首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Schieferstein , R. H., and W. E. Loomis . (Iowa State U., Ames.) Development of the cuticular layer in angiosperm leaves. Amer. Jour. Bot. 46(9): 625–635. Illus. 1959.—The cuticularized layers of leaves and other plant surfaces consist of a primary cuticle, formed by the oxidation of oils on exposed cell walls, plus various surface and subsurface wax deposits. The primary cuticle appears to form rapidly on the walls of any living cell which is exposed to air. Surface wax is present on the mature leaves of about half of the 50 or 60 species studied. In general, wax is extruded at random through the newly formed cuticle of young leaves and accumulated in various reticulate to semicrystalline patterns. No wax pores through the cuticle or primary wall can be observed in electron-micrographs of dewaxed mature leaves. Wax accumulations on older leaves are generally subcuticular and may involve the entire epidermal wall. These deposits appear to be of considerably greater ecological significance than those on the surface. Isolated cuticular membranes from Hedera helix increased slightly in permeability to water with age of the leaf, but permeability to 2,4-D decreased 50 times. Evidence based on the patterns of cellulose in primary walls, of surface wax on growing leaves, of the appearance of the cuticle at the margins of growing epidermal cells, of the forms of the cuticle plates digested from growing and older leaves, and of the marginal location of new wax deposits on growing maize leaves is presented to support the thesis that the enlargement of the outer surface of the epidermal cells of leaves occurs at the margins of the surface. Earlier formed cuticle and wax are thus undisturbed during growth. These observations, coupled with evidence for apical growth in fibers, root hairs, etc. suggest that the primary walls of angiosperm cells are formed in specific, localized growth regions, rather than by plastic extension and apposition.  相似文献   

2.
The outer epidermal wall of Agave americana leaves was examinedin order to gain more information about the location and chemicalconstitution of the structural components. In middle aged leavesthe wall comprised six layers which were designated epicuticularwax, cuticle proper, exterior and interior cuticular layer,exterior and interior cellin wall. A lamellated structure, consistingof a series of electron translucent lamellae of uniform thicknessalternating with opaque ones of variable thickness, was observedin the thin cuticle proper on the outside of the cuticular membrane,even without heavy metal treatment. The cuticular layers underneathformed the bulk of the cuticular membrane and they also hadtwo components, an amorphous matrix permeated by a reticulumof fibrillae. Cutin, detected with osmium and with iodine/iodine-sulphuricacid–silver proteinate, was a major component of the opaquelamellae of the cuticle proper and the matrix of the cuticularlayer. Carbohydrates were absent from the cuticle proper butwere detected specifically in the fibrillae of the cuticularlayer and in the cellin wall. Pectic material seemed to be presenton both sides of the junction between cuticular membrane andcellin wall, but no discrete zone corresponding to light microscopicalobservations was detected in the electron microscope. Althoughthe lucent lamellae of the cuticle proper were tentatively ascribedto wax there was no structural or ultrahistochemical evidencefor the wax component of the cuticular layer. The various ultrahistochemicalreactions are discussed in relation to the known chemical compositionof the membrane. Agave americana L., epidermis wall, cuticular membrane, cuticle proper, cuticular layer, ultrahistochemistry, wax  相似文献   

3.
Summary Aiming to elucidate the possible involvement of pectins in auxin-mediated elongation growth the distribution of pectins in cell walls of maize coleoptiles was investigated. Antibodies against defined epitopes of pectin were used: JIM 5 recognizing pectin with a low degree of esterification, JIM 7 recognizing highly esterified pectin and 2F4 recognizing a pectin epitope induced by Ca2+. JIM 5 weakly labeled the outer third of the outer epidermal wall and the center of filled cell corners in the parenchyma. A similar labeling pattern was obtained with 2F4. In contrast, JIM 7 densely labeled the whole outer epidermal wall except the innermost layer, the middle lamellae, and the inner edges of open cell corners in the parenchyma. Enzymatic de-esterification with pectin methylesterase increased the labeling by JIM 5 and 2F4 substantially. A further increase of the labeling density by JIM 5 and 2F4 and an extension of the labeling over the whole outer epidermal wall could be observed after chemical de-esterification with alkali. This indicates that both methyl- and other esters exist in maize outer epidermal walls. Thus, in the growth-controlling outer epidermal wall a clear zonation of pectin fractions was observed: the outermost layer (about one third to one half of wall thickness) contains unesterified pectin epitopes, presumably cross-linked by Ca2+ extract. Tracer experiments with3H-myo-inositol showed rapid accumulation of tracer in all extractable pectin fractions and in a fraction tightly bound to the cell wall. A stimulatory effect of IAA on tracer incorporation could not be detected in any fraction. Summarizing the data a model of the pectin distribution in the cell walls of maize coleoptiles was developed and its implications for the mechanism of auxin-induced wall loosening are discussed.Abbreviations CDTA trans-1,2-diaminocyclohexane-N,N,N,N-tetraacetic acid - CWP cell-wall pellet - IAA indole-3-acetic acid - LSE low-salt extract - TCA trichloroacetic acid; Tris tris-(hydroxy-methyl)aminoethane  相似文献   

