and less timefiltering in both water that had held a feeding predator andwater that had held only A. triseriatus. Predator-culled linesretained their facultative response of reduced browsing belowthe surface in water that had held a feeding predator. Twofield populations and their reciprocal hybrids responded similarlyto cues from predation and did not differ in their evolutionaryresponse to experimental culling. We conclude that consistentpresence or absence of predation can select rapidly for divergencein prey behavior, including facultative behavioral responsesto predators.  相似文献   

14.
Benefit by contrast: an experiment with live aposematic prey   总被引:4,自引:1,他引:3  
Aposematic prey often have a coloration that contrasts withthe background. One beneficial effect of such conspicuous colorationis that it produces faster and more durable avoidance by predators.Another suggested benefit is that prey that contrast with thebackground are more quickly discerned and recognized as unpalatableby experienced predators. To further investigate the effectsof prey contrast on predator behavior, I conducted an experimentwith young chicks (Gallus gallus domesticus) as predators onlive aposematic and nonaposematic prey. Birds with prior experienceof both prey types were allowed into an arena with both palatableprey and aposematic prey on backgrounds that either closelymatched or contrasted with the coloration of the aposematicprey. Also, the time a bird had available to decide to attacka prey was manipulated by including a competing chick or not.The experienced birds showed greater attack latencies for aposematicprey on more contrasting backgrounds, and aposematic prey werealso attacked to a greater extent when on a matching background.The presence of a competitor generated similar effects, wherebirds in high competition attacked more and faster comparedto birds subjected to lower degree of competition, but therewas no interaction between competition and contrast. Thus,the experiment provides evidence that prey contrast againstthe background may produce better recognition and avoidance,independently of predator viewing time.  相似文献   

15.
Living under predation risk may alter both behaviour and physiology of potential prey. In extreme cases, such alterations may have serious demographic consequences, and recent studies support that non‐lethal effects of predation may have broad ecological consequences. However, behavioural and physiological responses to predation risk may be related to trade‐offs associated with resource acquisition and direct predation risk. We validated an enzyme‐linked immunoassay (EIA) for non‐invasive monitoring of stress in plains zebras (Equus quagga) from faecal material. We used this assay in combination with behavioural data to assess if plains zebras living with and without lions (Panthera leo) in a mountain savannah in southern Africa differed in behaviour and physiology, and if such differences were influenced by seasons with contrasting resource availability. Zebra group sizes did not differ between areas with and without lions, but zebra groups had more juveniles in an area with lions than groups in an area without lions, but only during the wet season. Similarly, we observed differences in individual vigilance, foraging behaviour and stress hormone concentrations, but all these differences were influenced by seasons. Despite these seasonal influences, our study did not suggest that zebras in an area with lions spent a higher proportion of time being vigilant, a lower proportion of time foraging, or had higher stress hormone levels. Our results instead suggest that zebras' responses to lion presence were highly context dependent and the result of complex interactions between resource abundance and cues about predation risk. Because of the obvious ecological and evolutionary ramifications of such findings, we argue that further research is needed to define the spatial and temporal scales over which predators impose indirect effects on their prey.  相似文献   

16.
The northern pike (Esox lucius) is an important and selective piscivorethat chooses smaller prey than predicted from energy / timebudgets. In a laboratory experiment, we investigated pike predatorybehavior to explain this selectivity. Northern pike feedingon different prey sizes in aquaria were observed when foragingalone, when in the presence of chemical cues from similar-sizedor larger conspecifics, and when in the presence of conspecifics thatwere allowed to interact with the focal pike. The results showthat prey handling time increases with prey size and that theduration of manipulating and handling prey inflicts a risk ofexposure to cannibals and kleptoparasites on the pike. Therefore,the risk of falling victim to cannibals or kleptoparasites increaseswith prey size. Attracting and experiencing intraspecific interactorscan be regarded as major fitness costs. Chemical cues from foragingconspecifics have only minor effects on pike foraging behavior.Furthermore, the ability to strike and swallow prey head first improvespike predatory performance because failing to do so increases handlingtime. Our findings emphasize the increasing potential costswith large prey and explain previous contradictory suggestionson the underlying mechanisms of behavior, selectivity, and trophiceffects of northern pike predation.  相似文献   

17.
18.
When animals detect predators they modify their behavior to avoid predation. However, less is known about whether prey species modify their behavior in response to predator body and behavioral cues. Recent studies indicated that tufted titmice, a small songbird, decreased their foraging behavior and increased their calling rates when they detected a potential predator facing toward a feeder they were using, compared to a potential predator facing away from that feeder. Here, we tested whether related Carolina chickadees, Poecile carolinensis, were also sensitive not just to the presence of a predator model, but to its facial/head orientation. Although chickadees are closely related to titmice, recent studies in different populations suggest chickadees respond to risky contexts involving predators differently than titmice. We conducted two field studies near feeders the birds were exploiting. In Study One, a mask‐wearing human observer stood near the feeder. In Study Two, a model of a domestic cat was positioned near the feeder. In both studies, the potential threatening stimulus either faced toward or faced away from the feeder. Chickadees avoided the feeder more in both studies when the potential predator was present, and showed strongest feeder avoidance when the potential predator faced toward the feeder. Chickadee calling behavior was also affected by the facial orientation of the potential predator in Study 1. These results suggest that, like titmice, chickadees exhibit predation‐risk‐sensitive foraging and calling behavior, in relation to facial and head orientation of potential threats. These small birds seem to attend to the likely visual space of potential predators. Sensitivity to predator cues like behavior and body posture must become more central to our theories and models of anti‐predator behavioral systems.  相似文献   

19.
Individual forager behaviors should affect per capita intakerates and thereby population and consumer-resource properties.We consider and incorporate conspecific facilitation and interferenceduring the separate foraging-cycle stages in a functional responsemodel that links individual behavioral interactions with consumer-resourceprocesses. Our analyses suggest that failing to properly considerand include all effects of behavioral interactions on foraging-cyclestage performances may either over- or underestimate effectsof interactions on the shape of both functional responses andpredator zero-growth isoclines. Incorporation of prey- and predator-dependentinteractions among foragers in the model produces predator isoclineswith potentials for highly complex consumer-resource dynamics.Facilitation and interference during the foraging cycle aretherefore suggested as potent behavioral mechanisms to causepatterns of community dynamics. We emphasize that correct estimationsof interaction-mediated foraging-cycle efficiencies should beconsidered in empirical and theoretical attempts to furtherour understanding of the mechanistic link between social behaviorsand higher order processes.  相似文献   

20.
Individual phenotypic differences are increasingly recognized as key drivers of ecological processes. However, studies examining the relative importance of these differences in comparison with environmental factors or how individual phenotype interacts across different environmental contexts remain lacking. We performed two field experiments to assess the concurrent roles of personality differences and habitat quality in mediating individual mortality and dispersal. We quantified the predator avoidance response of mud crabs, Panopeus herbstii, collected from low‐ and high‐quality oyster reefs and measured crab loss in a caging experiment. We simultaneously measured the distance crabs traveled as well as the stability of personalities across reef quality in a separate reciprocal transplant experiment. Habitat quality was the primary determinant of crab loss, although the distance crabs traveled was governed by personality which interacted with habitat quality to control the fate of crabs. Here, crabs on low‐quality reefs rapidly emigrated, starting with the boldest individuals, and experienced modest levels of predation regardless of personality. In contrast, both bold and shy crabs would remain on high‐quality reefs for months where bolder individuals experienced higher predation risk. These findings suggest that personalities could produce vastly different population dynamics across habitat quality and govern community responses to habitat degradation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号