首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Epithelial neutrophil-activating peptide-78 (ENA-78) is a member of CXC chemokines. It is produced by endothelial cells stimulated with interleukin-1 (IL-1), along with other CXC chemokines such as IL-8 and growth-related oncogene protein-alpha (GRO-alpha). IL-1-induced ENA-78 production by endothelial cells may be important for the regulation of neutrophil activation. 15-Deoxy-Delta(12,14)-prostaglandin J(2) (15d-PGJ(2)) is a natural ligand for peroxisome proliferator-activated receptor-gamma (PPAR-gamma) and affects the expression of various genes. We examined the effect of 15d-PGJ(2) on the expression of ENA-78 in cultured endothelial cells stimulated with IL-1beta. 15d-PGJ(2) inhibited the IL-1beta-induced expression of ENA-78, but not the expression of IL-8 or GRO-alpha in response to IL-1. Ciglitazone, another agonist for PPAR-gamma, had no effect on the expression of ENA-78, suggesting that 15d-PGJ(2) may inhibit the expression of ENA-78 in a PPAR-gamma-independent manner. 15d-PGJ(2) may modulate inflammatory reactions by regulating the balance of CXC chemokines in endothelial cells.  相似文献   

2.
3.
The peroxisome proliferator-activated receptor-gamma (PPAR-gamma) has been implicated in inhibition of the expression of proinflammatory cytokines and inducible enzymes such as cyclooxygenase-2 (COX-2). Using real-time RT-PCR the present study investigates the impact of two PPAR-gamma agonists, 15-deoxy-Delta(12,14)-prostaglandin J(2) (15d-PGJ(2)) and ciglitazone, on the expression of several proinflammatory genes in lipopolysaccharide (LPS)-stimulated human blood monocytes. Stimulation of cells with LPS resulted in a profound induction of the expression of COX-2, interleukin (IL)-1, IL-6, tumor necrosis factor (TNF), and granulocyte-macrophage colony-stimulating factor (GM-CSF). Treatment of cells with 15d-PGJ(2) (10 microM) was associated with a nearly complete inhibition of the expression of all genes that remained unaltered in the presence of the PPAR-gamma antagonist bisphenol A diglycidyl ether (BADGE; 100 microM). By contrast, treatment of cells with another potent PPAR-gamma agonist, ciglitazone (50 microM), and the PPAR-alpha agonist WY-14,643 (100 microM) did not suppress LPS-induced expression of the investigated genes. Stimulation of monocytes with LPS resulted in an 88% inhibition of PPAR-gamma mRNA expression that was fully restored by 15d-PGJ(2) but only to a partial extent by ciglitazone and WY-14,643. Again, BADGE did not alter the effect of 15d-PGJ(2). Collectively, our results show that alterations of gene expression by 15d-PGJ(2) in LPS-stimulated human blood monocytes are mediated by PPAR-gamma-independent mechanisms. Moreover, it is concluded that both inhibition of proinflammatory gene expression and restoration of LPS-induced decrease of PPAR-gamma expression may contribute to the biological action of 15d-PGJ(2).  相似文献   

4.
Peroxisome proliferator-activated receptors (PPAR) are members of a nuclear hormone receptor superfamily that includes receptors for steroids, retinoids, and thyroid hormone, all of which are known to affect the immune response. Previous studies dealing with PPAR-gamma expression in the immune system have been limited. Recently, PPAR-gamma was identified in monocyte/macrophage cells. In this study we examined the role of PPAR-gamma in experimental autoimmune encephalomyelitis (EAE), an animal model for the human disease multiple sclerosis. The hypothesis we are testing is whether PPAR-gamma plays an important role in EAE pathogenesis and whether PPAR-gamma ligands can inhibit the clinical expression of EAE. Initial studies have shown that the presence of the PPAR-gamma ligand 15-deoxy-Delta(12,14)-PGJ(2) (15d-PGJ2) inhibits the proliferation of Ag-specific T cells from the spleen of myelin basic protein Ac(1-11) TCR-transgenic mice. 15d-PGJ2 suppressed IFN-gamma, IL-10, and IL-4 production by both Con A- and myelin basic protein Ac(1-11) peptide-stimulated lymphocytes as determined by ELISA and ELISPOT assay. Culture of encephalitogenic T cells with 15d-PGJ2 in the presence of Ag reduced the ability of these cells to adoptively transfer EAE. Examination of the target organ, the CNS, during the course of EAE revealed expression of PPAR-gamma in the spinal cord inflammatory infiltrate. Administration of 15d-PGJ2 before and at the onset of clinical signs of EAE significantly reduced the severity of disease. These results suggest that PPAR-gamma ligands may be a novel therapeutic agent for diseases such as multiple sclerosis.  相似文献   