4.
Epidermis micromorphology of in situ Erica arborea L. exposed for generations to long-term effect of volcanic gases in Pisciarelli and Solfatara di Pozzuoli areas have been studied by X-ray analyses, SEM and TEM observations. In particular, the aim of this study is to investigate the effects of volcanic gases on extant and possibly fossil plants. Plants of the same species living in a nearby control site were also studied for comparison. SEM coupled with EDX analysis was used to localize different elements within the leaves (mesophyll, cell wall and cuticle). After conventional and cryo preparation, SEM of mature leaves ascertained that the abaxial side is more serrate in fumigated leaves and hairs, epicuticular wax alterations have also been noted. Leaves experiencing chronic fumigation display stomata more sunken with respect to the epidermal surface. TEM of transverse and longitudinal sections of cuticle showed an outer A2 granular amorphous layer and external to a B1 fibrillous layer. Significant statistical variations of ultrastructural components of the cuticle revealed a response of E. arborea to this extreme environment. At the ultrastructural level, significant variations in thickness of the cell wall plus cuticle, cell wall and A2 layer among fumigated and non-fumigated leaves have been found. In the studied localities a positive correlation between atmospheric CO2 concentration and the thickness of A2 layer also exists. The results are of interest being applicable in the understanding of plant cuticle responses during periods of normal vs. volcanic activity.  相似文献   

5.
Filshie BK 《Tissue & cell》1970,2(3):479-498
The cuticle of Lucilia is composed of an untanned endocuticle and a complex epicuticle of four layers, superficial layer, outer epicuticle, cuticulin and dense layer. The outer epicuticle and attached epicuticular filaments are resistant to acid hydrolysis. During deposition of the cuticle of each larval instar, the cuticulin and dense layers are formed first, followed by the outer epicuticle, which appears to be laid down by secretions from the epidermis passing through the cuticulin via epicuticular filaments. The outer epicuticle is found in the position normally occupied by the wax layer of other insect species.  相似文献   

6.
曾妮  张建茹  常朝阳 《广西植物》2017,37(2):169-185
应用光学显微镜和电子显微镜,对30种中国蔷薇属植物叶表皮的微形态特征进行了观察。结果表明:叶表皮细胞一般为多边形或不规则形,垂周壁平直、平直弓状、波状、浅波状和深波状式样;该属植物的叶表皮细胞大小种间差异较大,总体来看上表皮几乎全为多边形细胞,且上表皮细胞比下表皮细胞略大;在扫描电镜下观察,大部分细胞的平周壁下陷,仅部分细胞的平周壁突起;叶表皮角质层纹饰多样、即使同一个种的上下表皮细胞角质层纹饰微形态特征也有差异;大多植物叶片表面具柔毛,均为单毛,有长柔毛和短柔毛,大部分种类的柔毛基部无特化,其基部由普通的表皮细胞围绕着,少部分种类的柔毛基部由几个特化的辐射状细胞围绕着,少数植物无毛;有些植物叶表面或叶脉上还分布有腺毛;除了单叶蔷薇亚属的小蘗叶蔷薇1个种的上下表皮均分布有气孔器外,其余蔷薇亚属的29种植物的气孔器均分布在下表皮,形状为椭圆形、宽椭圆形和长椭圆形三种,气孔器类型有无规则型、不规则四细胞型、对位四细胞型、环列型和辐射型;气孔器外拱盖内缘近平滑或呈深浅不同的波状、气孔器外拱盖纹饰光滑或粗糙,大多植物气孔器的保卫细胞两级T型加厚;另外,只有小蘗叶蔷薇的气孔器具双层外拱盖且仅上表皮被毛等特征也说明了其在演化上的特殊地位,蔷薇属植物叶表皮的这些微形态特征,在属内各组间无明确的规律性,但可为探讨该属种间的分类学及亲缘关系提供依据。  相似文献   

7.
Cotton leaves are more physiologically active than the bractand the capsule wall of the fruiting structures. To elucidatethe disparities in their physiological behaviour, epidermalcell density, stomatal index, stomatal size, trichome densityand type, and epicuticular wax ultrastructure of cotton leaf,bract and capsule wall were delineated using scanning electronmicroscopy (SEM). The epidermal cells of the outer periclinalwalls on both surfaces of the leaf and bract were raised andconvex. Conversely, the capsule wall epidermal cells were polygonalwith flat outer periclinal walls. The stomatal complex in theleaf and bract was paracytic, whereas in the capsule wall thestomatal complex was anomocytic. The adaxial and abaxial stomataof the leaf were coplanar to the epidermal surface, as opposedto the raised adaxial stomata on the bract. On the contrary,the stomata on the capsule wall surface appeared to be slightlysunken. Furthermore, the capsule wall stomata were larger thanthe stomata on either surface of both the leaf and the bract.The stomatal index was greater on the abaxial surfaces of theleaf and the bract (18.4 and 9.4, respectively) than their correspondingadaxial surfaces (14.4 and 4.7, respectively). Leaves had thehighest stomatal index followed by the bract and the capsulewall. The indumentum consisted of glandular and nonglandulartrichomes, the density of which was greater on the abaxial surfacesthan on the adaxial surfaces of the leaf and bract. The capsulewall indumentum lacked nonglandular trichomes. Epicuticularwax occurred in the form of striations. However, the striationpattern varied among the organs. This study clearly illustratesmorphological disparities in the epidermal features of leaf,bract and capsule wall, helping to explain their physiologicaldivergence. Copyright 2000 Annals of Botany Company Gossypium hirsutum, epicuticular wax, raised stomata, scanning electron microscopy, stomatal index, trichomes  相似文献   

8.
In this paper, twenty eight species of the genus Salix, with similar phenotypic characters, were selected to study the leaf epidermal microfeatures under Scanning Electronic Microscope (SEM). Seven types of wax layer are totally detected in those species, including smooth layer, crust, fissured layer, non entire platelets, membraneous platelets, conicoids and scale like conicoids. Among those types, conicoids and scale like conicoids are exclusively found in Salix, while non entire platelets and membraneous platelets in Salix are depicted for the first time. The microfeatures of leaf hairs of Salix plants under SEM are less diversified than their macrofeatures, with detectable microfeature variations on hair length, density and degree of curve (straight, slightly curved and deeply curved). In conclusion, our results showed leaf epidermal microfeatures of wax layer types and stomatal apparatus are relatively unchangeable, which are valuable in the discrimination of similar Salix species. The Salix species from colder region and/or higher elevation usually bear diverse microfeatures, which might be adaptive evolution to colder environments.  相似文献   

9.
对28种表型相似、种间界限模糊的柳属植物在扫描电子显微镜下的叶表皮微形态特征进行观察,结果表明:柳属中有7种角质层蜡质纹饰,分别是平滑蜡质层、壳状蜡质层、痂状蜡质层、片状晶体、膜片状晶体、锥形纤维体和鳞片状纤维体,其中锥形纤维体和鳞片状纤维体为柳属所特有,而片状晶体和膜片状晶体为首次在柳属植物中发现;扫描电子显微镜下柳属植物叶表皮毛被的微观形态特征并不似其宏观形态(疏毛、绢毛、绒毛等)那样具有显著差异,微观形态主要表现为毛被密度、长短和卷曲方式(分为直,微弯曲和深度卷曲三种)的不同.研究表明叶表皮蜡质纹饰类型、气孔器的形态等微形态特征较为稳定,对柳属植物中表型相似的种类有很好的鉴定价值,但对组、亚属水平的界定作用不大;分布于寒冷地区和高海拔地区的柳属植物的叶表皮微形态特征相对多样,这可能是植物对寒冷环境的适应进化.  相似文献   