5.
Retinoic acid-inducible gene-I (RIG-I) is a member of the DExH box protein family and designated as a putative RNA helicase. RIG-I is implicated in host defense and inflammatory reactions by regulating the expression of various genes. RIG-I is expressed in endothelial cells and upregulated with lipopolysaccharide (LPS). Peroxisome proliferator-activated receptor-gamma (PPAR-gamma) is a nuclear hormone receptor and regulates gene expressions in response to its specific ligands. In the present study, we examined the effect of PPAR-gamma ligands on the LPS-induced RIG-I expression in cultured human umbilical vein endothelial cells (HUVEC). 15-Deoxy-Delta(12,14)-prostaglandin J2 (15d-PGJ2), a metabolite of PGD2, is a natural ligand for PPAR-gamma and known to modulate inflammatory reactions by regulating the expression of various genes in PPAR-gamma-dependent and -independent manners. LPS-induced RIG-I expression in HUVEC was inhibited by pretreatment of the cells with 15d-PGJ2 in time-and concentration-dependent manners. However, ciglitazone and bisphenol A diglycide ether, authentic and specific ligands for PPAR-gamma, did not affect the RIG-I expression. These results suggest that 15d-PGJ2 inhibits LPS-induced RIG-I expression through a mechanism independent on PPAR-gamma. 15d-PGJ2 may regulate inflammatory reactions, at least in part, by inhibiting the expression of RIG-I.  相似文献   

6.
15-Deoxy-delta12,14-prostaglandin J2 (15d-PGJ2) is a highly specific activator of the peroxisome proliferator-activated receptor gamma (PPAR-gamma). We investigated the effect of 15d-PGJ2 on three human prostate cancer cell lines, LNCaP, DU145, and PC-3. Western blotting demonstrated that PPAR-gamma1 is expressed predominantly in untreated prostate cancer cells. Treatment with 15d-PGJ2 caused an increase in the expression of PPAR-gamma2, whereas PPAR-gamma1 remained at basal levels. PPARs alpha and beta were not detected in these cells. Lack of lipid accumulation, increase in CCAAT/enhancer binding proteins (C/EBPs), or expression of aP2 mRNA indicated that adipocytic differentiation is not induced in these cells by 15d-PGJ2. 15d-PGJ2 and other PPAR-gamma activators induced cell death in all three cell lines at concentrations as low as 2.5 microM (similar to the Kd of PPAR-gamma for this ligand), coinciding with an accumulation of cells in the S-phase of the cell cycle. Activators for PPAR-alpha and beta did not induce cell death. Staining with trypan blue and propidium iodide suggested that, although the plasma membrane appears intact by electron microscopy, disturbances are evident as early as 2 h after treatment. Mitochondrial transmembrane potentials are significantly reduced by 15d-PGJ2 treatment. In addition, treatment with 15d-PGJ2 resulted in cytoplasmic changes, which are indicative of type 2 (autophagic), nonapoptotic programmed cell death.  相似文献   

7.
Soluble form of IL-6 receptor alpha (sIL-6R) is known to serve as an agonist, without exogenous IL-6, on endothelial cells which do not express IL-6R but have only IL-6 receptor beta chain, gp130. We investigated the effect of sIL-6R on fractalkine expression in human umbilical vein endothelial cells (HUVECs) in culture. sIL-6R markedly inhibited HUVEC fractalkine/CX3CL1 expression induced by interleukin (IL)-1alpha, tumor necrosis factor (TNF)-alpha, or interferon (IFN)-gamma. IL-1alpha-induced fractalkine expression was inhibited by sIL-6R in time- and concentration-dependent manners. The experiment using actinomycin D indicated that sIL-6R lowered the stability of fractalkine mRNA. The inhibitory effect of sIL-6R was reversed by anti-gp130 neutralizing antibody. sIL-6R inhibited adhesion of mononuclear cells (MNCs) to HUVEC monolayers stimulated with IFN-gamma, but it did not inhibit the adhesion to monolayers stimulated with IL-1alpha. MNC chemotactic activity of conditioned medium of HUVEC stimulated with IL-1alpha or IFN-gamma was inhibited by co-treatment with sIL-6R. sIL-6R may play a regulatory role in immune responses by modulating the interaction between leukocytes and the vascular endothelium.  相似文献   