10.
By microinjecting rhodamine-conjugated pig brain tubulin into living pea stem epidermal cells it has been possible to follow cortical microtubules beneath the outer tangential wall (OTW) as they re-orientate from a transverse to a longitudinal alignment. Earlier immunofluorescence studies on fixed material have shown that parallel cortical microtubules circumnavigate the cell forming apparently continuous arrays which are transverse, oblique or longitudinal to the cell's long axis. If the array re-orientates as a whole then microtubules along the radial walls would be expected to share the alignment of those on the tangential walls. There are, however, reports that microtubules beneath the outer tangential wall have a different orientation from microtubules at the radial cell walls, raising important questions about the construction and behaviour of the array. Using computer-rotated stacks of optical sections collected by confocal scanning laser microscopy it has been possible to display the microtubules along radial as well as tangential walls of the same microinjected cells. These observations demonstrate for living epidermal cells that when microtubules are aligned longitudinally at the outer epidermal wall they remain oblique or transverse at the radial walls. The array may not therefore re-orientate as a whole but seems to undergo re-organization on only one cell face. However, despite the differing angles between the OTW and radial walls microtubules still form patterns which at the level of the confocal microscope are continuous from one cell face to another, around the cell.
It is concluded that some organizing principle attempts to establish overall organization at the cellular level but that this can be perturbed by local re-organization of dynamic microtubules in subcellular domains. This study emphasizes the importance of the outer epidermal wall and its associated cytoskeleton in initiating changes in the direction of cell expansion.  相似文献   

11.
Ingeborg Rentschler 《Planta》1971,96(2):119-135
Summary The wettability of a leaf surface is defined by the contact angle between a water-droplet and the surface of the leaf.Contact angles of 60–80° were measured on easily wettable leaves. These leaves have no wax on the outer cuticular layer.Contact angles of 130–160° were measured on leaves with a low wettability. These leaves have wax on the outer cuticular layer, which shows submicroscopic structures characteristic of the particular plants.A comparison of the wettability and the different structures of the wax showed no true distinctions.The wax does not adhere strongly to the outer cuticular layer and is cast off in the case of old leaves. Therefore the wetability alters with the age of the leaves. If the wax on young leaves is destroyed or removed by outer influences it can be produced again within a few hours.The rebuilt structure of the wax is not always similar to the original one. When the wax was dissolved by organic solvents no new wax formation was observed.Cigarette smoke greatly increases the wettability of leaves of Tropaeolum majus, parochetus communis and Chelidonium majus without causing a visible alteration of the submicroscopic structure. In this case the leaves recover their water-repellency within a few hours, but not if they were treated with Diesel smoke.When the wax structure was destroyed by fungus or Aleurodina no new wax formation was observed.

Herrn Professor Dr. Walter Rentschler zum 60. Geburtstag  相似文献   

12.
In vegetative leaf tissues, cuticles including cuticular waxes are important for protection against nonstomatal water loss and pathogen infection as well as for adaptations to environmental stress. However, their roles in the anther wall are rarely studied. The innermost layer of the anther wall (the tapetum) is essential for generating male gametes. Here, we report the characterization of a T-DNA insertional mutant in the Wax-deficient anther1 (Wda1) gene of rice (Oryza sativa), which shows significant defects in the biosynthesis of very-long-chain fatty acids in both layers. This gene is strongly expressed in the epidermal cells of anthers. Scanning electron microscopy analyses showed that epicuticular wax crystals were absent in the outer layer of the anther and that microspore development was severely retarded and finally disrupted as a result of defective pollen exine formation in the mutant anthers. These biochemical and developmental defects in tapetum found in wda1 mutants are earlier events than those in other male-sterile mutants, which showed defects of lipidic molecules in exine. Our findings provide new insights into the biochemical and developmental aspects of the role of waxes in microspore exine development in the tapetum as well as the role of epicuticular waxes in anther expansion.  相似文献   

13.
Formation of the first epidermal layers in the embryonic scales of the lizard Lampropholis guichenoti was studied by optical and electron microscopy. Morphogenesis of embryonic scales is similar to the general process in lizards, with well‐developed overlapping scales being differentiated before hatching. The narrow outer peridermis is torn and partially lost during scale morphogenesis. A second layer, probably homologous to the inner peridermis of other lizard species, but specialized to produce lipid‐like material, develops beneath the outer peridermis. Two or three lipogenic layers of this type develop in the forming outer surface of scales near to the hinge region. These layers form a structure here termed “sebaceous‐like secretory cells.” These cells secrete lipid‐like material into the interscale space so that the whole epidermis is eventually coated with it. This lipid‐like material may help to reduce friction and to reduce accumulation of dirt between adjacent extremely overlapping scales. At the end of their differentiation, the modified inner periderm turns into extremely thin cornified cells. The layer beneath the inner peridermis is granulated due to the accumulation of keratohyalin‐like granules, and forms a shedding complex with the oberhautchen, which develops beneath. Typically tilted spinulae of the oberhautchen are formed by the aggregation of tonofilaments into characteristically pointed cytoplasmic outgrowths. Initially, there is little accumulation of β‐keratin packets in these cells. During differentiation, the oberhautchen layer merges with cells of the β‐keratin layer produced underneath, so that a typical syncytial β‐keratin layer is eventually formed before hatching. Between one‐fourth distal and the scale tip, the dermis under epidermal cells is scarce or absent so that the mature scale tip is made of a solid rod of β‐keratinized cells. At the time of hatching, differentiation of a mesos layer is well advanced, and the epidermal histology of scales corresponds to Stage 5 of an adult shedding cycle. The present study confirms that the embryonic sequence of epidermal stratification observed in other species is basically maintained in L. guichenoti. J. Morphol. 241:139–152, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

14.
The outer wall of Ornithogalum umbellatum ovary and the fruit epidermis are covered with a thick cuticle and contain lipotubuloids incorporating 3H-palmitic acid. This was earlier evidenced by selective autoradiographic labelling of lipotubuloids. After post-incubation in a non-radioactive medium, some marked particles insoluble in organic solvents (similar to cutin matrix) moved to the cuticular layer. Hence, it was hypothesised that lipotubuloids participated in cuticle synthesis. It was previously suggested that cutinsomes, nanoparticles containing polyhydroxy fatty acids, formed the cuticle. Thus, identification of the cutinsomes in O. umbellatum ovary epidermal cells, including lipotubuloids, was undertaken in order to verify the idea of lipotubuloid participation in cuticle synthesis in this species. Electron microscopy and immunogold method with the antibodies recognizing cutinsomes were used to identify these structures. They were mostly found in the outer cell wall, the cuticular layer and the cuticle proper. A lower but still significant degree of labelling was also observed in lipotubuloids, cytoplasm and near plasmalemma of epidermal cells. It seems that cutinsomes are formed in lipotubuloids and then they leave them and move towards the cuticle in epidermal cells of O. umbellatum ovary. Thus, we suggest that (1) cutinsomes could take part in the synthesis of cuticle components also in plant species other than tomato, (2) the lipotubuloids are the cytoplasmic domains connected with cuticle formation and (3) this process proceeds via cutinsomes.  相似文献   

15.
In all the cuticles studied waterproofing is effected by extracuticular material, a mixture of sclerotin precursors and lipids, exuded from the tubular filaments of the pore canals. In Rhodnius larval abdomen it is a layer of thickness similar to the outer epicuticle, believed to be composed of 'sclerotin' and wax, in Schistocerca larval sternal cuticle and in Carausius sternal cuticle it is similar. In Tenebrio adult sternal cuticle of the abdomen, in both the extracuticular exudation and the contents of the distal endings of the tubular filaments, the wax component is obscured by hard 'sclerotin'. In Manduca larva a very thin layer of 'sclerotin' and wax is covered by an irregular wax layer, average 0.75 micron, twice the thickness of the inner epicuticle. In Periplaneta and Blattella the abdominal cuticle is covered by a soft waxy layer, often about 1 micron thick, which is mixed with argentaffin material. Below this is a very thin waterproof layer of wax and 'sclerotin' continuous with the contents of the tubular filaments, which is readily removed by adsorptive dusts. In Apis adult abdominal terga free wax plus sclerotin precursors form a thin layer which is known to be removed by adsorptive dusts. In Calliphora larva there is a very thin layer of the usual mixed wax and sclerotin and below this a thick (0.5 micron) layer, lipid staining and strongly osmiophil, likewise extracuticular and exuded from the epicuticular channels. This material (which is often called 'outer epicuticle') has the same staining and resistance properties as the true outer epicuticle on which it rests. In the abdomen of Calliphora adult the waterproofing wax-sclerotin mixture forms a thin layer over the entire cuticle including the surface of the microtrichia. There is also a thin detachable layer of free wax on the surface.  相似文献   

16.
The superficial cell wall ornamentation in the zygospores of the alga Chlamydomonas geitleri Ettl (Chlorophyta) is formed by thickenings of the cell wall which are shaped into a network of anastomosing ribs, sometimes with local wart-like protuberances. Clearly different sculpture patterns (given by presence, arrangement and/or morphological modification of sculpture elements) were accompanied by many transient forms. Sculpture variations occurred even in clonal cultures. In the zygospore cell wall of C. geitleri, the inner, outer and middle layer can be distinguished from the morphological point of view. The relatively thin outer (sporopollenin) layer covers the whole surface of the zygospore wall. The thicker inner layer adhering to the zygospore protoplast forms, either solely or together with the middle layer (possessing a fine meshwork substructure), variously shaped thickening of the zygospore cell wall. Discussed are the ultrastructural morphology of the cell wall in Chlamydomonas zygospores, the striking similarity of the cell wall ultrastructure of zygospores in C. geitleri to the ultrastructure of the cell wall of vegetative cells in some green algae (subfamily Scotiellocystoideae), as well as the extensive morphological variability of the zygospore wall sculpture in C geitleri and its species specificity.  相似文献   