8.
The research described herein evaluates the expression and functional significance of peroxisome proliferator activator receptor-gamma (PPAR-gamma) on B-lineage cells. Normal mouse B cells and a variety of B lymphoma cells reflective of stages of B cell differentiation (e.g., 70Z/3, CH31, WEHI-231, CH12, and J558) express PPAR-gamma mRNA and, by Western blot analysis, the 67-kDa PPAR-gamma protein. 15-Deoxy-Delta(12,14)-PGJ(2) (15d-PGJ(2)), a PPAR-gamma agonist, has a dose-dependent antiproliferative and cytotoxic effect on normal and malignant B cells as shown by [(3)H]thymidine and 3-[4,5-dimethylthiazol-2-yl]-2, 5-diphenyltetrazolium bromide assays. Only PPAR-gamma agonists (thiazolidinediones), and not PPAR-alpha agonists, mimicked the effect of 15d-PGJ(2) on B-lineage cells, indicating that the mechanism by which 15d-PGJ(2) negatively affects B-lineage cells involves in part PPAR-gamma. The mechanism by which PPAR-gamma agonists induce cytotoxicity is via apoptosis, as shown by annexin V staining and as confirmed by DNA fragmentation detected using the TUNEL assay. Interestingly, addition of PGF(2alpha), which was not known to affect lymphocytes, dramatically attenuated the deleterious effects of PPAR-gamma agonists on B lymphomas. Surprisingly, 15d-PGJ(2) induced a massive increase in nuclear mitogen-activated protein kinase activation, and pretreatment with PGF(2alpha) blunted the mitogen-activated protein kinase activation. This is the first study evaluating PPAR-gamma expression and its significance on B lymphocytes. PPAR-gamma agonists may serve as a counterbalance to the stimulating effects of other PGs, namely PGE(2), which promotes B cell differentiation. Finally, the use of PGs, such as 15d-PGJ(2), and synthetic PPAR-gamma agonists to induce apoptosis in B-lineage cells may lead to the development of novel therapies for fatal B lymphomas.  相似文献   

9.
The present study evaluated the effects of peroxisome proliferator-activated receptor (PPAR)-gamma activators on ANG II-induced signaling pathways and cell growth. Vascular smooth muscle cells (VSMC) derived from rat mesenteric arteries were treated with ANG II, with/without the AT1 receptor blocker valsartan or the AT2 receptor blocker PD-123319, after pretreatment for 24 h with the PPAR-gamma activators 15-deoxy-delta(12,14)-prostaglandin J2 (15d-PGJ2) or rosiglitazone. Both 15d-PGJ2 and rosiglitazone decreased ANG II-induced DNA synthesis. Rosiglitazone treatment increased nuclear PPAR-gamma expression and activity in VSMC. However, rosiglitazone did not alter expression of PPAR-alpha/beta, ERK 1/2, Akt, or ANG II receptors. 15d-PGJ2 and rosiglitazone decreased ERK 1/2 and Akt peak activity, both of which were induced by ANG II via the AT1 receptor. Rosiglitazone inhibited ANG II-enhanced phosphorylation of eukaryotic initiation factor 4E-binding protein 1 (4E-BP1), as well as Src homology (SH) 2-containing inositol phosphatase 2 (SHIP2). PPAR-gamma activation reduced ANG II-induced growth associated with inhibition of ERK 1/2, Akt, 4E-BP1, and SHIP2. Modulation of these pathways by PPAR-gamma activators may contribute to regression of vascular remodeling in hypertension.  相似文献   

10.
11.
12.
We have previously reported that rat primary microglial cultures express the nuclear receptor peroxisome proliferator-activated receptor-gamma (PPAR-gamma) and that several functions associated with the activation of these cells, including nitric oxide (NO) and tumor necrosis factor-alpha synthesis, are down-regulated by 15-deoxy-delta12,14-prostaglandin J2 (15d-PGJ2) and ciglitazone, two specific PPAR-gamma agonists. Here we demonstrate that microglial cells not only express a functionally active PPAR-gamma, but also synthesize large amounts of 15d-PGJ2 upon stimulation with lipopolysaccharide (LPS). In addition, we show that, although 15d-PGJ2 and ciglitazone were equally effective in reducing microglial activation when used at 1-5 microm concentrations, 15d-PGJ2, but not of ciglitazone, reduced PGE2 production at low concentration (0.1 microm) and induced a time-dependent microglial impairment and apoptosis at high concentration (10 microm). Interestingly, the inhibition of PGE2 production was achieved mainly through the inhibition of cycloxygenase-2 enzymatic activity, as the expression of this enzyme and that of the microsomal isoform of PGE synthase remained unaltered. These findings suggest that 15d-PGJ2 affects the functional state and the survival of activated microglia through mechanisms only in part dependent on PPAR-gamma and that the concentration of 15d-PGJ2 is crucial in determining the particular microglial function affected.  相似文献   

13.
The activation of peroxisome proliferator-activated receptor gamma (PPARgamma) has been shown to inhibit the production and the effects of proinflammatory cytokines. Since interleukin-1beta (IL-1beta) directly mediates cartilage degradation in osteoarthritis, we investigated the capability of PPARgamma ligands to modulate IL-1beta effects on human chondrocytes. RT-PCR and Western blot analysis revealed that PPARgamma expression was decreased by IL-1beta. 15-deoxy-Delta12,14-prostaglandin J2 (15d-PGJ2), in contrast to troglitazone, was highly potent to counteract IL-1beta-induced cyclooxygenase-2 and inductible nitric oxide synthase expression, NO production and the decrease in proteoglycan synthesis. Western blot and gel-shift analyses demonstrated that 15d-PGJ2 inhibited NF-kappaB activation, while troglitazone was ineffective. Although 15d-PGJ2 attenuated activator protein-1 binding on the DNA, it potentiated c-jun migration in the nucleus. The absence or the low effect of troglitazone suggests that 15d-PGJ2 action in human chondrocytes is mainly PPARgamma-independent.  相似文献   

14.
Laminar shear stress strongly inhibits vascular endothelial cell apoptosis by unknown mechanisms. We reported that shear stress stimulates endothelial cells to produce 15-deoxy-Delta12,14-prostaglandin J2 (15d-PGJ2) by elevating the expression level of lipocalin-type prostaglandin D synthase. To investigate the role of 15d-PGJ2 produced in the vascular wall, we examined the effect of 15d-PGJ2 on endothelial cell apoptosis. We induced apoptosis in human umbilical vein endothelial cells (HUVECs) by growth factor deprivation. 15d-PGJ2 strongly inhibited DNA ladder formation, nuclear fragmentation, and caspase-3-like activity in HUVECs. To elucidate the mechanism by which 15d-PGJ2 inhibits endothelial cell apoptosis, we examined expression of the inhibitor of apoptosis proteins (IAP) cellular-IAP1 (c-IAP1), c-IAP2, x-linked IAP, and survivin in HUVECs. In parallel with the inhibition of apoptosis, 15d-PGJ2 elevated the expression level of c-IAP1 protein in a dose- and time-dependent manner without changing the mRNA level. Laminar shear stress also induced c-IAP1 expression. Chase experiments with the use of cycloheximide revealed that 15d-PGJ2 and shear stress both inhibited the proteolytic degradation of c-IAP1 protein. These results suggested that 15d-PGJ2 inhibits endothelial cell apoptosis through, at least in part, c-IAP1 protein stabilization. This mechanism might be involved in the antiapoptotic effect of laminar shear stress.  相似文献   

15.
In response to inflammatory cytokines, chondrocytes and synovial fibroblasts produce high amounts of prostaglandins (PG) which self-perpetuate locally the inflammatory reaction. Prostaglandins act primarily through membrane receptors coupled to G proteins but also bind to nuclear Peroxisome Proliferator-Activated Receptors (PPARs). Amongst fatty acids, the cyclopentenone metabolite of PGD2, 15-deoxy-Delta12,14PGJ2 (15d-PGJ2), was shown to be a potent ligand of the PPARgamma isotype prone to inhibit the production of inflammatory mediators. As the stimulated synthesis of PGE2 originates from the preferential coupling of inducible enzymes, cyclooxygenase-2 (COX-2) and membrane PGE synthase-1 (mPGES-1), we investigated the potency of 15d-PGJ2 to regulate prostaglandins synthesis in rat chondrocytes stimulated with interleukin-1beta (IL-1beta). We demonstrated that 15d-PGJ2, but not the high-affinity PPARgamma ligand rosiglitazone, decreased almost completely PGE2 synthesis and mPGES-1 expression. The inhibitory potency of 15d-PGJ2 was unaffected by changes in PPARgamma expression and resulted from inhibition of NF-kappaB nuclear binding and IkappaBalpha sparing, secondary to reduced phosphorylation of IKKbeta. Consistently with 15d-PGJ2 being a putative endogenous regulator of the inflammatory reaction if synthesized in sufficient amounts, the present data confirm the variable PPARgamma-dependency of its effects in joint cells while underlining possible species and cell types specificities.  相似文献   