17.
角质层是表皮细胞壁表面的一层不透水的脂肪性物质。角质层与表皮细胞紧密结合,植物表皮细胞形态和排列方式、气孔器的形态结构等微形态特征均能在角质层上反映出来。利用光学显微镜和扫描电镜对松属(Pinus)12种植物针叶角质层微形态特征进行观察和比较,详细描述20个性状,其中12个性状来自角质层内表面,8个性状来自角质层外表面。结果表明,这些特征可为该属属下分类和相似种的鉴别提供有用信息,具有重要的分类学意义:①表皮细胞长度、表皮毛长度、角质层外表面起伏程度、表皮细胞轮廓、有无气孔塞和针絮状物质等角质层微形态特征具有自身特异性,在属下可作为松属组级水平上的分类依据。角质层微形态 特征不支持将五针松组(P. Section Cembra)和白皮松组(P. Section Parrya)合并为P. Section Quinquefolius的观点,亦不支持将油松组(P. Section Pinus)分成P. Section PinusP. Section Trifolius的看法。②白皮松(P. bungeana)针叶角质层微形态特征既与五针松组有相同之处,又与油松组有相似之处,还有部分特征显示出不同于松属其他种类的独特性,可为白皮松亚属(P. Subgenus Parrya)的建立提供新依据。③扫描电镜下表皮细胞垂周壁纹路,气孔塞有无和外表面气孔形状等特征可为形态相似种火炬松(P. taeda)和湿地松(P. elliottii)提供种间界定依据。  相似文献   

18.
19.
Leaves of Passerina are inversely ericoid. Adaxial epidermal cells are relatively small; abaxial ones are large and tanniniferous. Mucilaginous epidermal cells are usually present in many Thymelaeaceae, including Passerina , mainly in the abaxial epidermis. They are unequally divided by a periclinal wall-like septum into two separate compartments: (1) the outer, adjacent to the cuticle, containing mostly tanniniferous substances and (2) the inner, containing mucilage. This type of epidermis has often been incorrecdy described as uni-, bi- or multiseriate. Transmission electron microscopy revealed mucilage, characterized by microfibrils, embedded between die innermost wall-like septum and outermost layers of the inner periclinal cell wall. As accumulation of mucilage increases, the innermost (adjacent to the cell contents) layer of the original periclinal cell wall is pressed against the cytoplasm, thus forming a clearly demarcated cellulose periclinal wall which divides the epidermis cell into two compartments, the inner wiuh mucilage and the outer comprising the cell lumen. Existing controversy is critically discussed. Our observations confirm the authenticity of mucilagination in epidermal cell walls.  相似文献   

20.
Shedding in snakes is cyclical and derives from the differentiation of an intraepidermal shedding complex made of two different layers, termed clear and Oberhäutchen that determine the separation between the outer from the inner epidermal generation that produces a molt. The present comparative immunocytochemical study on the epidermis and molts of different species of snakes shows that a glycine‐cysteine‐rich corneous beta‐protein in a snake is prevalently accumulated in cells of the Oberhäutchen layer and decreases in those of the beta‐layer. The protein is variably distributed in the mature beta‐layer of species representing some snake families when the beta‐layer merges with the Oberhäutchen but disappears in alpha‐layers. Therefore, this protein represents an early marker of the transition between the outer and the inner epidermal generations in the epidermis of snakes in general. It is hypothesized that specific gene activation for glycine‐cysteine‐rich corneous beta‐proteins occurs during the passage from the clear layer of the outer epidermal generation to the Oberhäutchen layer of the replacing inner epidermal generation. It is suggested that in the epidermis of most species glycine‐cysteine‐rich corneous beta‐proteins form part of the dense corneous material that rapidly accumulates in the differentiating Oberhäutchen cells but decreases in the following beta‐layer of the inner epidermal generation destined to be separated from the previous outer generation in the process of shedding. The regulation of the synthesis of these and other proteins is, therefore, crucial in timing the different stages of the shedding cycle in lepidosaurian reptiles. J. Morphol. 276:144–151, 2015. © 2014 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号