16.
Ligands for peroxisome proliferator-activated receptor gamma (PPAR-gamma), such as 15-deoxy-Delta12,14-prostaglandin J2 (15d-PGJ2) have been implicated as a new class of anti-inflammatory compounds with possible clinical applications. Based on this concept, this investigation was designed to determine the effect of 15d-PGJ2-mediated activation of PPAR-gamma ligand on neutrophil migration after an inflammatory stimulus and clarify the underlying molecular mechanisms using a mouse model of peritonitis. Our results demonstrated that 15d-PGJ2 administration decreases leukocyte rolling and adhesion to the inflamed mesenteric tissues by a mechanism dependent on NO. Specifically, pharmacological inhibitors of NO synthase remarkably abrogated the 15d-PGJ2-mediated suppression of neutrophil migration to the inflammatory site. Moreover, inducible NOS-/- mice were not susceptible to 15d-PGJ2-mediated suppression of neutrophil migration to the inflammatory sites when compared with their wild type. In addition, 15d-PGJ2-mediated suppression of neutrophil migration appeared to be independent of the production of cytokines and chemokines, since their production were not significantly affected in the carrageenan-injected peritoneal cavities. Finally, up-regulation of carrageenan-triggered ICAM-1 expression in the mesenteric microcirculation vessels was abrogated by pretreatment of wild-type mice with 15d-PGJ2, whereas 15d-PGJ2 inhibited F-actin rearrangement process in neutrophils. Taken together these findings demonstrated that 15d-PGJ2 suppresses inflammation-initiated neutrophil migration in a mechanism dependent on NO production in mesenteric tissues.  相似文献   

17.
18.
19.
Hypoxia--reoxygenation (H/R) occurs in both inflammatory spots and tumor tissues, sites in which damage is amplified either acutely or chronically through the infiltration of inflammatory cells. Interleukin-8 (IL-8) is a cytokine with chemotactic and angiogenic properties. This study was designed to investigate the effects of H/R on IL-8 production in the U937 human monocytic cell line. Two hours of hypoxia followed by 4 h of reoxygenation induced a significant increase in IL-8 protein production and IL-8 mRNA expression in U937 cells. Pretreatment with proteasome inhibitor (PSI), a peptide aldehyde known to inhibit the chymotrypsin-like activity of the 26S proteasome specifically, suppressed IL-8 protein production and IL-8 mRNA expression induced by H/R. The production of IL-8 protein induced by H/R was decreased by pioglitazone and 15-deoxy-Delta(12,14)-PGJ(2) (15d-PGJ(2)), which have been identified as peroxisome proliferator-activated receptorgamma (PPAR-gamma) ligands. Moreover, transfection of U937 cells with a dominant negative IkappaBalphaexpression vector (IkappaBalphaM) decreased IL-8 protein production induced by H/R. These results suggest that NF-kappaB and PPAR-gamma regulate H/R-stimulated IL-8 production in U937 cells.  相似文献   

20.
Rheumatoid arthritis (RA) is a chronic polyarticular joint disease associated with massive synovial proliferation, inflammation, and angiogenesis. PPAR-gamma ligands, both 15-deoxy-Delta(12,14)-prostaglandin J2 (15d- PGJ2) and troglitazone (TRO), can inhibit the growth of RA synoviocytes in vitro, and suppress the chronic inflammation of adjuvant-induced arthritis in rats, but the potency of 15d-PGJ2 is higher than TRO. Prostaglandin (PG) E2 plays important roles in joint erosion and synovial inflammation. In the present study, 15d-PGJ2, but not TRO and other prostanoids, suppressed interleukin (IL)-1beta-induced PGE2 synthesis in rheumatoid synovial fibroblasts (RSFs) through the inhibition of cyclooxygenase (COX-2) and cytosolic phospholipase A2 (cPLA2) expression. Furthermore, the inhibition was not affected by pretreatment with anti-PPAR-gamma antibody. It means that this anti-inflammatory effect of 15d-PGJ2 for PG synthesis may be independent of PPAR-gamma and 15d-PGJ2 is a key regulator of negative feedback of the arachidonate cascade on the COX pathway. These findings provide new insight into the feedback mechanism of the arachidonate cascade.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号